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Fluid Approximation Approach and Induced Vector Fields

We consider two stability methods for Markov chains based on the drift analysis.

1 Fluid approximation approach

In this section, we give essentially an application of Lyapunov methods to the so-called
stability via fluid limits, a technique which became popular in the 90’s. Roughly speaking,
fluid approximation refers to a functional law of large numbers which may be formulated for
large classes of Markovian and non-Markovian systems. Instead of trying to formulate the
technique very generally, we focus on a quite important class of stochastic models, namely,
multi-class networks. For statements and proofs of the functional approximation theorems
used here, the reader may consult the texts of Chen and Yao [4], Whitt [11] and references
therein.

1.1 Exemplifying the technique in a simple case

To exemplify the technique we start with a GI/GI/1 queue with general non-idling, work-
conserving, non-preemptive service discipline.1 Let Q(t), χ(t), ψ(t) be, respectively, the
number of customers in the system, remaining service time of customer at the server (if
any), and remaining interarrival time, at time t. The three quantities, together, form a
Markov process. We will scale the whole process by

N = Q(0) + χ(0) + ψ(0).

Although it is tempting, based on a functional law of large numbers (FLLN), to assert
that Q(Nt)/N has a limit, as N → ∞, this is not quite right, unless we specify how the
individual constituents of N behave. So, we assume that2

Q(0) ∼ c1N, χ(0) ∼ c2N, ψ(0) ∼ c3N, as N →∞,
1This means that when a customer arrives at the server with σ units of work, then the server works with

the customer without interruption, and it takes precisely σ time units for the customer to leave.
2Hence, strictly speaking, we should denote the process by an extra index N to denote this dependence,

i.e., write Q(N)(t) in lieu of Q(t), but, to save space, we shall not do so.
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where c1 + c2 + c3 = 1. Then

Q(Nt)
N

→ Q(t), as N →∞,

uniformly on compact3 sets of t, a.s., i.e.,

lim
N→∞

P( sup
0≤t≤T

|Q(kt)/k −Q(t)| > ε, for some k > N) = 0, for all T, ε > 0.

The function Q is defined by:

Q(t) =


c1, t < c3

c1 + λ(t− c3), c3 ≤ t < c2

(c1 + λ(c2 − c3) + (λ− µ)(t− c2))+, t ≥ c2
, if c3 ≤ c2,

Q(t) =


c1, t < c2

c1 − µ(t− c2), c2 ≤ t < c3

((c1 − µ(c3 − c2))+ + (λ− µ)(t− c3))+, t ≥ c3
, if c2 < c3.

It is clear that Q(t) is the difference between two continuous, piecewise linear, and increasing
functions. We shall not prove this statement here, because it is more than what we need:
indeed, as will be seen later, the full functional law of large numbers tells a more detailed
story; all we need is the fact that there is a t0 > 0 that does not depend on the ci, so that
Q(t) = 0 for all t > t0, provided we assume that λ < µ. This can be checked directly from
the formula for Q. (On the other hand, if λ > µ, then Q(t)→∞, as t→∞.)

To translate this FLLN into a Lyapunov function criterion, we use an embedding tech-
nique: we sample the process at the n-th arrival epoch Tn. We take for simplicity T0 = 0.
It is clear that then we here can omit the state component ψ, because

Xn := (Qn, χn) := (Q(Tn), χ(Tn))

is a Markov chain with state space X = Z+ × R+. So, we assume N = Q0 + χ0 →∞ and

Q(0) ∼ c1N, χ(0) ∼ c2N, with c1 + c2 = 1.

Using another FLLN for the random walk Tn, namely,

T[Nλt]

N
→ t, as N →∞, u.o.c., a.s.,

we obtain, using the usual method via the continuity of the composition mapping,

Q[Nλt]

N
→ (c1 + λmin(t, c2) + (λ− µ)(t− c2)+)+, as N →∞, u.o.c., a.s..

Under the stability condition λ < µ and a uniform integrability (which shall be proved
below) we have:

EQ[Nλt]

N
→ 0,

Eχ[Nλt]

N
→ 0, as N →∞, for t ≥ t0.

3We abbreviate this as “u.o.c.”; it is the convergence also know as compact convergence. See the Appendix
for some useful properties of the u.o.c. convergence.

2



In particular there is N0, so that EQ[2Nλt0] + Eχ[2Nλt0] ≤ N/2 for all N > N0. Also, the
same uniform integrability condition, allows us to find a constant C such that EQ[2Nλt0] +
Eχ[2Nλt0] ≤ C for all N ≤ N0. To translate this into the language of a Lyapunov criterion,
let x = (q, χ) denote a generic element of X , and consider the functions

V (q, χ) = q + χ, g(q, χ) = 2qλt0, h(q, χ) = (1/2)q − C1(q ≤ N0).

The last two inequalities can then be written as Ex(V (Xg(x))−V (X0)) ≤ −h(x), x ∈ X . It
is easy to see that the function V, g, h satisfy conditions (L0)-(L4) from the previous lecture.
Thus the main Theorem 2 of the previous lecture shows that the set {x ∈ X : V (x) =
q + χ ≤ N0} is positive recurrent.

1.2 Fluid limit stability criterion for multiclass queueing networks

We now pass on to multiclass queueing networks. Rybko and Stolyar [10] first applied
the method to a two-station, two-class network. Dai [5] generalised the method and his
paper established and popularised it. Meanwhile, it became clear that the natural stability
conditions4 may not be sufficient for stability and several examples were devised to exemplify
this phenomena; see, e.g., again the paper by Rybko and Stolyar or the paper by Bramson
[2] which gives an example of a multiclass network which is unstable under the natural
stability conditions (the local traffic intensity at each node is below 1), albeit operating
under the “simplest” possible discipline (FIFO).

To describe a multiclass queueing network, we let {1, . . . ,K} be a set of customer classes
and {1, . . . , J} a set of stations. Each station j is a single-server service facility that serves
customers from the set of classes c(j) according to a non-idling, work-conserving, non-
preemptive, but otherwise general, service discipline. It is assumed that c(j) ∩ c(i) = ∅ if
i 6= j. There is a single arrival stream5, denoted by A(t), which is the counting process of
a renewal process, viz.,

A(t) = 1(ψ(0) ≤ t) +
∑
n≥1

1(ψ(0) + Tn ≤ t),

where Tn = ξ1 + · · · + ξn, n ∈ N, and the {ξn} are i.i.d. positive r.v.’s with Eξ1 = λ−1 ∈
(0,∞). The interpretation is that ψ(0) is the time required for customer 1 to enter the
system, while Tn is the arrival time of customer n ∈ N. (Artificially, we may assume that
there is a customer 0 at time 0.) To each customer class k there corresponds a random
variable σk used as follows: when a customers from class k is served, then its service time is
an independent copy of σk. We let µ−1

k = Eσk. Routing at the arrival point is done according
to probabilities pk, so that an arriving customer becomes of class k with probability pk.
Routing in the network is done so that a customer finishing service from class k joins class
` with probability pk,`, and leaves the network with probability pk,∞ − 1−

∑
ell pk,`.

Examples. 1. Jackson-type (or generalised Jackson) network: there is one-to-one corre-
spondence between stations and customer classes.

4By the term “natural stability conditions” in a work-conserving, non-idling queueing network we refer
to the condition that says that the rate at which work is brought into a node is less than the processing rate.

5But do note that several authors consider many independent arrival streams
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2. Kelly network. There are several deterministic routes, say, (j1,1, . . . , ji,r1), . . . , (jm,1, . . . , jm,rm)
where ji,r are stations numbers. Introduce K =

∑m
q=1 rq customers classes numbered

1, . . . ,K and let
pk,k+1 = 1 for 6= r1, r1 + r2, . . .

and
pk,∞ = 1 for k = r1, r1 + r2, . . . .

Return to the general framework. Let Ak(t) be the cumulative arrival process of class
k customers from the outside world. Let Dk(t) be the cumulative departure process from
class k. The process Dk(t) counts the total number of departures from class k, both those
that are recycled within the network and those who leave it. Of course, it is the specific
service policies that will determine Dk(t) for all k. If we introduce i.i.d. routing variables
{αk(n), n ∈ N} so that P(αk(n) = `) = pk`, then we may write the class-k dynamics as:

Qk(t) = Qk(0) +Ak(t) +
K∑
`=1

D`(t)∑
n=1

1(α`(n) = k)−Dk(t).

In addition, a number of other equations are satisfied by the system: Let W j(t) be the
workload in station j. Let Cjk = 1(k ∈ c(j)). And let V (n) =

∑n
m=1 σk(n) be the

sum of the service times brought by the first n class-k customers. Then the total work
brought by those customers up to time t is Vk(Qk(0) + Ak(t)), and part of it, namely∑

k CjkVk(Qk(0) +Ak(t)) is gone to station j. Hence the work present in station j at time
t is

W j(t) =
∑
k

CjkVk(Qk(0) +Ak(t))− t+ Y j(t),

where Y j(t) is the idleness process, viz.,∫
W j(t)dY j(t) = 0.

The totality of the equations above can be thought of as having inputs (or “primitives”) the
{Ak(t)}, {σk(n)} and {αk(n)}, and are to be “solved” for {Qk(t)} and {W j(t)}. However,
they are not enough: more equations are needed to describe how the server spends his
service effort to various customers, i.e, we need policy-specific equations; see, e.g., [4].

Let Qj(t) =
∑

k∈c(j)Qk(t). Let ζjm(t) be the class of the m-th customer in the queue of

station j at time t, so that ζj(t) := (ζj1(t), ζj2(t), . . . , ζj
Qj(t)

(t)) is an array detailing the classes
of all the Qj(t) customers present in the queue of station j at time t, where the leftmost
one refers to the customer receiving service (if any) and the rest to the customers that
are waiting in line. Let also χj(t) be the remaining service time of the customer receiving
service. We refer to Xj(t) = (Qj(t), ζj(t), χj(t)) as the state6 of station j. Finally, let
ψ(t) be such that t+ ψ(t) is the time of the first exogenous customer arrival after t. Then
the most detailed information that will result in a Markov process in continuous time is
X(t) := (X1(t), . . . , XJ(t);ψ(t)). To be pedantic, we note that the state space of X(t) is
X = (Z+ ×K∗ × R+)J × R+, where K∗ = ∪∞n=0{1, . . . ,K}n, with {1, . . . ,K}0 = {∅}, i.e.,
X is a horribly looking creature–a Polish space nevertheless.

6Note that the first component is, strictly speaking, redundant as it can be read from the length of the
array ζj(t).
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We now let

N =
J∑
j=1

(Qj(0) + χj(0)) + ψ(0),

and consider the system parametrised by this parameter N . While it is clear that A(Nt)/N
has a limit as N →∞, it is not clear at all that so do Dk(Nt)/N . The latter depends on the
service policies, and, even if a limit exists, it may exist only along a certain subsequence.
This was seen even in the very simple case of a single server queue.

To precise about the notion of limit point used in the following definition, we say that
X(·) is a limit point of XN (·) if there exists a deterministic subsequence {N`}, such that,
XN` → X, as `→∞, u.o.c., a.s.

Definition 1 (fluid limit and fluid model). A fluid limit is any limit point of the sequence
of functions {D(Nt)/N, t ≥ 0}. The fluid model is the set of these limit points.

If D(t) = (D1(t), . . . , DK(t)) is a fluid limit, then we can define

Qk(t) = Qk(0) +Ak(t) +
K∑
`=1

D`(t)p`,k −Dk(t), k = 1, . . . ,K.

The interpretation is easy: Since D(Nt)/t → D(t), along, possibly, a subsequence, then,
along the same subsequence, Q(Nt)/N → Q(t). This follows from the FLLN for the arrival
process and for the switching process.

Example. For the single-server queue, the fluid model is a collection of fluid limits indexed,
say by c1 and c2.

Definition 2 (stability of fluid model). We say that the fluid model is stable, if there exists
a deterministic t0 > 0, such that, for all fluid limits, Q(t) = 0 for t ≥ t0, a.s.

To formulate a theorem, we consider the state process at the arrival epochs. So we
let7 Xn := X(Tn). Then the last state component (the remaining arrival time) becomes
redundant and will be omitted. Thus, Xn = (X1

n, . . . , X
J
n ), with Xj

n = (Qjn, ζ
j
n, χ

j
n). Define

the function

V :
(
(qj , ζj , χj), j = 1, . . . , J

)
7→

J∑
j=1

(qj + χj).

Theorem 1. (J. Dai, 1996) If the fluid model is stable, then there exists N0 such that the
set BN0 := {x : V (x) ≤ N0} is positive recurrent for {Xn}.

Remarks:
(i) There is a number of papers where the instability conditions are analysed via fluid

limits. One of the most recent is [9] where the large deviations and the martingale techniques
are used.

(ii) The definition of stability of a fluid model is quite a strong one. Nevertheless, if it
7We tacitly follow this notational convention: replacing some Y (t) by Yn refers to sampling at time

t = Tn.
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holds – and it does in many important examples – then the original multiclass network is
stable.

(iii) It is easy to see that the fluid model is stable in the sense of Definition 2 if and
only if there exist a deterministic time t0 > 0 and a number ε ∈ (0, 1) such that, for all fluid
limits, Q(t0) ≤ 1− ε, a.s.

(iv) Do we need the i.i.d. assumptions to develop the fluid approximation techniques ?
The answer is NO. These assumptions are needed for Theorem 1 to hold !

(v) If all fluid limits are deterministic (non-random) – like in the examples below –
then the conditions for stability of the fluid model either coincide with or are close to the
conditions for positive recurrence of the underlying Markov chain {Xn}. However, if the
fluid limits remain random, stability in the sense of Definition 2 is too restrictive, and the
following weaker notion of stability may be of use:

Definition 3 (weaker notion of stability of fluid model). The fluid model is (weakly) stable
if there exist t0 > 0 and ε ∈ (0, 1) such that, for all fluid limits, EQ(t0) ≤ 1− ε.

There exist examples of stable stochastic networks whose fluid limits are a.s. not stable
in the sense of Definition 2, but stable in the sense of Definition 3 (“weakly stable”) –
see, e.g., [7]. The statement of Theorem 1 stays valid if one replaces the word “stable” by
“weakly stable”.

Proof of Theorem 1. Let

g(x) := 2λt0V (x), h(x) :=
1
2
V (x)− C1(V (x) ≤ N0),

where V is as defined above, and C, N0 are positive constants that will be chosen suitably
later. It is clear that (L0)–(L4) hold. It remains to show that the drift criterion holds.
Let Q be a fluid limit. Thus, Qk(Nt)/N → Qk(t), along a subsequence. Hence, along the
same subsequence, Qk,[Nλt]/N = Qk(T[Nλt])/N → Qk(t). All limits will be taken along the
subsequence referred to above and this shall not be denoted explicitly from now on. We
assume that Q(t) = 0 for t ≥ t0. So,

lim
N→∞

1
N

∑
k

Qk,[2λt0N ] ≤ 1/2, a.s. (1)

Also,

lim
n→∞

1
n

∑
j

χjn = 0, a.s. (2)

To see the latter, observe that, for all j,

χjn
n
≤ 1
n

max
k∈c(j)

max
1≤i≤Dk,n+1

σk(i) ≤
∑
k∈c(j)

Dk,n + 1
n

max1≤i≤Dk,n+1 σk(i)
Dk,n + 1

. (3)

Note that
1
m

max
1≤i≤m

σk(i)→ 0, as m→∞, a.s.,

and so
Rk := sup

m

1
m

max
1≤i≤m

σk(i) <∞, a.s.
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The assumption that the arrival rate is finite, implies that

lim
n→∞

Dk,n + 1
n

<∞, a.s. (4)

In case the latter quantity is positive, we have that the last fraction of (3) tends to zero. In
case the latter quantity is zero then χj(n)/n→ 0, because Rk is a.s. finite. We next claim
that that the families {Qk,[2λt0N ]/N}, {χ

j
[2λt0N ]/N} are uniformly integrable. Indeed, the

first one is uniformly bounded by a constant:

1
N
Qk,[2λt0N ] ≤

1
N

(Qk,0 +A(T[2λt0N ])) ≤ 1 + [2λt0N ]/N ≤ 1 + 4λt0,

To see that the second family is uniformly integrable, observe that, as in (3), and if we
further loosen the inequality by replacing the maximum by a sum,

1
N
χj[2λt0N ] ≤

∑
k∈c(j)

1
N

Dk,[2λt0N ]+1∑
i=1

σk(i),

where the right-hand-side can be seen to be uniformly integrable by an argument similar
to the one above. From (1) and (2) and the uniform integrability we have

lim
n→∞

1
N

∑
k

EQk,[2λt0N ] +
∑
j

Eχj[2λt0N ]

 ≤ 1/2,

and so there is N0, such that, for all N > N0,

E

∑
k

Qk,[2λt0N ] +
∑
j

χj[2λt0N ] −N

 ≤ −N/2,
which, using the functions introduced earlier, and the usual Markovian notation, is written
as

Ex[V (Xg(x))− V (X0)] ≤ −1
2
V (x), if V (x) > N0.

where the subscript x denotes the starting state, for which we had set N = V (x). In
addition,

Ex[V (Xg(x))− V (X0)] ≤ C, if V (x) ≤ N0,

for some constant C < ∞. Thus, with h(x) = V (x)/2 − C1(V (x) ≤ N0), the last two
displays combine into

Ex[V (Xg(x))− V (X0)] ≤ −h(x).

In the sequel, we present two special, but important cases, where this assumption can
be verified, under usual stability conditions.
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1.3 Multiclass queue

In this system, a special case of a multiclass queueing network, there is only one station,
and K classes of customers. There is a single arrival stream A with rate λ. Upon arrival,
a customer becomes of class k with probability pk. Let Ak be the arrival process of class-k
customers. Class k customers have mean service time µ−1

k . Let Qk(t) be the number of
customers of class k in the system at time t, and let χ(t) be the remaining service time (and
hence time till departure because service discipline is non-preemptive) of the customer in
service at time t. We scale according to N =

∑
kQk(0) + χ(0). We do not consider the

initial time till the next arrival, because we will apply the embedding method of the previous
section. The traffic intensity is ρ :=

∑
k λk/µk = λ

∑
k pk/µk. Take any subsequence such

that

Qk(0)/N → Qk(0), χ(0)/N → χ(0), a.s.,

Ak(Nt)/N → Ak(t) = λkt, Dk(Nt)/N → Dk(t), u.o.c., a.s.

That the first holds is a consequence of a FLLN. That the second holds is a consequence
of Helly’s extraction principle. Then Q(Nt)/N → Q(t), u.o.c., a.s., and so any fluid limit
satisfies

Qk(t) = Qk(0) +Ak(t)−Dk(t), k = 1, . . . ,K∑
k

Qk(0) + χ(0) = 1.

In addition, we have the following structural property for any fluid limit: define

I(t) := t−
∑
k

µ−1
k Dk(t), W k(t) := µ−1

k Qk(t)

Then I is an increasing function, such that∫ ∞
0

∑
k

W k(t)dI(t) = 0.

Hence, for any t at which the derivative exists, and at which
∑

kW k(t) > 0,

d

dt

∑
k

W k(t) =
d

dt

(∑
k

µ−1
k

(
Qk(0) +Ak(t)

)
− t
)
− d

dt
I(t) = −(1− ρ).

Hence, if the stability condition ρ < 1 holds, then the above is strictly bounded below zero,
and so, an easy argument shows that there is t0 > 0, so that

∑
kW k(t) = 0, for all t ≥ t0.

N.B. This t0 is given by the formula t0 = C/(1− ρ) where C = max{
∑

k µ
−1
k qk + χ : qk ≥

0, k = 1, . . . ,K, χ ≥ 0,
∑

k qk +χ = 1}. Thus, the fluid model is stable, Theorem 1 applies,
and so we have positive recurrence.

1.4 Jackson-type network

Here we consider another special case, where there is a customer class per station. Tradi-
tionally, when service times are exponential, we are dealing with a classical Jackson network.
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This justifies our terminology “Jackson-type”, albeit, in the literature, the term “generalised
Jackson” is also encountered.

Let J := {1, . . . , J} be the set of stations (= set of classes). There is a single arrival
stream A(t) = 1(ψ(0) ≤ t)+

∑
n≥1 1(ψ(0)+Tn ≤ t), t ≥ 0, where Tn = ξ1 + · · ·+ξn, n ∈ N,

and the {ξn} are i.i.d. positive r.v.’s with Eξ1 = λ−1 ∈ (0,∞). Upon arrival, a customer
is routed to station j with probability p0,j , where

∑J
j=1 p0,j = 1. To each station j there

corresponds a random variable σj with mean µj , i.i.d. copies of which are handed out as
service times of customers in this station. We assume that the service discipline is non-idling,
work-conserving, and non-preemptive. {X(t) = [(Qj(t), ζj(t), χj(t), j ∈ J );ψ(t)], t ≥ 0}, as
above.

The internal routing probabilities are denoted by pj,i, j, i ∈ J : upon completion of
service at station j, a customer is routed to station i with probability pj,i or exits the network
with probability 1−

∑J
i=1 pj,i. We describe the (traditional) stability conditions in terms of

an auxiliary Markov chain which we call {Yn} and which takes values in {0, 1, . . . , J, J+1}, it
has transition probabilities pj,i, j ∈ {0, 1, . . . , J}, i ∈ {1, . . . , J}, and pj,J+1 = 1−

∑J
i=1 pj,i,

j ∈ {1, . . . , J}, pJ+1,J+1 = 1, i.e. J + 1 is an absorbing state. We start with Y0 = 0 and
denote by π(j) the mean number of visits to state j ∈ J :

π(j) = E
∑
n

1(Yn = j) =
∑
n

P (Yn = j).

Firstly we assume (and this is no loss of generality) that π(j) > 0 for all j ∈ J . Secondly,
we assume that

max
j∈J

π(j)µ−1
j < λ−1.

Now scale according to N =
∑J

j=1[Qj(0) + χj(0)]. Again, due to our embedding tech-
nique, we assume at the outset that ψ(0) = 0. By applying the FLLN it is seen that any
fluid limit satisfies

Qj(t) = Qj(0) +Aj(t) +
J∑
i=1

Di(t)pi,j −Dj(t), j ∈ J∑
j

[Qj(0) + χj(0)] = 1,

Aj(t) = λjt = λp0,jt, Dj(t) = µj(t− Ij(t)),

where Ij is an increasing function, representing cumulative idleness at station j, such that

J∑
j=1

∫ ∞
0

Qj(t)dIj(t) = 0.

We next show that the fluid model is stable, i.e., that there exists a t0 > 0 such that
Q(t) = 0 for all t ≥ t0.

We base this on the following facts: If a function g : R → Rn is Lipschitz then it
is a.e. differentiable. A point of differentiability of g (in the sense that the derivative of
all its coordinates exists) will be called “regular”. Suppose then that g is Lipschitz with∑n

i=1 gi(0) =: |g(0)| > 0 and ε > 0 such that (t regular and |g(t)| > 0) imply |g(t)|′ ≤ −ε;
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then |g(t)| = 0 for all t ≥ |g(0)|/ε. Finally, if h : R→ R is a non-negative Lipschitz function
and t a regular point at which h(t) = 0 then necessarily h′(t) = 0 (see the Appendix for
details).

We apply these to the Lipschitz function Q. It is sufficient to show that for any I ⊆
J there exists ε = ε(I) > 0 such that, for any regular t with mini∈I Qi(t) > 0 and
maxi∈J−I Qi(t) = 0, we have |Q(t)|′ ≤ −ε. Suppose first that I = J . That is, suppose
Qj(t) > 0 for all j ∈ J , and t a regular point. Then Qj(t)′ = λj +

∑J
i=1 µipi,j − µj

and so |Qj(t)|′ = λ −
∑J

j=1

∑J
i=1 µipi,j −

∑J
j=1 µj = λ −

∑J
i=1 µipi,J+1 =: −ε(J ). But

µi > π(i)λ and so ε(J ) > λ(1−
∑J

i=1 π(i)pi,J+1) = 0, where the last equality follows from∑J
i=1 π(i)pi,J+1 =

∑J
i=1

∑
n P(Yn = i, Yn+1 = J+1) =

∑
n P(Yn 6= J+1, Yn+1 = J+1) = 1.

Next consider I ⊂ J . Consider an auxiliary Jackson-type network that is derived from
the original one by σj = 0 for all j ∈ J − I. It is then clear that this network has
routing probabilities pIi,j that correspond to the Markov chain {Y Im} being a subsequence
of {Yn} at those epochs n for which Yn ∈ I ∪ {J + 1}. Let πI(i) the mean number of
visits to state i ∈ I by this embedded chain. Clearly, πI(i) = π(i), for all i ∈ I. So the
stability condition maxi∈I π(i)µi < λ−1 is a trivial consequence of the stability condition
for the original network. Also, the fluid model for the auxiliary network is easily derived
from that of the original one. Assume then t is a regular point with mini∈I Qi(t) > 0
and maxi∈J−I Qi(t) = 0. Then |Qj(t)|′ = 0 for all j ∈ J − I. By interpreting this as a
statement about the fluid model of the auxiliary network, in other words that all queues
of the fluid model of the auxiliary network are positive at time t, we have, precisely as
in the previous paragraph, that Qj(t)′ = λpI0,j +

∑
i∈I µip

I
i,j − µj , for all j ∈ I, and so

|Q(t)|′ = λ−
∑

i∈I µip
I
i,J+1 =: −ε(I). As before, ε(I) > λ(1−

∑
i∈I π(i)pIi,J+1) = 0.

We have thus proved that, with ε := minI⊆J ε(I), for any regular point t, if |Q(t)|′ > 0,
then |Q(t)| ≤ −ε. Hence the fluid model is stable.

We considered multiclass networks with single-server stations.

Exercise 1. Consider a two-server FCFS queue with i.i.d. inter-arrival and i.i.d. service
times queue, and introduce a fluid model for it. Then find stability conditions.
Exercise 2. More generally, study a multi-server queue.
Exercise 3. Find stability conditions for a tandem of two 2-server queues.
Exercise 4. Study a tandem of two 2-server queues with feedback: upon service completion
at station 2, a customer returns to station 1 with probability p and leaves the network
otherwise.

2 Inducing (second) vector field

In this section, we consider only a particular class of models: Markov chains in the positive
quadrant ZR2. An analysis of more general models may be found, e.g., in [1, 6, 12]. We
follow here [1], Chapter 7.

Let {Xn} be a Markov chain in ZR2 with initial state X0. For (x, y) ∈ R2, let a random
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vector ξx,y have a distribution

P(ξx,y ∈ ·) = P(X1 −X0 ∈ · | X0 = (x, y))

and let
ax,y = Eξx,y ≡ (a(1)

x,y, a
(2)
x,y)

be a 1-step mean drift vector from point (x, y).

Assume that random variables {ξx,y} are uniformly integrable and that a Markov chain
is asymptotically homogeneous in the following sense: first,

ξx,y → ξ weakly as x, y →∞,

then ax,y → a = (a(1), a(2)) = Eξ. Also,

ξx,y → ξx,∞ weakly as y →∞, ∀x,

then ax,y → ax,∞ = Eξx∞; and

ξx,y → ξ∞,y weakly as x→∞, ∀y,

then ax,y → a∞,y = Eξ∞,y. Note also that ax,∞ → a as x→∞ and a∞,y → a as y →∞.

Consider a homogeneous Markov chain V
(1)
n on R with distributions of increments

Pv(V
(1)
1 − V (1)

0 ∈ ·) = P(ξ(1)
∞,v ∈ ·)

and a homogeneous Markov chain V
(2)
n on R with distributions of increments

Py(V
(2)
1 − V (2)

0 ∈ ·) = P(ξ(2)
∞,v ∈ ·)

We also need an extra
Assumption. For i = 1, 2, if a(i) < 0, then a Markov chain {V (i)

n } converges to a stationary
distribution π(i). In this case, let

c(i) =
∫ ∞

0
π(i)(dv)a(3−i)(...)

Here (...) means (v,∞) if i = 1 and (∞, v) if i = 2.

Theorem 2. Assume that a(1) 6= 0 and a(2) 6= 0. Assume further that min(a(1), a(2)) < 0
and, for i = 1, 2, if a(i) < 0, then c(i) < 0. Then a Markov chain Xn is positive recurrent.

Proof is omitted. We provide verbally some intuition instead.

Example. Consider a tandem of two queues with state-dependent feedback. Assume that
all driving random variables are mutually independent and have exponential distributions:
– an exogenous input is a Poisson process with parameter λ, this means that the interarrival
times are i.i.d. Exp(λ);
– service time at station i = 1, 2 have exponential distribution with parameter µi.
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In addition, after a service completion at station 2, a customer returns to station 1 with
probability pn1,n2 and leaves the network otherwise. Here ni is a number of customers at
station i prior to completion of service..

After doing embedding (or uniformisation), we get a discrete time Markov chains. For
this Markov chain, one of three events may happen: either a new customer arrives to station
1 (with prob λ/(λ+µ1 +µ2)) or a service is completed at station 1 ( w.p. µ1/(λ+µ1 +µ2),
this will be an artificial service if station 1 is empty) or a service is completed at station 2
(again it may be an artificial service, and if not, then a customer returns to station 1 with
probability p(·, ·)). Thus, only moves to some neighbouring states are possible. Given that
a Markov chain is at state (i, j),
(a) if i > 0, j > 0, then

P ((i, j), (i+ 1, j)) =
λ

λ+ µ1 + µ2
, P ((i, j), (i− 1, j + 1)) =

µ1

λ+ µ1 + µ2
,

P ((i, j), (i+ 1, j − 1)) =
µ2p(i, j)

λ+ µ1 + µ2
, P ((i, j), (i, j − 1)) =

µ2(1− p(i, j))
λ+ µ1 + µ2

(b) if i > j = 0, then

P ((i, 0), (i+ 1, 0)) =
λ

λ+ µ1 + µ2
, P ((i, 0), (i− 1, 1)) =

µ1

λ+ µ1 + µ2
,

P ((i, 0), (i, 0)) =
µ2

λ+ µ1 + µ2
,

(c) if j > i = 0, then

P ((0, j), (1, j)) =
λ

λ+ µ1 + µ2
, P ((0, j), (0, j)) =

µ1

λ+ µ1 + µ2
,

P ((0, j), (1, j − 1)) =
µ2p(i, j)

λ+ µ1 + µ2
, P ((0, j), (0, j − 1)) =

µ2(1− p(i, j))
λ+ µ1 + µ2

(d) finally, if i = j = 0, then

P ((0, 0), (1, 0)) = 1− P ((0, 0), (0, 0)) =
λ

λ+ µ1 + µ2
.

This is asymptotically and, moreover, partially homogeneous Markov chain.

We may consider first a particular case when the probabilities p(n1, n2) depend on n2

only. Assume that there exists a limit p = limn2→∞ p(n2).

The rest of the analysis of this example is a “small research project” to you:

Exercise 5. Find stability conditions in terms of λ, µ1, and µ2.
Exercise 6. Consider then the case where the probabilities p(n1, n2) depend on n1 only.
Assuming the existence of the limit p = limn2→∞ p(n2), find stability conditions.
Exercise 7. Consider finally a general case where the probabilities p(n1, n2) may depend
on both n1 and n2.
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