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1 Stability of a greedy server

There are two continuous state space models where the stability conjecture is obvious, but
nobody is able to verify it. In both models, the driving algorithm contains a “locally optimal”
(“greedy”) element. It looks like none of existing stability methods is working here.

Model 1. A single server is located on the circle. Particles arrive in a Poisson stream of rate λ
and are uniformly distributed (as material points) on the circle (people say that there is a “Poisson
rain” of particles). It takes a single unit of time to serve a particle. After any service, the particle
disappears, the server chooses to serve next the closest particle and moves to it with a (positive
finite) constant speed (ignoring new arrivals), serves it during another unit of time, then chooses
the next closest particle and moves to it, etc.

The conjecture is: this model is stable for any λ < 1. A plausible “proof” might be as follows:
if the number of requests is very large, then the server is busy with service almost all the time (with
a service speed close to one), and then we may apply, say, fluid approximation ideas to deduce the
stability.

This model and this conjecture are known already for more than 20 years, see [6], but nobody
could succeed with obtaining either a proof or a counter-example here. The key problem is the
continuity of the state space, and there are several results (see, e.g., [11] for further details) with the
proof of a similar hypothesis for models with a finite state space (for instance, you may replace the
continuous circle by a finite lattice on it). If the server uses any “state-independent” algorithm for
moving (say, always walks in the left direction or chooses the next direction with probability 1/2
independently of everything else), then it is easy to verify the conjecture using the ideas explained
above.

Model 2. Again, there is a circle, but no any server and service this time. There are two
independent Poisson streams/rains, of “black” and of “white” particles, with rates λ and 1, respec-
tively. Black particles arrive at the circle and stop there, and white particles only pass the circle
(here “pass” means “arrive and immediately disappear”). There is given a distance ε > 0. When
a white particle passes the circle at some point, it observes all blacks in the ε-neighbourhood and
takes (deletes) the one which is the closest to the white particle (if there is any).

The natural conjecture is: the stability should be guaranteed by condition λ < 1, independently
of the circle length and the number ε. But the problem is open too. Again, there exist simple proofs
for stability if the model is modified: if either the continuous state space (the circle) is replaces
by a finite set, or the greedy mechanism is replaced by any state-independent mechanism (for
instance, if a white particle takes one of blacks from the neighbourhood “at random”, with equal
probabilities).

2 Is there a coupling-convergence in two-server queue?

Consider a stable 2-server queue with stationary and ergodic driving sequence {σn, tn} of
service and inter-arrival times, which starts from the empty state. Consider the Kiefer-Wolfowitz
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vectors W0 = (0, 0) and, for n = 0, 1, . . .,

Wn+1 = R(Wn + e1σn − itn)+

where e1 = (1, 0), i = (1, 1), R(x1, x2) = (x(1), x(2)) is the non-decreasing ordering, and
(x1, x2)+ = (max(0, x1),max(0, x2)).

Since (0, 0) ≤ θ−1W1 ≤ θ−2W2 ≤ . . . a.s.,

Wn+1 ≥st Wn,

for any n. The stability condition is Eσ1 < 2Et1. Under this condition, Wn converge weakly to
the stationary vector.

One can show that, under various assumptions, the convergence holds in the total variation
norm. Equivalently, the sequence θ−nWn coupling-converges to the limit. The question is: is this
always true, without any further assumptions ?

3 Does there exist an example where the null-recurrence occurs on
the set of parameters of a positive Lebesgue measure ?

Consider the example of two-server-two-station model (see [10]).
Remark. I plan to publish a special issue of ‘Queueing Systems” on open problems. Prof

Onno Boxma (Editor-in-Chief) has already agreed with this idea, and there is a team of colleagues
who volunteered to help me.
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