
Chapter 6

The Laplace Transform

6.1 General Remarks

Example 6.1. We send in a “signal” u into an “amplifier”, and get an “output

signal” y:

Black boxu y

Under quite general assumptions it can be shown that

y(t) = (K ∗ u)(t) =

∫ t

−∞

K(t − s)u(s)ds,

i.e., the output is the convolution (=”faltningen”) of u with the “inpulse re-

sponse” K.

Terminology 6.2. “Impulse response” (=pulssvar) since y = K if u = a delta

distribution.

Causality 6.3. The upper bound in the integral is t, i.e., (K ∗u)(t) depends only

on past values of u, and not on future values. This is called causality.

If, in addition u(t) = 0 for t < 0, then y(t) = 0 for t < 0, and

y(t) =

∫ t

0

K(t − s)u(s)ds,

which is a one-sided convolution.

Classification 6.4. Approximately: The Laplace-transform is the Fourier trans-

form applied to one-sided signals (defined on R+). In addition there is a change

of variable which rotate the complax plane.
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6.2 The Standard Laplace Transform

Definition 6.5. Suppose that
∫ ∞

0
e−σt|f(t)|dt < ∞ for some σ ∈ R. Then we

define the Laplace transform f̃(s) of f by

f̃(s) =

∫ ∞

0

e−stf(t)dt, ℜ(s) ≥ σ.

Lemma 6.6. The integral above converges absolutely for all s ∈ C with ℜ(s) ≥ σ

(i.e., f̃(s) is well-defined for such s).

Proof. Write s = α + iβ. Then

|e−stf(t)| = |e−αteiβtf(t)|

= e−αt|f(t)|

≤ e−σt|f(t)|, so∫ ∞

0

|e−stf(t)|dt ≤

∫ ∞

0

e−σt|f(t)|dt < ∞. �

Theorem 6.7. f̃(s) is analytic in the open half-plane Re(s) > σ, i.e., f̃(s) has

a complex derivative with respect to s.

Proof. (Outline)

f̃(z) − f̃(s)

z − s
=

∫ ∞

0

e−zt − e−st

z − s
f(t)dt

=

∫ ∞

0

e−(z−s)t − 1

z − s
e−stf(t)dt (put z − s = h)

=

∫ ∞

0

1

h
[e−ht − 1]

︸ ︷︷ ︸
→−t as h→0

e−stf(t)dt

As Re(s) > σ we find that
∫ ∞

0
|te−stf(t)|d < ∞ and a “short”computation (about

1
2

page) shows that the Lebesgue dominated convergence theorem can be applied

(show that | 1
h
(e−ht − 1)| ≤ const. · t · eαt, where α = 1

2
[σ + ℜ(s)] (this is true

for some small enough h), and then show that
∫ ∞

0
teαt|e−stf(t)|dt < ∞). Thus,

d
ds

f̃(s) exists, and

d

ds
f̃(s) = −

∫ ∞

0

e−sttf(t)dt, ℜ(s) > σ

Corollary 6.8. d
ds

f̃(s) is the Laplace transform of g(t) = −tf(t), and this

Laplace transform converges (at least) in the half-plane Re(s) > σ.
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Theorem 6.9. f̃(s) is bounded in the half-plane ℜ(s) ≥ σ.

Proof. (cf. proof of Lemma 6.6)

|f̃(s)| = |

∫ ∞

0

e−stf(t)dt| ≤

∫ ∞

0

|e−stf(t)|dt

=

∫ ∞

0

e−(ℜs)t|f(t)|dt ≤

∫ ∞

0

e−σt|f(t)|dt < ∞.

Definition 6.10. A bounded analytic function on the half-plane Re(s) > σ

is called a H∞-function (over this half-plane).

Theorem 6.11. If f is absolutely continuous and
∫ ∞

0
e−σt|g(t)|dt < ∞ (i.e.,

f(t) = f(0) +
∫ t

0
g(s)ds, where

∫ ∞

0
e−σt|g(t)|dt < ∞), then

(f̃ ′)(s) = sf̃(s) − f(0), ℜ(s) > σ.

Proof. Integration by parts (a la Lebesgue) gives

lim
T→∞

∫ T

0

e−stf(t)

︸ ︷︷ ︸
=f̃(s)

dt = lim
T→∞

([e−st

−s
f(t)

]T

0
+

1

s

∫ ∞

0

e−stf ′(t)dt

)

=
1

s
f(0) +

1

s
f̃ ′(s), so

(f̃ ′)(s) = sf̃(s) − f(0). �

6.3 The Connection with the Fourier Transform

Let Re(s) > σ, and make a change of variable:
∫ ∞

0

e−stf(t)dt (t = 2πv; dt = 2πdv)

=

∫ ∞

0

e−2πsvf(2πv)2πdv (s = α + iω)

=

∫ ∞

0

e−2πiωve−2παvf(2πv)2πdv (put f(t) = 0 for t < 0)

=

∫ ∞

−∞

e−2πiωtg(t)dt,

where

g(t) =

{
2πe−2παtf(2πt) , t ≥ 0

0 , t < 0.
(6.1)

Thus, we got
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Theorem 6.12. On the line Re(s) = α (which is a line parallell with the imagi-

nary axis −∞ < ω < ∞) f̃(s) coincides (=sammanfaller med) with the Fourier

transform of the function g defined in (6.1).

Thus, modulo a change of variable, the Laplace transform is the Fourier transform

of a function vanishing for t < 0. From Theorem 6.12 and the theory about

Fourier transforms of functions in L1(R) and L2(R) we can derive a number of

results. For example:

Theorem 6.13. (Compare to Theorem 2.3, page 36) If f ∈ L1(R+) (i.e.,
∫ ∞

0
|f(t)|dt <

∞), then

lim
|s|→∞
ℜ(s)≥0

|f̃(s)| = 0

(where s → ∞ in the half plane Re(s) > 0 in an arbitrary manner)

Re

Im

Combining Theorem 6.12 with one of the theorems about the inversion of the

Fourier integral we get formulas of the type

1

2π

∫ ∞

−∞

e2πiωtf̃(α + iω)dω =

{
e−2παtf(t), t > 0,

0, t < 0.

This is often written as a complex line integral: We integrate along the line

Re(s) = α, and replace 2πt → t and multiply the formulas by e2παt to get

(s = α + iω, ds = idω)

f(t) =
1

2πi

∫ α+i∞

α−i∞

estf̃(s)ds (6.2)

=
1

2πi

∫ ∞

ω=−∞

e(α+iω)tf̃(α + iω)idω
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Warning 6.14. This integral seldom converges absolutely. If it does converge

absolutely, then (See Theorem 2.3 with the Fourier theorem replaced by the in-

verse Fourier theorem) the function

g(t) =

{
2πe−2παtf(t), t ≥ 0,

0, t < 0

must be continuous. In other words:

Lemma 6.15. If the integral (6.2) converges absolutely, then f must be contin-

uous and satisfy f(0) = 0.

Therefore, the inversion theorems given in Theorem 2.30 and Theorem 2.31 are

much more useful. They give (under the assumptions given there)

1

2
[f(t+) + f(t−)] = lim

T→∞

1

2πi

∫ α+iT

α−iT

estf̃(s)ds

(and we interpret f(t) = 0 for t < 0). By Theorem 6.11, if f is absolutely

continuous and f ′ ∈ L1(R+), then (use also Theorem 6.13)

f̃(s) =
1

s
[ ˜(f ′)(s) + f(0)],

where ˜(f ′)(s) → 0 as |s| → ∞, ℜ(s) ≥ 0. Thus, for large values of ω, f̃(α+iω) ≈
f(0)
iω

, so the convergence is slow in general. Apart from the space H∞ (see page

126) (over the half plane) another much used space (especially in Control theory)

is H2.

Theorem 6.16. If f ∈ L2(R+), then the Laplace transform f̃ of f is analytic in

the half-plane ℜ(s) > 0, and it satisfy, in addition

sup
α>0

∫ ∞

−∞

|f̃(α + iω)|2dω < ∞,

i.e., there is a constant M so that
∫ ∞

−∞

|f̃(α + iω)|2dω ≤ M (for all α > 0).

Proof. By Theorem 6.12 and the L2-theory for Fourier integrals (see Section

2.3),
∫ ∞

−∞

|f̃(α + iω)|2dω =

∫ ∞

0

|2πe−2παtf(2πt)|2dt (2πt = v)

= 2π

∫ ∞

0

|e−αvf(v)|2dv

≤ 2π

∫ ∞

0

|f(v)|2dv = 2π‖f‖L2(0,∞). �
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Converesly:

Theorem 6.17. If ϕ is analytic in ℜ(s) > 0, and ϕ satisfies

sup
α>0

∫ ∞

−∞

|ϕ(α + iω)|2dω < ∞, (6.3)

then ϕ is the Laplace transform of a function f ∈ L2(R+).

Proof. Not too difficult (but rather long).

Definition 6.18. An H2-function over the half-plane ℜ(s) > 0 is a function ϕ

which is analytic and satisfies (6.3).

6.4 The Laplace Transform of a Distribution

Let f ∈ S ′ (tempered distribution), and suppose that the support of f is con-

tained in [0,∞) = R+ (i.e., f vanishes on (−∞, 0)). Then we can define the

Laplace transform of f in two ways:

i) Make a change of variables as on page 126 and use the Fourier transform

theory.

ii) Define f̃(s) as f applied to the “test function” e−st, t > 0. (Warning: this

is not a test function!)

Both methods lead to the same result, but the second method is actually simpler.

If ℜ(s) > 0, then t 7→ e−st behaves like a test function on [0,∞) but not on

(−∞, 0). However, f is supported on [0,∞), so it does not matter how e−st

behaves for t < 0. More precisely, we take an arbitrary “cut off” function

η ∈ C∞
pol satisfying {

η(t) ≡ 1 for t ≥ −1,

η(t) ≡ 0 for t ≤ −2.

Then η(t)e−st = e−st for t ∈ [−1,∞), and since f is supported on [0,∞) we can

replace e−st by η(t)e−st to get

Definition 6.19. If f ∈ S ′ vanishes on (−∞, 0), then we define the Laplace

transform f̃(s) of f by

f̃(s) = 〈f, η(t)e−st〉, ℜ(s) > 0.
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(Compare this to what we did on page 84).

Note: In the same way we can define the Laplace transform of a distribution that

is not necessarily tempered, but which becomes tempered after multiplication by

e−σt for some σ > 0. In this case the Laplace transform will be defined in the

half-plane ℜs > σ.

Theorem 6.20. If f vanishes on (−∞, 0), then f̃ is analytic on the half-plane

ℜs > 0.

Proof omitted.

Note: f̃ need not be bounded. For example, if f = δ′, then

(̃δ′)(s) = 〈δ′, η(t)e−st〉 = −〈δ, η(t)e−st〉

=
d

dt
e−st

|t=0 = −s.

(which is unbounded). On the other hand

δ̃(s) = 〈δ, η(t)e−st〉 = e−st
|t=0 = 1.

Theorem 6.21. If f ∈ S ′ vanishes on (−∞, 0), then

i) [t̃f(t)](s) = −[f̃(s)]′

ii) f̃ ′(s) = sf̃(s)

}
ℜ(s) > 0

Proof. Easy (homework?)

Warning 6.22. You can apply this distribution transform also to functions, but

remember to put f(t) = 0 for t < 0. This automatically leads to a δ-term in the

distribution derivative of f : after we define f(t) = 0 for t < 0, the distribution

derivative of f is

f(0)δ0︸ ︷︷ ︸
dervatives of jump at zero

+ f ′(t)︸︷︷︸
usual derivative

6.5 Discrete Time: Z-transform

This is a short continuation of the theory on page 101.

In discrete time we also run into one-sided convolutions (as we have seen), and

it is possible to compute these by the FFT. From a mathematical point of view

the Z-tranform is often simpler than the Fourier transform.
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Definition 6.23. The Z-transform of a sequence {f(n)}∞n=0 is given by

f̃(z) =

∞∑

n=0

f(n)z−n,

for all these z ∈ C for which the series converges absolutely.

Lemma 6.24.

i) There is a number ρ ∈ [0,∞] so that f̃(z) converges for |z| > ρ and f̃(z)

diverges for |z| < ρ.

ii) f̃ is analytic for |z| > ρ.

Proof. Course on analytic functions.

As we noticed on page 101, the Z-transform can be converted to the discrete

time Fourier transform by a simple change of variable.

6.6 Using Laguerra Functions and FFT to Com-

pute Laplace Transforms

We start by recalling some results from the course in special functions:

Definition 6.25. The Laguerra polynomials Lm are given by

Lm(t) =
1

m!
et

( d

dt

)m
(tme−t), m ≥ 0,

and the Laguerra functions ℓm are given by

ℓ,(t) =
1

m!
e

t

2

( d

dt

)m
(tme−t), m ≥ 0.

Note that ℓm(t) = e−
t

2Lm(t).

Lemma 6.26. The Laguerra polynomials can be computed recusively from the

formula

(m + 1)Lm+1(t) + (t − 2m − 1)Lm(t) + mLm−1(t) = 0,

with starting values L−1 ≡ 0 and L1 ≡ 1.
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We saw that the sequence {ℓm}
∞
m=0 is an ortonormal sequence in L2(R+), so that

if we define, for some f ∈ L2(R+),

fm =

∫ ∞

0

f(t)ℓm(t)dt,

then

f(t) =

∞∑

m=0

fmℓm(t) (in the L2-sense). (6.4)

Taking Laplace transforms in this equation we get

f̃(s) =

∞∑

m=0

fmℓ̃m(s).

Lemma 6.27.

i) ℓ̃m(s) = (s−1/2)m

(s+1/2)m+1 ,

ii) f̃(s) =
∑∞

m=0 fm
(s−1/2)m

(s+1/2)m+1 , where fm =
∫ ∞

0
f(t)ℓm(t)dt.

Proof. Course on special functions.

The same method can be used to compute inverse Laplace transforms, and this

gives a possibility to use FFT to compute the coefficients {fm}
∞
m=0 if we know

f̃(s). The argument goes as follows.

Suppose for simplicity that f ∈ L1(R), so that f̃(s) is defined and bounded on

C+ = {s ∈ C|Re s > 0}. We want to expand f̃(s) into a series of the type

f̃(s) =

∞∑

m=0

fm
(s − 1/2)m

(s + 1/2)m+1
. (6.5)

Once we know the cofficients fm we can recover f(t) from formula (6.4). To find

the coefficients fm we map the right half-plane C+ into the unit disk D = {z ∈

C : |z| < 1}. We define

z =
s − 1/2

s + 1/2
⇐⇒ sz +

1

2
z = s −

1

2
⇐⇒

s =
1

2

1 + z

1 − z
and s + s + 1/2 =

1

2
(1 +

1 + z

1 − z
) =

1

1 − z
, so

1

s + 1/2
= 1 − z

Lemma 6.28.
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i) ℜ(s) > 0 ⇐⇒ |z| < 1 item[ii)]ℜ(s) = 0 ⇐⇒ |z| = 1

iii) s = 1/2 ⇐⇒ z = 0

iv) s = ∞ ⇐⇒ z = 1

v) s = 0 ⇐⇒ z = −1

vi) s = −1/2 ⇐⇒ z = ∞

Proof. Easy.

Conclusion: The function f̃(1
2

1+z
1−z

) is analytic inside the unit disc D, (and bounded

if f̃ is bounded on C+).

Making the same change of variable as in (6.5) we get

1

1 − z
f̃(

1

2

1 + z

1 − z
) =

∞∑

m=0

fmzm.

Let us define

g(z) =
1

1 − z
f̃(

1

2

1 + z

1 − z
), |z| < 1.

Then

g(z) =
∞∑

m=0

fmzm,

so g(z) is the “mathematical” version of the Z-transform of the sequence {fm}
∞
m=0

(in the control theory of the Z-transform we replace zm by z−m).

If we know f̃(s), then we know g(z), and we can use FFT to compute the

coefficients fm: Make a change of variable: Put αN = e2πi/N . Then

g(αk
N) =

∞∑

m=0

fmαmk
N =

∞∑

m=0

fme2πimk/N ≈

N∑

m=0

fme2πimk/N

(if N is large enough). This is the inverse discrete Fourier transform of a periodic

extension of the sequence {fm}
N−1
m=0. Thus, fm ≈ the discrete transformation of

the sequence {g(αk
N)}N−1

k=0 . We put

G(k) = g(αk
N) =

1

1 − αk
N

f̃(
1

2

1 + αk
N

1 − αk
N

),

and get fm ≈ Ĝ(m), which can be computed with the FFT.
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Error estimate: We know that fm = ĝ(m) (see page 115) and that ĝ(m) = 0 for

m < 0. By the error estimate on page 108 we get

|Ĝ(m) − fm| =
∑

k 6=0

|fm+kN |

(where we put fm = 0 for m < 0).
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