) - zero vector in the range of T. Show that there exists ¢ € H such that
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7.1. Let (g,)7 be a complete orthonormal sequence in a Hilbert space H
and let A, eC for ne N. Show that there is a bounded linear operator D on
H such that De, = 4,¢e,, all neN, if and only if (1,) is 2 bounded sequence.
What is [ID”, when deﬁned?
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7.9. An operator is sald to have rank 1 if its range is one-dimensional. LetT
be a bounded operator of rank 1 on a Hilbert space H, and let ¥ be a non-

Tx=(x, )Y, all xeH
and that

ATl =lellvl-

- 7 12 Show that the operator D of Problem 7 1, assumed bounded is
- invertible if and only if

inf[A,] > 0.

What is |[D™*{|, when applicable?
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7 14. Show that the rank 1 operator T of Problem 7.9 satlsﬂes N

T? = (;// , @) T. Hence show that, if (i, ¢)# 1, I — T is invertible and find ~
I-T
A

7. 21 Let H K be Hllbert spaces and let Te,%’(H K) Show that T*T is T
Hermitian and that S

|rer) =7
(use Theorem 7 18) - o _
729. Let H be a Hllbert space and let Aeff(H) _Prove that

(Range A)! = Ker A* and that (Ker 4)? is the closure of Range 4*. Prove'
also that Ker A*A KerA '
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differential equation, though typically several different linear models will
be needed for a single plant: clearly different linear approximations will be
appropriate to an aeroplane in steady flight and during landing.

Let us consider a plant modelled by the equations

Lx=Mu,
where L, M are linear differential operators, x and u being functions of time
with values in Euclidean spaces X and U. It is natural to assume that the
physical characteristics of the plant do not change over the period during
which control is to be exercised, and this corresponds to assuming that
L, M are linear differential operators with constant coefficients. On taking
Laplace transforms we obtain (assuming, for simplicity, zero initial
conditions})

A(s)x(s) = B(s)u(s) (14.1)
where x(s), ﬁ(é) are the Laplace transforms of x(t), u(t) and A(s), B(s) are
matrix-valued polynomials in s. An adequate model must contain enough
information to determine x(-) from u( - ), so we may take it that (14.1) may
be solved to give

x(s) = G(s)u(s), (14.2)
where G(s) is a matrix of rational functions in s. G(s) is called the transfer
function matrix, or simply transfer function, of the system.

What an encouraging conclusion for the pure mathematician! Such a
marvel of engineering as a modern aircraft, with all its complexity and
power, can be usefully represented by a few rational matrix functions. True,
they may be rather large; a lot of information is doubtless encoded in their
coefficients and someone may have to do a lot of work to estimate them,
but in principle, with the great structures of linear algebra, complex
analysis, ring theory and functional analysis to support us, we should feel at
home with them.

We have seen that an undesirable feature of a physical device is
instability. We must translate this into a statement about transfer
functions. Consider a system whose state at time ¢ can be represented by a
single real number x(t), with a single control input u(f), governed by the
equations

X+X—6x=ult), (14.3)
x(0) = x(0) =
The transfer function of this plant is

1 1
SfHs—6 (s—2)0s+3)’

G(s)=




