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Coupling and Harris Processes

1 A simple example

Consider a Markov chain Xn in a countable state space S with transition probabilities pi,j
such that: There exists a state a ∈ S and ε > 0, with the property:

pi,a ≥ ε > 0, for all i ∈ S.

We will show that there is a unique stationary distribution π∑
j∈S
|P (Xn ∈ j)− π(j)| ≤ 2(1− ε)n,

regardless of the initial state X0. We give two proofs.

Proof 1 (“analytic”) Think in terms of of the one-step transition matrix P = [pi,j ] as a
linear operator acting on RS . Equip RS with the norm ||x|| :=

∑
j∈S |xj |. Stroock (2000)

[pg. 28-29] proves that, for any ρ ∈ RS , such that
∑

i∈S ρi = 0, we have

||ρP || ≤ (1− ε)||ρ||.

He then claims that this implies that

||ρPn|| ≤ (1− ε)n||ρ||, n ∈ N,

and uses this to show that, for any µ ∈ RS with, µi ≥ 0 for all i ∈ S, and
∑

i∈S µi = 1, it
holds that ||µPn − µPm|| ≤ 2(1− ε)m, for m ≤ n.

Proof 2 (probabilistic) Consider the following experiment. Suppose the current state
is i. Toss a coin with P (heads) = ε. If heads show up then move to state a. If tails show
up, then move to state j with probability

p̃i,j =
pi,j − εδa,j

1− ε
.
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(That this IS a valid probability is a consequence of the assumption!) In this manner, we
obtain a process that has precisely transition probabilities pi,j . Note that state a will be
visited either because of heads in a coin toss or because it was chosen so by the alternative
transition probability. So state a will be visited at least as many times as the number of
heads in a coin toss. This means that state a is positive recurrent. And so a stationary
probability π exists. We will show that this π is unique and that the distibution of the chain
converges to it. To do this, consider two chains X, X, both with transition probabilities
pi,j , and realise them as follows. The first one starts with X0 distributed according to an
arbitrary µ. The second one starts with X0 distributed according to π. Now do this: Use
the same coin for both. So, if heads show up then move both chains to a. If tails show up
then realise each one according to p̃, independently. Repeat this at the next step, by tossing
a new coin, independently of the past. Thus, as long as heads have not come up yet, the
chains are moving independently. Of course, sooner or later, heads will show up and the
chains will be the same thereafter. Let T be the first time at which heads show up. We
have:

P (Xn ∈ B) = P (Xn ∈ B, T > n) + P (Xn ∈ B, T ≤ n)

= P (Xn ∈ B, T > n) + P (Xn ∈ B, T ≤ n)

≤ P (T > n) + P (Xn ∈ B) = P (T > n) + π(B).

Similarly,

π(B) = P (Xn ∈ B) = P (Xn ∈ B, T > n) + P (Xn ∈ B, T ≤ n)

= P (Xn ∈ B, T > n) + P (Xn ∈ B, T ≤ n)
≤ P (T > n) + P (Xn ∈ B).

Hence
|P (Xn ∈ B)− π(B)| ≤ P (T > n) = (1− ε)n.

Finally, check that supB⊆S P (Xn ∈ B)− π(B)| = 1
2

∑
i∈S |P (Xn = i)− π(i)|.

2 Coupling

In the introductory lecture, we have already discussed various concepts of coupling, but in
a “static” way. Now we will do it “dynamically”.

Consider more examples of coupling :

Ex. 1: Skorokhod embedding Let X be a zero-mean r.v. with distribution F . Then we
can realise X on a probability space Ω supporting at least a standard Brownian motion (Wt)
by means of the Skorokhod embedding. This is another instance of coupling. For example,
if F = pδa + qδb, where p+ q = 1, pa+ qb = 0, we let T = inf{t ≥ 0 : Wt 6∈ (a, b)} and let
X = WT . Then X ∼ F .
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Ex. 2: Dynkin’s trick You shuffle well a deck of n cards. Let their values, after the
shuffle, be: x(1), x(2), . . . , x(n). (If we are talking about playing cards with J, Q, K included,
assign some specific numbers to them, e.g. J=1, Q=2, K=3.)
Experiment (performed by you, in secrecy): Starting from one of the first 10 cards at
random, say card N (P (N = i) = 1/10, i = 1, . . . , 10), you notice the value x(N) and then
move forward to the card with index N +x(N), notice its value x(N +x(N)), move forward
to the card with index N + x(N + x(N))), etc. So, at the i-th step, i ≥ 1, if you are
at position Ni, at a card with value x(Ni), you move to position Ni+1 = Ni + x(Ni) and
notice the value x(Ni+1). (We take N0 = N). The process stops at the step I for which
NI + x(NI) > n. You notice x(NI).
The value x(NI) can be guessed with probability ≈ 1− cn, where c < 1.

The coupling here is this: One process starts from one of the first 10 cards at random.
Another process starts from a specific card, say the first one. Then, if n is large, the two
processes will meet.

Ex. 3: Common component for 2 distributions Let F , G be two distributions on
R. I pick i.i.d. numbers Xn according to F and you pick i.i.d. Yn according to G. We want
to do this in a way that, for sure Xn = Yn for some finite n. The caveat here is that it is
not a requirement that my sequence be independent of yours. Obviously, if the supports of
F and G are disjoint, then there is no way to achieve equality in finite time. So let us say
that the supports of F and G contain a set, say a “small” interval I. Let then µ be some
measure supported on I, e.g., the uniform distribution on I. The important thing is that
there is some nontrivial measure finite µ such that

F ≥ µ, G ≥ µ,

in the sense that F (B) ≥ µ(B), G(B) ≥ µ(B) for all Borel sets B. Then, letting ||µ|| := µ(R)
and assuming 0 < ||µ|| < 1 (this is not a problem), we have

F = ||µ|| µ

||µ||
+ ||F − µ|| F − µ

||F − µ||

G = ||µ|| µ

||µ||
+ ||G− µ|| G− µ

||G− µ||

Now here is how we do a coupling. Let Ω be a probability space supporting 4 independent
sequences of i.i.d. random variables: the sequence (δn) such that P (δn = 1) = ||µ||, P (δn =
0) = 1 − ||µ||, the sequence (ξn) such that P (ξn ∈ ·) = µ(·)/||µ||, the sequence (X ′n) such
that P (X ′n ∈ ·) = (F (·) − µ(·))/||F − µ||, and the sequence (Y ′n) such that P (Y ′n ∈ ·) =
(G(·)−µ(·))/||G−µ||. We can take Ω = {0, 1}×R3–the canonical space of (δn, ξn, X ′n, Y

′
n)n∈N.

We now define

Xn = δnξn + (1− δn)X ′n
Yn = δnξn + (1− δn)Y ′n.

Clearly, Xn ∼ F , Yn ∼ G, as needed, and if T = inf{n : δn = 1}, we have XT = YT . But T
is a geometric random variable with P (T > n) = (1− ||µ||)n and so a.s. finite.
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Ex. 4: Common component for arbitrarily many distributions We can generalise
Example 3 to a family {Fα} of distributions instead of just two of them. We say that they
have a common component if we can find a measure µ such that µ ≤ infα Fα. Then we
obtain a coupling for all of them simultaneously, by mimicking the construction above.

3 Harris processes

Doeblin (1940) was the first to prove stability results for Markov chains in a general state
space; he assumed that P `(x, ·) ≥ εQ(·) for all x ∈ S (see below for explanation of notation).
Harris (1956) generalised Doeblin’s method. Total variation convergence was first considered
by Orey (1959).

Definition of Harris processes We say that the Markov process (Xn) is Harris1 if there
is a recurrent set R ⊆ S, i.e.

Px(τR <∞) = 1 for all x ∈ S

where τR := inf{n ≥ 1 : Xn ∈ R}, and an ` ∈ N such that the family of probability
measures {P `(x, ·), x ∈ R} have a common component; in other words,

there is p ∈ (0, 1) and a prob. measure Q s.t. P `(x, ·) ≥ pQ(·), ∀x ∈ R

This recurrent set R is often called a regeneration set.2 The discussion that follows justifies
the terminology and shows that a Harris process always possesses an invariant measure
(which may possibly have infinite mass).

Coupling Suppose X0 = x ∈ R. Write Xx
` for the Markov process at time `. As in

Ex. 2, we may realise the family of random variables {Xx
` , x ∈ R} in a way that P (Xx

` =
Xy
` for all x, y ∈ R) > 0. This is done by generating a single random variable, say Y , with

law Q, and by tossing a coin with probability of success p. If successful, we let Xx
` = Y , for

all x ∈ R. If not, we distribute according to the remaining probability.

Existence of invariant measure We now show that each Harris process has an invariant
measure. For simplicity, we shall let ` = 1. This is basically done by an inverse Palm
construction. Start with X1 distributed according to the law Q. Let Tk, k ∈ N be the times
at which the process hits R. For each such Tk consider a 0/1 r.v. ζk with P (ζk = 1) = p
and a r.v. Yk with P (Yk ∈ ·) = Q. Let K = inf{k : ζk = 1}. Consider the path {Xn, 1 ≤
n ≤ TK + 1}. Forcefully set XTK+1 = YK . The path C0 := {Xn, 1 ≤ n ≤ TK + 1} is the first

cycle of the process. Considering the iterates of TK , namely, T (m+1)
K = T

(m)
K + TK◦θ

T
(m)
K ,

m ≥ 0, T (0)
K ≡ 0, we obtain the successive cycles Cm+1 = Cm◦θT

(m)
K . It is clear that

1Or that it has the Harris property; or that it is Harris-recurrent
2In view of the recent resurgence of interest in Lévy processes, one is warned not to confuse the notion of

a “regeneration set” with the notion of a “random regenerative set” which is the range of a Lévy process.
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XTK+1 has law Q and that the sequence of cycles is stationary. (This is referred to as
Palm stationarity.) Moreover, we have a regenerative structure: {T (m)

K , 0 ≤ m ≤ n} is
independent of {Cm,m ≥ n + 1}, for all n. The only problem is that the cycle durations
may be random variables with infinite mean.

Now let PQ be the law of the process when X0 is chosen according to Q. Define the measure

µ(·) = EQ

TK+1∑
n=1

1(Xn ∈ ·).

Strong Markov property ensures that µ is stationary, i.e.,

µ(·) =
∫
S
P (x, ·)µ(dx).

Positive Harris recurrence If, in addition, to the Harris property, we also have

EQ(TK) <∞, (1)

we then say that the process is positive Harris recurrent. In such a case, π(·) = µ(·)/EQ(TK)
defines a stationary probability measure. Moreover, the assumption that R is recurrent
ensures that there is no other stationary probability measure.

A sufficient condition for positive Harris recurrence is that

sup
x∈R

ExτR <∞. (2)

This is a condition that does not depend on the (usually unknown) measure Q. To see the
sufficiency, just use the fact that TK may be represented as a geometric sum of r.v.’s with
uniformly bounded means, so that (2) implies (1). To check (2) the Lyapunov function
methods are very useful. Let us also offer a further remark on the relation between (2) and
(1): it can be shown that if (1) holds, then there is a R′ ⊆ R such that

sup
x∈R′

ExτR′ <∞.

We next give a brief description of the stability by means of coupling, achieved by a positive
Harris recurrent process. To avoid periodicity phenomena, we assume that the discrete
random variable TK has aperiodic distribution under PQ. (A sufficient condition for this is:
PQ(TK = 1) > 0.) Then we can construct a successful coupling between the process starting
from an arbitrary X0 = x0 and its stationary version. Assume that Ex0τR < ∞. (This x0

may or may not be an element of R.) Let {Xn} be the resulting process. Then one can
show, by means of backwards coupling construction, that the process {Xn} couples (in the
sense of the definition of the previous subsection). with the stationary version.
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ϕ-irreducibility and ϕ-recurrence Recall the concepts for Markov chains in countable
state space.

The chain is irreducible if for all i, j ∈ S there is n such that Pi(Xn = j) > 0. This is
equivalent to: For all i, j ∈ S, Pi(τj <∞) > 0. where τj be the first hitting time of j.

The chain is recurrent if for all i, j ∈ S, Pi(τj < ∞) = 1. Equivalently, for all i, j ∈ S,
Pi(Xn = 1 i.o.) = 1.

For general state space S, these definitions are too restrictive: one might call them ‘point
irreducibility’ and ‘point recurrence’. Irreducibility and recurrence ought to be defined in
terms of sets.

We fix some σ-finite measure ϕ on S.

We say that the process is ϕ-irreducible if for all x ∈ S and all measurable B ⊆ S with
ϕ(B) > 0, there is n such that Px(Xn ∈ B) > 0. This is equivalent to: for all x ∈ S and all
measurable B ⊆ S with ϕ(B) > 0, Px(τB <∞) > 0.

We say that the process is ϕ-recurrent if for all x ∈ S and all measurable B ⊆ S with
ϕ(B) > 0, Px(τB < ∞) = 1. Equivalently, for all x ∈ S and all measurable B ⊆ S with
ϕ(B) > 0, Px(Xn ∈ B i.o.) = 1.

Theorem 1. Every Harris process is Q-recurrent.

Orey (1971) has proved that

Theorem 2 (Orey’s C-set theorem). If X is ϕ-irreducible and B is a ϕ-positive set then
there is a smaller set C ⊆ B, an integer `, and p ∈ (0, 1) such that ϕ(C) > 0 and

P `(x, ·) ≥ pϕC(·), ∀x ∈ C,

where ϕC is the restriction of ϕ on C.

In other words, Orey has proved that ϕ-irreducibility implies precisely that the process is
Harris. And so the notions of a Harris process and of a ϕ-recurrent process are equivalent.

4 Perfect simulation: a simple case study

The problem is as follows: given a Harris process possessing a unique invariant probability
measure, find a method to draw samples from that invariant measure. The classical method
of forming Cesàro sums is not an acceptable solution because the sums are not distributed
according to the invariant probability measure. In the limit they are, but one cannot simulate
an infinite vector. On the other hand, it is assumed that this invariant probability measure
is unknown, so we cannot consider a stationary process to start with. We describe a method
below, in the case where S is countable. For more general spaces, see FT (1998).
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Let S be a finite set and pi,j transition probabilities on S, assumed to be irreducible. Given
any probability µi on S, we can define a Markov chain {Xn, n ≥ 0} by requiring that

X0 ∼ µ,
and for all n ≥ 1, (Xn | Xn−1 = i) ∼ pi,·

The random sequence thus constructed is ergodic and satisfies all usual limit theorems.
In particular, if π denotes the unique invariant probability measure, we have that Xn⇒π,
weakly, and n−1

∑n
1 1(Xk ∈ ·)→π(·), a.s.

We choose a particular way to realise the process. Define a sequence of random maps
ξn : S → S, n ∈ Z, such that {ξn(i), i ∈ S, n ∈ Z} are independent, and

P (ξn(i) = j) = pi,j , i, j ∈ S, n ∈ Z.

We assume that these random maps are defined on a probability space (Ω,F , P ) supporting
a measurable flow θ : Ω → Ω such that ξn◦θ = ξn+1 for all n ∈ Z. (E.g., let Ω = SZ and
θ(ω)(n) = ω(n + 1).) Let Y be an random variable with distribution µ, independent of
everything else, and define

X0 = Y, Xn = ξn−1 · · · ξ0(Y ), n ≥ 1.

(Notational convention: we use a little circle when we denote composition with respect to
the ω variable and nothing when we denote composition with respect to the variable i ∈ S.)
Clearly this sequence (X0, X1, . . .) realises our Markov chain. Observe that for any m ∈ Z,
the sequence (Y, ξm(Y ), ξm+1ξm(Y ), . . .) also realises our Markov chain.

Next define the forward strong coupling time by

σ = inf{n ≥ 0 : ∀i, j ∈ S ξn · · · ξ0(i) = ξn · · · ξ0(j)},

and the backward coupling time by

τ = inf{n ≥ 0 : ∀i, j ∈ S ξ0 · · · ξ−n(i) = ξ0 · · · ξ−n(j)}.

Proposition 1.
(i) σ is a.s. finite.
(ii) τ ∼ σ.

Proof. Consider the Markov chain {ξn, n ∈ Z}, with values in SS . Let ∆ = {η ∈ SS : η(1) =
· · · = η(d)}. Then {σ <∞} = ∪n≥0{ξn ∈ ∆}. Although the chain is not the product chain
(its components are not independent), the probability that it hits the set ∆ in finite time is
larger than or equal to the probability that the product chain hits the set ∆ in finite time.
But the product chain is irreducible, hence the latter probability is 1. Hence (i) holds. To
prove (ii), notice that ξσ+n · · · ξ0 ∈ ∆, for all n ≥ 0, a.s. Hence, for each n ≥ 0,

{σ ≤ n} = {ξn · · · ξ0 ∈ ∆}. (3)

The same argument applied to the maps composed in reverse order shows that

{τ ≤ n} = {ξ0 · · · ξ−n ∈ ∆}. (4)

The events on the right sides of (3) and (4) have the same probability due to stationarity.
This proves (ii).
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Corollary 1. σ <∞, a.s.

Warning: While it is true that, for each n, the random maps ξn · · · ξ0 and ξ0 · · · ξ−n have
the same distribution, it is not true, in general, that the processes {ξn · · · ξ0, n ≥ 0} and
{ξ0 · · · ξ−n, n ≥ 0} are indistinguishable. They are both Markov, the first one being a
realisation of our original Markov process, but the second one not.

Define now the random variable

Z(i) = ξ0 · · · ξ−τ (i).

By the very definition of τ , Z(i) = Z(j) for all i, j. So we may set Z(i) = Z.

Proposition 2. Z ∼ π.

Proof.

P (Z = k) = lim
n→∞

P (Z = k, τ ≤ n)

= lim
n→∞

P (ξ0 · · · ξ−n(i) = k)

= lim
n→∞

P (ξn · · · ξ0(i) = k) = π(k),

the latter equality following from the convergence Xn⇒π.

We now describe the actual algorithm. We think of an element η ∈ SS either as a map
η : S → S or as a vector (η(1), η(2), . . . , η(d)), where d is the cardinality of S. So, we may
think of ξ0, ξ−1, ξ−2, . . . as i.i.d. random vectors in Sd. These vectors are needed at each
step of the algorithm and we assume we have random number generator that allows picking
these vectors. The algorithm can be written as:

1. ψ0 = identity

2. n = 1

3. ψn = ψn−1ξn−1

4. If ψn 6∈ ∆, set n = n+ 1 and repeat the previous step;
otherwise, set Z = ψn(1) and stop.

For example, let S = {1, 2, 3, 4}. Suppose that the ξ−k, k ≥ 0, are drawn as follows:

ξ0 = (2, 3, 2, 1)
ξ−1 = (2, 1, 4, 3)
ξ−2 = (2, 4, 2, 1)
ξ−3 = (2, 1, 4, 3)
ξ−4 = (4, 1, 1, 2)
ξ−5 = (1, 2, 3, 3)
· · · · · ·
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The successive passes of the algorithm yield the following vectors:

ψ0 = identity = (1, 2, 3, 4)
ψ1 = ψ0ξ0 = (2, 3, 2, 1)
ψ2 = ψ1ξ−1 = (3, 2, 1, 2)
ψ3 = ψ2ξ−2 = (2, 2, 2, 3)
ψ4 = ψ3ξ−3 = (2, 2, 3, 2)
ψ5 = ψ4ξ−4 = (2, 2, 2, 2)

The algorithm stops at the 5-th step, yielding the sample (2, 2, 2, 2). We know that this
sample is drawn from the true invariant distribution.

Some other points now. Let us look again at the Markov chains

ϕn := ξn−1 · · · ξ0
ψn := ξ0 · · · ξ−(n−1), n ≥ 1.

They satisfy

ϕn := ξn−1ϕn−1

ψn := ψn−1ξ−(n−1), n ≥ 1.

These equations prove the Markov property of the sequences. The first (forward) chain
has the property that individual components are also Markov. Indeed, the i-th compo-
nent {ϕn(i), n = 0, 1, . . .} is our original Markov chain {Xn, n = 0, 1, . . .}, with tran-
sition probabilities pk,`, started from µ = δi (i.e. X0 = i, a.s.) The component pro-
cesses are, however, not independent. We can easily compute the transition probabilities
p(x, y) := P (ϕn = y | ϕn−1 = x) as follows:

p(x, y) = P (ξn−1ϕn−1 = y | ϕn−1 = x)
= P (ξn−1(x(i)) = y(i), i = 1, . . . , d)
= P (ξ0(x(i)) = y(i), i = 1, . . . , d) (5)

If x is a permutation then the above probability is a product of d terms. Otherwise, if two
or more components of x are equal, the number of factors reduces. We observe again that
the set ∆ is a closed set, while the states in SS −∆ are transitive.

On the other hand, the (backward) process {ψn}, albeit Markovian, does not have the same
transition probabilities as the forward chain, neither are its components Markovian. To see
this very explicitly, let us compute the transition probabilities p̄(x, y) := P (ψn = y | ψn−1 =
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x):

p̄(x, y) = P (ψ−(n−1)ξ−(n−1) = y | ψ−(n−1) = x)

= P (xξ−(n−1) = y)

= P (x(ξ0(1)) = y(1), . . . , x(ξ0(d)) = y(d))

=
d∏
i=1

P (x(ξ0(i)) = y(i))

=
d∏
i=1

P (ξ0(i) ∈ x−1(y(i)))

=
d∏
i=1

∑
j∈x−1(y(i))

pi,j (6)

For this chain we observe that not only the set ∆ is closed, but also that each individual
element of ∆ is an absorbing state. The elements of SS −∆ are transient.

Example. Let us consider S = {1, 2} and transition probability matrix(
1− α α
β 1− β

)
.

The chains {ϕn} and {ψn} take values in SS = S2 = {11, 12, 21, 22}. Notice the properties
mentioned before: The set ∆ is closed in both cases. Individual states of ∆ are absorbing in
the backward case. All other states are transient in both cases. We computed the transition
probabilities following equations (5) and (6). For instance, with x = (21) and y = (11), we
have

p(x, y) = P (ξ0(x(1)) = y(1), ξ0(x(2)) = y(2))
= P (ξ0(2) = 1, ξ0(1) = 1) = β(1− α),

p̄(x, y) = P (ξ0(1) ∈ x−1(y(1)), ξ0(2) ∈ x−1(y(2))

= P (ξ0(1) ∈ x−1(1), ξ0(2) ∈ x−1(1))
= P (ξ0(1) = 2, ξ0(2) = 2) = α(1− β).

The invariant probability measure of the original 2-state chain is π = β/(α+β), α/(α+β)).
When the backward chain is absorbed at ∆, each of its components has distribution π. It
is easily checked that this is not the case, in general, with the forward chain. For instance,
suppose α = 1 and 0 < β < 1. Then π = (β/(1 + β), 1/(1 + β)). But forward coupling
can only occur at state 2. In other words, at time τ , the distribution of the chain takes
value 2 with probability one. This is not the stationary distribution! (Of course, if the
forward coupled is allowed to evolve ad infinitum, it certainly converges to π.) On the other
hand, it can be easily checked that the backward chain, starting at the state (12) (see next
figure), is absorbed at state (11) with probability β/(1+β) and at state (22) with probability
1/(1 + β)). This is precisely the stationary distribution.
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5 Examples of non-Harris Markov chains.

Example 1. Consider circle of unit length and define the dynamics as follows: move
clockwise with equal probabilities for a distance of length either 1/

√
2 or 1/2. Then, for

any initial value X0 , a distribution of Xn converges weakly to a uniform distribution. The
limiting distribution coincides with the Lebesgue measure while each distribution of Xn is
discrete. So, there is no convergence in the total variation.

Example 2. Consider the autoregressive model on the real line

Xn+1 = ξnXn + 1

where ξn are i.i.d. and take values 1/
√

2 and −1/2 with equal probabilities. Again, for any
initial non-random value X0, each distribution of Xn is discrete and singular to the limiting
distribution which is a distribution of a random variable

1 +
−1∑
i=−n

−1∏
j=i

ξj .

Example 3. Let A,B,C be three non-collinear points on the plane, forming the vertices
of a triangle. Let X0 be an arbitrary point on the plane. Toss a 3-sided coin and pick one
of the vertices at random. Join X0 with the chosen vertex by a straight line segment and
let X1 be the middle of the segment. Repeat the process independently. We thus obtain
a Markov process (Xn, n ≥ 0). The process has a unique stationary version constructed as
follows. Let (ξn, n ∈ Z) be i.i.d. random elements of the plane, such that ξ1 is distributed
on {A,B,C} uniformly. By assigning some Cartesian coordinates, define

Xn+1 =
1
2

(Xn + ξn).

Iterate the recursion, starting from m and ending up at n ≥ m. Fix n and let m → −∞.
We obtain

Xn =
∞∑
k=1

1
2k
ξn−k.

The so-constructed process is Markovian with the required transitions and is also a sta-
tionary process. There is no other stationary solution to the recursion. So the stationary
distribution is the distribution of the random variable

∞∑
k=1

1
2k
ξk.

It is not hard to see that the stationary distribution is supported on a set of Lebesgue
measure zero (the so-called Sierpiński gasket).

11



6 Discussion

1. Show, in detail, that if Xn is non-periodic positive Harris recurrent then the law of
Xn converges in total variation to the unique invariant probability measure.

2. Show that any irreducible, (positive) recurrent Markov chain in a countable state space
S is (positive) Harris recurrent.

3. Let Xa,b be a random variable with P (Xa,b = a) = p, P (Xa,b = b) = 1− p, EXa,b = 0.
Let Y be another 0-mean random variable. Show that, by randomising a, b, we can
write Y = XA,B. Use this to couple any 0-mean random variable and a Brownian
motion.

4. Why is the process of the last example non-Harris? Find a formula for the character-
istic function of the stationary distribution.

5. In the same example, let X0 have a law with density. Will (Xn) couple with its
stationary version?

6. How are Lyapunov function methods used for checking positive Harris recurrence?
(For the countable state-space case check the excellent book of Brémaud (2001).)
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