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1010 Show that an 1ndef1n1te 1ntegral of an L2 functlon 18 contﬁnioﬁs
That is, if f€I*(a,b) and x,€[a, b], then F defined by

F(o)= f " f) de

| is continuous on [a, b]. Show that F need not be differentiable on [a, b] by
— taking f to be a step function.
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description of all controllers K which will make the feedback system
internally stable. This problem has a very elegant solution: it is elementary
but far from obvious. Starting from G one can construct polynomial
matrices 4, B, C, D of appropriate types so that the desired controllers K
are precisely those expressible in the form

= (AQ + B{CQ + D)~ ! (14.5)

for some rational matrix Q analytic in the right half plane. This is called the
Youla parametrization (see Francis, 1986, Chapter 4). If it were just a matter
of finding some internally stabilizing controller we could simply takeQ =0.
In a real design problem, however, there will be many other factors to be
taken into consideration. How well will the system stand up to
unpredictable external disturbances (gusts of wind or a stewardess
wheeling a drinks trolley down the aisle)? What will be the effect of the
infinitesimal delays which are inevitable in a real physical construct?
Presumably the exercise of control costs something: can we avoid undue
extravagance? Clearly there is room for cunning in the choice of Q. This is
no place to tackle all the complexities of a real engineering system: the
purpose of this chapter will be served if we can appreciate how functional
analysis enters into the treatment of one important problem: robust
stabilization.
A mathematical model never describes the behav1our of a plant exactly.

A controller which looks good on paper may turn out in practice to be so
sensitive to small variations in model parameters or to deviations of the real
system from the model (such as non-linearities) as to be useless. Some
design methods are better than others in this respect, and engineers rely on
their experience and intuition to select a design and on thorough testing to
check its performance. The theory of feedback has been a relatively small
part of the practice of control engineers. However, the march of technology
is making for new requirements. As control systems have to perform more
and more complicated tasks, intuition becomes harder to attain. It 18
difficult to develop a feel for a system with many inputs and outputs.
Furthermore, it can happen that testing is impractical: a satellite which is
designed to operate in zero gravity cannot be tested at the surface of the
earth and has to work first time. To some extent testing the real thing can be
replaced by computer simulation, but there is a clear need for a theory
which takes account of the imprecise nature of mathematical models. This
brings us to the notion of robustness. A design is robust if it works not only
for the postulated model, but also for neighbouring models. A recent
approach (since 1980) to formalizing this notion is to interpret closeness of
models as closeness of their transfer functions in the H*-norm. There are



