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1 Introduction

A large fraction of the applied probability literature is devoted to the study of existence and unique-
ness of a stationary solution to a stochastic dynamical system, as well as convergence toward such
a stationary solution. Examples abound in several application areas, such queueing theory, stochas-
tic control, simulation algorithms, etc. Often, the model studied possesses a Markovian property,
in which case several classical tools are available. In the absence of Markovian property, one has
few tools to rely on, in general. The concept of renovating event was introduced by Borovkov
(1978) in an attempt to produce general conditions for a strong type of convergence of a stochastic
process, satisfying a stochastic recursion, to a stationary process. Other general conditions for ex-
istence/uniqueness questions can be found, e.g., in Anantharam and Konstantopoulos (1997,1999)
and in Diaconis and Freedman (1999). The so-called renovation theory or method of renovating
events has a flavor different from the aforementioned papers, in that it leaves quite a bit of freedom
in the choice of a renovating event, which is what makes it often hard to apply: some ingenuity is
required in constructing renovating events. Nevertheless, renovation theory has found several ap-
plications, especially in queueing-type problems [see, e.g., Brandt et al. (1990) and Baccelli and
Brémaud (1994) for a variety of models and techniques in this area].

Renovation theory is stated for a discrete-time “stochastic recursive processes”, i.e., random
sequences {Xn} defined by recursive relations of the form

Xn+1 = f(Xn, ξn+1),

where f is appropriately measurable function, and {ξn} a stationary random sequence. A standard
example of such a recursion is a sequence of Keifer-Wolfowitz vectors in 2-server first-come-first-
served queue which is defined by W0 = (0, 0) and, for n = 0, 1, . . .,

Wn+1 = R(Wn + e1σn − itn)+

where e1 = (1, 0), i = (1, 1), R(x1, x2) = (x(1), x(2)) is the non-decreasing ordering, and
(x1, x2)+ = (max(0, x1),max(0, x2)). Here {tn} are inter-arrival and {σn} are service times.

We take a fresh look at the renovation theory and formulate it for processes that do not necessar-
ily obey stochastic recursions. We give a self-consistent overview of (extended) renovation theory,
and strong coupling notions; second, we shed some light into the so-called coupling from the past
property, which has drawn quite a bit of attention recently, especially in connection to the Propp-
Wilson algorithm [see Propp and Wilson (1996)] for perfect simulation (alternative terminology:
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exact sampling). We do this, by defining strong forward and backward coupling times. We also
pay particular attention to a special type of backward coupling times, those that we call verifiable
times: they form precisely the class of those times that can be simulated. Verifiable backward times
exist, e.g., for irreducible Markov chains with finite state space (and hence exact sampling from the
stationary distribution is possible), but they also exist in other models, such as the ones presented in
the second part of the paper.

2 Strong coupling notions

We start with revisiting the notions of coupling (and coupling convergence) that we need. For
general notions of coupling we refer to the monographs of Lindvall (1992) and Thorisson (2000).
For the strong coupling notions of this paper, we refer to Borovkov and Foss (1992) and to Borovkov
(1998).

Consider a sequence of random variables {Xn, n ∈ Z} defined on a probability space (Ω,F , P )
and taking values in another measurable space (X ,BX ). We study various ways according to
which X couples with another stationary process {X̃n, n ∈ Z}. We push the stationarity structure
into the probability space itself, by assuming the existence of a flow (i.e., a measurable bijection)
θ : Ω → Ω that leaves the probability measure P invariant, i.e., P(θkA) = P(A), for all A ∈ F ,
and all k ∈ Z. In this setup, a stationary process {X̃n} is, by definition, a θ-compatible process in
the sense that X̃n+1 = X̃n◦θ for all n ∈ Z. Likewise, a sequence of events {An} is stationary iff
their indicator functions {1An} is stationary. Note that, in this case, 1An

◦θ = 1θ−1An
= 1An+1

for all n ∈ Z. In order to avoid technicalities, we assume that the σ-algebra BX is countably
generated. The same assumption, without special notice, will be made for all σ-algebras below.

We next present three notions of coupling: simple coupling, strong (forward) coupling and
backward coupling. To each of these three notions there corresponds a type of convergence. These
are called c-convergence, sc-convergence, and bc-convergence, respectively. The definitions below
are somewhat formal by choice: there is often a danger of confusion between these notions. To guide
the reader, we first present an informal discussion. Simple coupling between two processes (one of
which is usually stationary) refers to the fact that the two processes are a.s. identical, eventually. To
define strong (forward) coupling, consider the family of processes that are derived from X “started
from all possible initial states at time 0”. To explain what the phrase in quotes means in a non-
Markovian setup, place the origin of time at the negative index−m, and run the process forward till
a random state at time 0 is reached: this is the processX−m formally defined in (2). Strong coupling
requires the existence of a finite random time σ ≥ 0 such that all these processes are identical after
σ. Backward coupling is–in a sense–the dual of strong coupling: instead of fixing the starting time
(time 0) and waiting till the random time σ, we play a similar game with a random starting time
(time−τ ≤ 0) and wait till coupling takes place at a fixed time (time 0). That is, backward coupling
takes place if there is a finite random time −τ ≤ 0 such that all the processes started at times prior
to −τ are coupled forever after time 0. The main theorem of this section (Theorem 1) says that
strong (forward) coupling and backward coupling are equivalent, whereas an example (Example 1)
shows that they are both strictly stronger than simple coupling.

We first consider simple coupling. Note that our definitions are more general than usual because
we do not necessarily assume that the processes are solutions of stochastic recursions.

Definition 1 (simple coupling).
1) The minimal coupling time between X and X̃ is defined by

ν = inf{n ≥ 0 : ∀ k ≥ n Xk = X̃k}.
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2) More generally, a random variable ν ′ is said to be a coupling time between X and X̃ iff1

Xn = X̃n, a.s. on {n ≥ ν ′}.

3) We say that X coupling-converges (or c-converges) to X̃ iff ν < ∞, a.s., or, equivalently, iff
ν ′ <∞, a.s., for some coupling time ν ′.

Notice that the reason we call ν “minimal” is because (i) it is a coupling time, and (ii) any random
variable ν ′ such that ν ′ ≥ ν, a.s., is also a coupling time.

Proposition 1 (c-convergence criterion). X c-converges to X̃ iff

P(lim inf
n→∞

{Xn = X̃n}) = 1.

Proof. It follows from the equality

{ν <∞} =
⋃
n≥0

⋂
k≥n
{Xk = X̃k},

the right hand side of which is the event lim infn→∞{Xn = X̃n}.

It is clear that c-convergence implies convergence in total variation, i.e.,

lim
n→∞

sup
B∈B∞X

|P((Xn, Xn+1, . . .) ∈ B)−P((X̃n, X̃n+1, . . .) ∈ B)| = 0, (1)

simply because the left hand side is dominated by P(ν ≥ n) for all n. In fact, the converse is also
true, viz., (1) implies c-convergence (see Thorisson (2000), Theorem 9.4). Thus, c-convergence is
a very strong notion of convergence, but not the strongest one that we are going to deal with in this
paper.

The process X̃ in (1) will be referred to as the stationary version ofX . Note that the terminology
is slightly non-standard because, directly from the definition, if such a X̃ exists, it is automatically
unique (due to coupling). The term is usually defined for stochastic recursive sequences (SRS).
To avoid confusion, we talk about a stationary solution of an SRS, which may not be unique. See
Section 4 for further discussion.

A comprehensive treatment of the notions of coupling, as well as the basic theorems and appli-
cations can be found in the paper of Borovkov and Foss (1992), for the special case of processes
which form stochastic recursive sequences. For the purposes of our paper, we need to formulate
some of these results beyond the SRS realm, and this is done below.

It is implicitly assumed above (see the definition of ν) that 0 is the “origin of time”. This is, of
course, totally arbitrary. We now introduce the notation

X−mn := Xm+n◦θ
−m, m ≥ 0, n ≥ −m,

and consider the family of processes

X−m := (X−m0 , X−m1 , . . .), m = 0, 1, . . . (2)

and the minimal coupling time σ(m) of X−m with X̃ . The definition becomes clearer when X
itself is a SRS (see Section 4 below).

1“B a.s. on A” means P(A−B) = 0.
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Definition 2 (strong coupling).
1) The minimal strong coupling time between X and X̃ is defined by

σ = sup
m≥0

σ(m), where

σ(m) = inf{n ≥ 0 : ∀ k ≥ n X−mk = X̃k}.

2) More generally, a random variable σ′ is said to be a strong coupling time (or sc-time) between
X and X̃ iff

X̃n = X0
n = X−1

n = X−2
n = · · · , a.s. on {n ≥ σ′}.

3) We say that {Xn} strong-coupling-converges (or sc-converges) to {X̃n} iff σ <∞, a.s.

Again, it is clear that the minimal strong coupling time σ is a strong coupling time, and that any σ′

such that σ′ ≥ σ, a.s., is also a strong coupling time.

Even though strong coupling is formulated by means of two processes, X , and a stationary X̃ ,
we will see that the latter is not needed in the definition.

Example 1 (Borovkov and Foss (1992)). We now give an example to show the difference between
coupling and strong coupling. Let {ξn, n ∈ Z} be an i.i.d. sequence of random variables with values
in Z+ such that Eξ0 =∞. Let

Xn = (ξ0 − n)+, X̃n = 0, n ∈ Z.

The minimal coupling time between (Xn, n ≥ 0) and (X̃n, n ≥ 0) is ν = ξ0 <∞, a.s. Hence X̃ is
the stationary version of X . Since

X−mn = Xm+n◦θ
−m = (ξ−m − (m+ n))+,

the minimal coupling time between (X−mn , n ≥ 0) and (X̃n, n ≥ 0) is σ(m) = (ξ−m − m)+.
Hence the minimal strong coupling time betweenX and X̃ is σ = supm≥0 σ(m). But P(σ ≤ n) =
P(∀m ≥ 0 ξm −m ≤ n) =

∏
m≥0 P(ξ0 ≤ m + n), and, since

∑
j≥0 P(ξ0 > j) = ∞, we have

that the latter infinite product is zero, i.e., σ = +∞, a.s. So, even though X couples with X̃ , it does
not couple strongly.

Proposition 2 (sc-convergence criterion). X sc-converges to X̃ iff

P

(
lim inf
n→∞

⋂
m≥0

{X̃n = X−mn }
)

= 1.

Proof. It follows from the definition of σ that

{σ <∞} =
⋃
n≥0

{σ ≤ n} =
⋃
n≥0

⋂
m≥0

{σ(m) ≤ n}

=
⋃
n≥0

⋂
m≥0

⋂
k≥n
{X̃k = X−mk } =

⋃
n≥0

⋂
k≥n

⋂
m≥0

{X̃k = X−mk }

= lim inf
n→∞

⋂
m≥0

{X̃n = X−mn },

and this proves the claim.

The so-called backward coupling [see Foss (1983), Borovkov and Foss (1992) for this notion in
the case of SRS] is introduced next. This does not require the stationary process X̃ for its definition.
Rather, the stationary process is constructed once backward coupling takes place. Even though the
notion appears to be quite strong, it is not infrequent in applications.
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Definition 3 (backward coupling).
1) The minimal backward coupling time for the random sequence {Xn, n ∈ Z} is defined by

τ = sup
m≥0

τ(m), where

τ(m) = inf{n ≥ 0 : ∀ k ≥ 0 X−nm = X−(n+k)
m }.

2) More generally, we say that τ ′ is a backward coupling time (or bc-time) for X iff

∀m ≥ 0 X−tm = X−(t+1)
m = X−(t+2)

m = · · · , a.s. on {t ≥ τ ′}.

3) We say that {Xn} backward-coupling converges (or bc-converges) iff τ <∞, a.s.

Note that τ is a backward coupling time and that any τ ′ such that τ ′ ≥ τ , a.s., is a backward
coupling time. We next present the equivalence theorem between backward and forward coupling.

Theorem 1 (coupling equivalence). Let τ be the minimal backward coupling time for X . There
is a stationary process X̃ such that the strong coupling time σ between X and X̃ has the same
distribution as τ on Z+ ∪ {+∞}. Furthermore, if τ < ∞ a.s., then X̃ is the stationary version of
X .

Proof. Using the definition of τ , we write

{τ <∞} =
⋃
n≥0

{τ ≤ n} =
⋃
n≥0

⋂
m≥0

{τ(m) ≤ n}

=
⋃
n≥0

⋂
m≥0

⋂
`≥n
{X−nm = X−`m } =

⋃
n≥0

⋂
`≥n

⋂
m≥0

{X−nm = X−`m }. (3)

Consider, as in (2), the process X−n = (X−n0 , X−n1 , X−n2 , . . .), with values in X Z+ . Using this
notation, (3) can be written as

{τ <∞} =
⋃
n≥0

⋂
`≥n
{X−n = X−`}

= {∃n ≥ 0 X−n = X−(n+1) = X−(n+2) = · · · }

Thus, on the event {τ <∞}, the random sequence X−n is equal to some fixed random element of
X Z+ for all large n (it is eventually a constant sequence). Let X̃ = (X̃0, X̃1, . . .) be this random
element; it is defined on {τ <∞}. Let ∂ be an arbitrary fixed member of X Z+ and define X̃ ≡ ∂
outside {τ <∞}. Since the event {τ <∞} is a.s. invariant under θn, for all n ∈ Z, we obtain that
X̃ is a stationary process. Let σ be the strong coupling time between X and X̃ . It is easy to see
that, for all n ≥ 0,

{σ◦θ−n ≤ n} =
⋂
`≥n
{X̃ = X−`} = {τ ≤ n}. (4)

Indeed, on one hand, from the definition of τ , we have

{τ ≤ n} =
⋂
`≥n
{X−n = X−`}.

Now, using the X̃ we just defined we can write this as

{τ ≤ n} =
⋂
`≥n
{X̃ = X−`}. (5)
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On the other hand, from the definition of σ (that is, the strong coupling time between X and X̃), we
have:

{σ ≤ n} =
⋂
k≥0

{X̃n+k = X0
n+k = X−1

n+k = X−2
n+k = · · · }.

Applying a shifting operation on both sides,

{σ◦θ−n ≤ n} =
⋂
k≥0

{X̃k = Xn
k = Xn−1

k = Xn−2
k = · · · }. (6)

The events on the right hand sides of (5) and (6) are identical. Hence (4) holds for all n, and thus
P(τ ≤ n) = P(σ◦θn ≤ n) = P(σ ≤ n), for all n. Finally, if P(τ <∞) = 1 then P(σ <∞) = 1,
and this means that X sc-converges to X̃ . In particular, we have convergence in total variation, and
so X̃ is the stationary version of X .

Corollary 1. The following are equivalent:
1) X bc-converges.
2) limn→∞P(∀m ≥ 0 X−nm = X

−(n+1)
m = X

−(n+2)
m = · · · ) = 1.

3) X sc-converges.
4) limn→∞P(∀k ≥ 0 X0

n+k = X−1
n+k = X−2

n+k = · · · ) = 1.

We can view any of the equivalent statements of Corollary 1 as an “intrinsic criterion” for the
existence the stationary version of X .

Corollary 2. Suppose that X bc-converges and let τ be the minimal backward coupling time. Let
X̃0 = Xτ ◦θ

−τ . Then X̃n = X̃0◦θ
n is the stationary version of X . Furthermore, if τ ′ is any a.s.

finite backward coupling time then Xτ ◦θ
−τ = X ′τ ◦θ

−τ ′ , a.s.

Proof. Let X̃ be the stationary version of X . It follows, from the construction of X̃ in the proof of
Theorem 1, that

(X−t0 , X−t1 , X−t2 , . . .) = (X̃0, X̃1, X̃2, . . .), a.s. on {t ≥ τ}. (7)

Thus, in particular, X̃0 = X−t0 = Xt◦θ
−t, a.s. on {t ≥ τ}. Since P(τ < ∞) = 1, it follows that

X̃0 = Xτ ◦θ
−τ , a.s. Now, if τ ′ is any backward coupling time, then (7) is true with τ ′ in place of τ ;

and if τ ′ <∞, a.s., then, as above, we conclude that X̃0 = Xτ ′◦θ
−τ ′ .

3 The concept of verifiability and perfect simulation

One application of the theory is the simulation of stochastic systems. If we could sample the process
at a bc-time, then would actually be simulating its stationary version. This is particularly useful in
Markov Chain Monte Carlo applications. Recently, Propp and Wilson (1996) used the so-called
perfect simulation method for the simulation of the invariant measure of a Markov chain. The
method is actually based on sampling at a bc-time. To do so, however, one must be able to generate
a bc-time from a finite history of the process. In general, this may not be possible because, even in
the case when suitable renovation events can be found, they may depend on the entire history of the
process.

We are thus led to the concept of a verifiable time. Its definition, given below, requires intro-
ducing a family of σ-fields {G−j,m,−j ≤ 0 ≤ m}, such that G−j,m increases if j or m increases.
We call this simply an increasing family of σ-fields. For fixed m, a backwards stopping time τ ≥ 0
with respect to G·,m means a stopping time with respect to the first index, i.e., {τ ≤ j} ∈ G−j,m for
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all j ≥ 0. In this case, the σ-field G−τ,m contains all events A such that A ∩ {τ ≤ j} ∈ G−j,m, for
all j ≥ 0.

Definition 4 (verifiable time). An a.s. finite nonnegative random time β is said to be verifiable with
respect to an increasing family of σ-fields {G−j,m,−j ≤ 0 ≤ m}, if there exists a sequence of
random times {β(m),m ≥ 0}, with β(m) being a backwards G·,m–stopping time for all m, such
that:

(i) β = supm≥0 β(m),

(ii) For all m ≥ 0, X−nm = X
−(n+i)
m for all i ≥ 0, a.s. on {n ≥ β(m)},

(iii) For all m ≥ 0, the random variable X−β(m)
m is G−β(m),m–measurable.

Some comments: First, observe that if β is any backwards coupling time, then it is always
possible to find β(m) such that (i) and (ii) above hold. The additional thing here is that the β(m)
are backwards stopping times with respect to some σ-fields, and condition (iii). Second, observe that
any verifiable time is a backwards coupling time. This follows directly from (i), (ii) and Definition
3. Third, define

βm = max(β(0), . . . , β(m))

and observe that

(X−t0 , . . . , X−tm ) = (X−t−1
0 , . . . , X−t−1

m ) = · · · , a.s. on {t ≥ βm}.

Thus, a.s. on {t ≥ βm}, the sequence (X−t0 , . . . , X−tm ) does not change with t. Since it also
converges, in total variation, to (X̃0, . . . , X̃m), where X̃ is the stationary version of X , it follows
that

(X−t0 , . . . , X−tm ) = (X̃0, . . . , X̃m), a.s. on {t ≥ βm}.

Therefore,
(X−βm

0 , . . . , X−βm
m ) = (X̃0, . . . , X̃m), a.s.

Since βm ≥ β(i), for each 0 ≤ i ≤ m, we have X−βm

i = X
−β(i)
i , and this is G−β(i),i–measurable

and so, a fortiori, G−βm,m–measurable (the σ-fields are increasing). Thus, (X̃0, . . . , X̃m) is G−βm,m–
measurable. In other words, any finite-dimensional projection (X̃0, . . . , X̃m) of the stationary dis-
tribution can be “perfectly sampled”. That is, in practice, {G−j,m} contains our basic data (e.g., it
measures the random numbers we are using), βm is a stopping time, and (X̃0, . . . , X̃m) is measur-
able with respect to a stopped σ-field. This is what perfect sampling means, in an abstract setup,
without reference to any Markovian structure.

Naturally, we would like to have a condition for verifiability. Here we present a sufficient
condition for the case where renovating events of special structure exist. To prepare for the theorem
below, consider a stochastic process {Xn, n ∈ Z} on (Ω,F , P, θ), the notation being that of Section
2. Let {ζn = ζ0◦θ

n, n ∈ Z} be a family of i.i.d. random variables. For fixed κ ∈ Z, consider the
increasing family of σ-fields

G−j,m := σ(ζ−j−κ, . . . , ζm).

Consider also a family {Bn, n ∈ Z} of Borel sets and introduce the events

A−j,m := {ζ−j−κ ∈ B−κ, . . . , ζm ∈ Bm+j}

A0 :=
⋂
m≥0

A0,m = {ζ−κ ∈ B−κ, . . . , ζ0 ∈ B0, . . .}

An := {ζn−κ ∈ B−κ, . . . , ζn ∈ B0, . . .} = θ−nA0.
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Theorem 2 (verifiability criterion). With the notation just introduced, suppose P(A0) > 0. Suppose
the An are renovating events for the process X ,
(???)
and that X−im 1A−j,m is G−j,m–measurable, for all −i ≤ −j ≤ m. Then

β := inf{n ≥ 0 : 1A−n = 1}

is a verifiable time with respect to the {G−j,m}.

Proof. We shall show that β = supm≥0 β(m), for appropriately defined backwards G·,m–stopping
times β(m) that satisfy the properties (i), (ii) and (iii) of Definition 4. Let

β(m) := inf{j ≥ 0 : 1A−j,m = 1}.

Since A−j,m ∈ G−j,m, we immediately have that β(m) is a backwards G·,m–stopping time. Then

β(m) := inf{j ≥ 0 : ζ−j−κ ∈ B−κ, . . . , ζm ∈ Bm+j}

is a.s. increasing in m, with

sup
m
β(m) := inf{j ≥ 0 : ζ−j−κ ∈ B−κ, . . .} = inf{j ≥ 0 : 1A−j = 1} = β.

Hence (i) of Def. 4 holds. We next use the fact that the An are renovating events. we have, for all
i ≥ j,

X−im 1A−j = X−jm 1A−j , a.s.

Since
A−j = A−j,m ∩ {ζm+1 ∈ Bm+1+j , . . .} =: A−j,m ∩Dj,m,

we have
X−im 1A−j,m1Dj,m = X−jm 1A−j,m1Dj,m , a.s.

By assumption, X−im 1A−j,m is G−j,m–measurable, for all i ≥ j. By the independence between the
ζn’s, Dj,m is independent of G−j,m. Hence, by Lemma 1 of the Appendix, we can cancel the 1Dj,m

terms in the above equation to get

X−im 1A−j,m = X−jm 1A−j,m , a.s.,

for all i ≥ j. Now,
{β(m) = j} ⊆ A−j,m, (8)

and so, by multiplying by 1(β(m) = j) both sides, we obtain

X−im 1(β(m) = j) = X−jm 1(β(m) = j), a.s.,

for all i ≥ j. By stationarity, β(m) <∞, a.s., and so for all ` ≥ 0,

X−β(m)−`
m = X−β(m)

m , a.s.

Hence (ii) of Def. 4 holds. Finally, to show that X−β(m)
m is G−β(m),m–measurable, we show that

X−jm 1(β(m) = j) is G−j,m–measurable. Using the inclusion (8) again, we write

X−jm 1(β(m) = j) = X−jm 1A−j,m1(β(m) = j).

By assumption, X−jm 1A−j,m is G−j,m–measurable, and so is 1(β(m) = j). Hence (iii) of Def. 4
also holds.
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A perfect simulation algorithm

In the remaining of this section, we describe a “perfect simulation algorithm”, i.e., a method for
drawing samples from the stationary version of a process. The setup is as in Theorem 2. For
simplicity, we take κ = 0. That is, we assume that

A0 = {ζ0 ∈ B0, ζ1 ∈ B1, . . .}

has positive probability, and that the An = θ−nA0 are renovating events for the process {Xn}.
Recall that the {ζn = ζ0◦θ

n} are i.i.d., and that Gm,n = σ(ζm, . . . , ζn), m ≤ n. It was proved in
Theorem 2 that the time β = inf{n ≥ 0 : 1A−n = 1} is a bc-time which is verifiable with respect
to the {Gm,n}. This time is written as β = supm≥0 β(m), where β(m) = inf{j ≥ 0 : ζ−j ∈
B0, . . . , ζm ∈ Bm+j}. The algorithm uses β(0) only. It is convenient to let

ν1 := β(0) = inf{j ≥ 0 : ζ−j ∈ B0, . . . , ζ0 ∈ Bj},
νi+1 := νi + β(0)◦θ−νi , i ≥ 1.

In addition to the above, we are going to assume that

B0 ⊆ B1 ⊆ B2 ⊆ . . .

It is easy to see that this monotonicity assumption is responsible for the following

ν1◦θ
−j ≤ ν1 − j, a.s. on {ν1 ≥ j}. (9)

Owing to condition (ii) of Definition 4 we have

X−ν10 = X̃0 = X−ν1−i0 , for any i ≥ 0.

That is, if we “start” the process at time−ν1, we have, at time 0, thatX0 is a.s. equal to the stationary
X̃0. Applying θ−j at this equality we have X−ν10 ◦θ−j = X̃0◦θ

−j = X̃−j . But X−ν10 ◦θ−j =
(Xν1◦θ

−ν1)◦θ−j = X−ν1◦θ−j ◦θ−ν1◦θ
−j−j = X−j−ν1

◦θ−j

−j . That is,

X−j−ν1
◦θ−j

−j = X̃−j = X−j−ν1
◦θ−j−i

−j , for any i ≥ 0. (10)

But from (9), we have ν1 ≥ j + ν1◦θ
−j , if ν1 ≥ j, and so, from (10),

X−ν1−j = X̃−j , a.s. on {ν1 ≥ j}.

This means that if we start the process at −ν1, then its values on any window [−j, 0] contained in
[−ν1, 0] match the values of its stationary version on the same window:

(X−ν1−j , . . . , X
−ν1
0 ) = (X̃−j , . . . , X̃0), a.s. on {ν1 ≥ j}. (11)

It remains to show a measurability property of the vector (11) that we are simulating. By (iii) of
Definition 4, we have that X−ν10 is G−ν1,0–measurable. That is, if ν1 = ` then X̃0 is a certain
deterministic function of ζ−`, . . . , ζ0. Thus, the functions h` are defined, for all ` ≥ 0, by the
condition

X−`0 = h`(ζ−`, . . . , ζ0), a.s. on {ν1 = `},

or,
X−ν10 = hν1(ζ−ν1 , . . . , ζ0).

Hence for any i ≥ 0,

X−i−ν1◦θ
−i

−i = X−ν10 ◦θ−i = hν1◦θ−i(ζ−i−ν1◦θ−i , . . . , ζ−i).

9



But if ν1 ≥ j, we have ν1◦θ
−i ≤ ν1−i for all i ∈ [0, j], and so every component of (X−ν10 ◦θ−i, 0 ≤

i ≤ j) is a deterministic function of ζ0, . . . , ζ−ν1 . Thus the vector appearing in (11) is a determin-
istic function of ζ0, . . . , ζ−ν1 , if ν1 ≥ j. This is precisely the measurability property we need.

We now observe that, in (11), we can replace ν1 by any νi:

(X−νi
−j , . . . , X

−νi
0 ) = (X̃−j , . . . , X̃0), a.s. on {νi ≥ j}, i = 1, 2, . . .

Hence if we want to simulate (X̃−j , . . . , X̃0) we search for an i such that νi ≥ j, and start the
process from −νi. It is now clear how to simulate the process on any window prior to 0.

To proceed forward, i.e., to simulate {X̃n, n > 0}, consider first X̃1. Note that

X̃1 = X̃0◦θ = hν1(ζ−ν1 , . . . , ζ0)◦θ
= hν1◦θ(ζ−ν1◦θ+1, . . . , ζ1)

Next note that ν1◦θ is either equal to 0, or to ν1+1, or to ν2+1 = ν1+ν1◦θ
−ν1 +1, etc. This follows

from the definition of ν1 and νi, as well as the monotonicity between the Bj . If ν1 = 0 (which is to
say, ζ1 ∈ B0) then X̃1 = h0(ζ1). Otherwise, if ζ1 6∈ B0, but ζ1 ∈ Bν1+1, then ν1◦θ = ν1 +1, and so
X̃1 = hν1+1(ζ−ν1 , . . . , ζ1). Thus, for some finite (but random) j (defined from ζ1 ∈ Bνj+1 \Bνj ),
we have X̃1 = hνj+1(ζ−νj , . . . , ζ1). The algorithm proceeds similarly for n > 1.

The connection between perfect simulation and backward coupling was first studied by Foss
and Tweedie (1998).

Weak verifiability

Suppose now that we drop the condition that P(A0) > 0, but only assume that

β(0) <∞, a.s.

Of course, this implies that β(m) < ∞, a.s., for all m. Here we can no longer assert that we have
sc-convergence to a stationary version, but we can only assert existence in the sense described in
the sequel. Indeed, simply the a.s. finiteness of β(0) (and not of β) makes the perfect simulation
algorithm described above realizable. The algorithm is shift-invariant, hence the process defined
by it is stationary. One may call this process a stationary version of X . This becomes precise if
{Xn} itself is a stochastic recursive sequence, in the sense that the stationary process defined by the
algorithm is also a stochastic recursive sequence with the same driver. (See Section 4.)

The construction of a stationary version, under the weaker hypothesis β(0) < ∞, a.s., is also
studied by Comets et al. (2001), for a particular model. In that paper, it is shown that β(0) < ∞
a.s., iff

∞∑
n=1

n∏
k=0

P(ζ0 ∈ Bk) =∞.

The latter condition is clearly weaker than P(A0) > 0. In Comets et al. (2001) it is shown that
it is equivalent to the non-positive recurrence of a certain Markov chain, a realization which leads
directly to the proof of this condition.

4 Strong coupling for stochastic recursive sequences

As in the previous section, let (Ω,F , P, θ) be a probability space with a P -preserving ergodic flow
θ. Let (X ,BX ), (Y ,BY ) be two measurable spaces. Let {ξn, n ∈ Z} be a stationary sequence
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of Y -valued random variables. Let f : X × Y → X be a measurable function. A stochastic
recursive sequence (SRS) {Xn, n ≥ 0} is defined as an X -valued process that satisfies

Xn+1 = f(Xn, ξn), n ≥ 0. (12)

The pair (f, {ξn}) is referred to as the driver of the SRS X . The choice of 0 as the starting point is
arbitrary.

A stationary solution {X̃n} of the stochastic recursion is a stationary sequence that satisfies the
above recursion. Clearly, it can be assumed that X̃n is defined for all n ∈ Z. There are examples
that show that a stationary solution may exist but may not be unique. The classical such example is
that of a two-server queue, which satisfies the so-called Kiefer-Wolfowitz recursion (see Brandt et
al. (1990)). In this example, under natural stability conditions, there are infinitely many stationary
solutions, one of which is “minimal” and another “maximal”. One may define a particular solution,
say {X0

n}, to the two-server queue SRS by starting from the zero initial condition. Then X0 sc-
converges (under some conditions) to the minimal stationary solution. In our terminology then, we
may say that the minimal stationary solution is the stationary version of X0.

Stochastic recursive sequences are ubiquitous in applied probability modeling. For instance, a
Markov chain with values in a countably generated measurable space can be expressed in the form
of SRS with i.i.d. drivers.

The previous notions of coupling take a simpler form when stochastic recursive sequences are
involved owing to the fact that if two SRS with the same driver agree at some n then they agree
thereafter. We thus have the following modifications of the earlier theorems:

Proposition 3. Let X , X̃ be SRS with the same driver (f, {ξn}), and assume that X̃ is stationary.
Then
(i) X c-converges to X̃ iff

lim
n→∞

P(Xn = X̃n) = 1.

(ii) X sc-converges to X̃ iff

lim
n→∞

P(X̃n = Xn = X−1
n = X−2

n = · · · ) = 1.

(iii) X bc-converges iff

lim
n→∞

P(X−n0 = X
−(n+1)
0 = X

−(n+2)
0 = · · · ) = 1.

The standard renovation theory (see Borovkov (1984,1998)) is formulated as follows. First,
define renovation events:

Definition 5 (renovation event for SRS). Fix n ∈ Z, ` ∈ Z+ and a measurable function g : Y `+1 →
X . A set R ∈ F is called (n, `, g)–renovating for the SRS X iff

Xn+`+1 = g(ξn, . . . , ξn+`), a.s. on R. (13)

An alternative terminology (Borovkov (1988)) is: R is a renovation event on the segment [n, n+ `].

We then have the following theorem.

Theorem 3 (renovation theorem for SRS). Fix ` ≥ 0 and g : Y `+1 → X . Suppose that, for each
n ≥ 0, there exists a (n, `, g)–renovating event Rn for X . Assume that {Rn, n ≥ 0} is stationary
and ergodic, with P(R0) > 0. Then the SRSX bc-converges and its stationary version X̃ is an SRS
with the same driver as X .
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Proof. For each n ∈ Z, define X̂n,i, recursively on the index i, by

X̂n,n+`+1 = g(ξn, . . . , ξn+`)

X̂n,n+j+1 = f(X̂n,n+j , ξn+j), j ≥ `+ 1, (14)

and observe that (13) implies that

∀n ≥ 0 ∀j ≥ `+ 1 Xn+j = X̂n,n+j , a.s. on Rn. (15)

For n ∈ Z, set An := Rn−`−1. Consider the stationary background

Hn,p := X̂n−`−1,p, p ≥ n.

Note that Hn,p◦θ
k = Hn+k,p+k and rewrite (15) as

∀n ≥ `+ 1 ∀i ≥ 0 Xn+i = Hn,n+i, a.s. on An.

Since P(A0) = P(R0) > 0, there is a unique stationary version X̃ , constructed by means of the
bc-time

γ := inf{i ≥ 0 : 1R−i−`−1
= 1}. (16)

We have
X̃n = Xγ+n◦θ

−γ = H−γ,n = X̂−γ−`−1,n.

This X̃n can be defined for all n ∈ Z. From this, and (14), we have that X̃n+1 = f(X̃n, ξn), n ∈ Z,
i.e., X̃ has the same driver as X .

It is useful to observe that, if Rn are (n, `, g) renovating events for X with P(R0) > 0, then the
stationary version X̃ satisfies X̃−γ = g(ξ−γ−`−1, . . . , ξ−γ−1), a.s., where γ is the bc-time defined
in (16). More generally, if we consider the random set {j ∈ Z : 1Rj = 1} (the set of renovation
epochs), we have, for any α in this set, X̃α = g(ξα−`−1, . . . , ξα−1), a.s.

Example 2. Consider 2-server queue with stationary ergodic driving sequences {(σn, tn)}.

Example 3. Consider a Markov chain {Xn}with values in a finite set S, having stationary transition
probabilities pi,j , i, j ∈ S. Assume that [pi,j ] is irreducible and aperiodic. Although there is a
unique invariant probability measure, whether X bc-converges to the stationary Markov chain X̃
depends on the realization of X on a particular probability space. We can achieve bc-convergence
with a verifiable bc-time if we realize X as follows: Consider a sequence of i.i.d. random maps
ξn : S → S, n ∈ Z (and we write ξnξn+1 to indicate composition). Represent each ξn as a vector
ξn = (ξn(i), i ∈ S), with independent components such that

P(ξn(i) = j) = pi,j , i, j ∈ S.

Then the Markov chain is realized as an SRS by

Xn+1 = ξn(Xn).

It is important to notice that the condition that the components of ξn be independent is not necessary
for the Markovian property. It is only used as a means of constructing the process on a particular
probability space, so that backwards coupling takes place. Now define

β = inf{n ≥ 0 : ∀ i, j ∈ S ξ0 · · · ξ−n(i) = ξ0 · · · ξ−n(j)}.

It can be seen that, under our assumptions, β is a bc-time for X , β < ∞, a.s., and β is verifiable.
This bc-time is the one used by Propp and Wilson (1996) in their perfect simulation method for
Markov chains. Indeed, the verifiability property of β allows recursive simulation of the random
variable ξ0 · · · ξ−β(i) which (regardless of i) has the stationary distribution.
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Example 4. Another interesting example is the process considered by Brémaud and Massoulié
(1994) that has a “Markov-like” property with random memory. Consider a process {Xn, n ∈ Z}
with values in a Polish space S and suppose that its transition kernel, defined by P(Xn ∈ · |
Xn−1, Xn−2, . . .) is time-homogeneous [a similar setup is considered in the paper by Comets et
al. (2001)], i.e. that there exists a kernel µ : K∞ × B(K) → [0, 1] such that P(Xn ∈ B |
Xn−1, Xn−2, . . .) = µ((Xn−1, Xn−2, . . .);B), B ∈ B(K). This represents the dynamics of the
process. In addition, assume that the dynamics does not depend on the whole past, but on a finite
but random number of random variables from the past. It is also required that the random memory
is “consistent” and that the minorization condition µ((Xn−1, Xn−2, . . .), ·) ≥ εν(·), where ε ∈
(0, 1) and ν a probability measure on (K,B(K)), holds. See Brémaud and Massoulié (1994) for
details. Then it is shown that renovation events do exist and that the process {Xn} sc-converges to
a stationary process that has the same dynamics µ.

Appendix: Auxiliary results

Lemma 1. If Y1, Y2 and Z are three random variables such that Z is independent of (Y1, Y2),
P(Z 6= 0) > 0, and Y1Z = Y2Z, a.s., then Y1 = Y2, a.s.

Proof. Since P(Y1Z = Y2Z) = 1, we have

P(Z 6= 0) = P(Y1Z = Y2Z,Z 6= 0) = P(Y1 = Y2, Z 6= 0) = P(Y1 = Y2)P(Z 6= 0),

where the last equality follows from independence. Since P(Z 6= 0) > 0, we obtain the result
P(Y1 = Y2) = 1.

Proposition 4. LetX1, X2, . . . be a stationary-ergodic sequence of random variables with EX+
1 <

∞. Then
1
n

max
1≤i≤n

Xi → 0, a.s. and in L1.

Proof. Without loss of generality, assume Xn ≥ 0, a.s. Put Yn = max1≤i≤nXi. Clearly,

Yn+k ≤ max
1≤i≤n

Xi + max
n+1≤i≤n+k

Xi = Yn + Yk◦θ
n.

Kingman’s subadditive ergodic theorem shows that Yn/n → c, a.s., where c ≥ 0. We will show
that c = 0. If c > 0 then, for any 0 < ε < c/2, there is k0 such that P(Yk/k > c + ε) < ε for all
k ≥ k0. Fix k ≥ k0 and let n = 2k. We then have

P(Yn/n > 3c/4) ≤ P(Yn/n > (c+ ε)/2)
≤ P(max(Yk/n, Yk◦θk/n) > (c+ ε)/2)
≤ 2P(Yk/n > (c+ ε)/2)
= 2P(Yk/k > c+ ε),

which contradicts the a.s. convergence of Yn/n to c. Hence c = 0. To show that EYn/n → 0
simply observe that the sequence Yn/n is bounded by Sn/n = (X1 + · · · + Xn)/n, and since
Sn/n → EX1, a.s. and in L1, it follows that {Sn/n} is a uniformly integrable sequence, and thus
so is {Yn/n}.

Proposition 5. Let X1, X2, . . . be a stationary-ergodic sequence of random variables with EX1 =
0. Consider the stationary walk Sn = X1+ · · ·+Xn, n ≥ 1, with S0 = 0. PutMn = max0≤i≤n Si.
Then Mn/n→ 0, a.s. and in L1.
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Proof. Fix ε > 0. Let M∗ = supi≥0(Si − iε). Then M∗ <∞, a.s. We have

Mn = max
0≤i≤n

(Si − iε+ iε) ≤ max
0≤i≤n

(Si − iε) + nε ≤M∗ + nε.

So, Mn/n ≤ M∗/n + ε, a.s. This implies that lim supn→∞Mn/n ≤ ε, a.s., and so Mn/n → 0,
a.s. Convergence in L1 can be proved as follows. Let b := EX+

1 . Define S(+)
n := X+

1 + · · ·+X+
n .

By the ergodic theorem, S(+)
n /n → b, a.s. and in L1, and so {S(+)

n /n} is a uniformly integrable
sequence. But 0 ≤Mn/n ≤ S(+)

n /n. So {Mn/n} is also uniformly integrable.
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