
Chapter 5

The Discrete Fourier Transform

We have studied four types of Fourier transforms:

i) Periodic functions on R ⇒ f̂ defined on Z.

ii) Non-periodic functions on R ⇒ f̂ defined on R.

iii) Distributions on R ⇒ f̂ defined on R.

iv) Sequences defined on Z ⇒ f̂ periodic on R.

The final addition comes now:

v) f a periodic sequence (on Z) ⇒ f̂ a periodic sequence.

5.1 Definitions

Definition 5.1. ΠN = {all periodic sequences F (m) with period N , i.e., F (m+

N) = F (m)}.

Note: These are in principle defined for all n ∈ Z, but the periodicity means

that it is enough to know F (0), F (1), . . . , F (N − 1) to know the whole sequence

(or any other set of N consecutive (= p̊a varandra följande) values).

Definition 5.2. The Fourier transform of a sequence F ∈ ΠN is given by

F̂ (m) =
1

N

N−1∑

k=0

e−
2πimk

N F (k), m ∈ Z.

102

CHAPTER 5. THE DISCRETE FOURIER TRANSFORM 103

Warning 5.3. Some people replace the constant 1
N

in front of the sum by 1√
N

or

omit it completely. (This affects the inversion formula.)

Lemma 5.4. F̂ is periodic with the same period N as F .

Proof.

F̂ (m + N) =
1

N

∑

one period

e−
2πi(m+N)k

N F (k)

=
1

N

∑

one period

e−2πik
︸ ︷︷ ︸

=1

e−
2πimk

N F (k)

= F̂ (m). �

Thus, F ∈ ΠN ⇒ F̂ ∈ ΠN .

Theorem 5.5. F can be reconstructed from F̂ by the inversion formula

F (k) =

N−1∑

m=0

e
2πimk

N F̂ (m).

Note: No 1
N

in front here.

Note: Matlab puts the 1
N

in front of the inversion formula instead!

Proof.

∑

m

e
2πimk

N
1

N

∑

l

e−
2πiml

N F (l) =
1

N

N−1∑

l=0

F (l)

N−1∑

m=0

e
2πim(k−l)

N

︸ ︷︷ ︸

=

8

>

>

<

>

>

:

N, if l = k

0, if l 6= k

= F (k)

We know that
(
e

2πi
N

)N

= 1, so e
2πi
N is the N :th root of 1:

2πi/N
e

e2*2πi/N

2π/Ν 2π/Ν
1

We add N numbers, whose absolute value is one, and who point symmetrically

in all the different directions indicated above. For symmetry reasons, the sum

CHAPTER 5. THE DISCRETE FOURIER TRANSFORM 104

must be zero (except when l = k). (You always jump an angle 2π(k−l)
N

for each

turn, and go k − l times around before you are done.)

Definition 5.6. The convolution F ∗G of two sequences in ΠN are defined by

(F ∗ G)(m) =
∑

one period

F (m − k)G(k)

(Note: Some indeces get out of the interval [0, N−1]. You must use the periodicity

of F and G to get the corresponding values of F (m − k)G(k).).

Definition 5.7. The (ordinary) product F · G is defined by

(F · G)(m) = F (m)G(m), m ∈ Z.

Theorem 5.8. (F̂ · G) = F̂ ∗ Ĝ and (F̂ ∗ G) = NF̂ · Ĝ (note the extra factor

N).

Proof. Easy. (Homework?)

Definition 5.9. (RF)(n) = F (−n) (reflection operator).

As before: The inverse transform = the ususal transform plus reflection:

Theorem 5.10. F̌ = N(R̂F) (note the extra factor N), where ˆ = Fourier

transform and ˇ= Inverse Fourier transform.

Proof. Easy. We could have avoided the factor N by a different scaling (but

then it shows up in other places instead).

5.2 FFT=the Fast Fourier Transform

Question 5.11. How many flops do we need to compute the Fourier transform

of F ∈ ΠN?

FLOP=FLoating Point Operation={multiplication or addition or combination

of both}.

1 Megaflop = 1 million flops/second (106)

1 Gigaflop = 1 billion flops/second (109)

(Used as speed measures of computers.)

CHAPTER 5. THE DISCRETE FOURIER TRANSFORM 105

Task 5.12. Compute F̂ (m) = 1
N

∑N−1
k=0 e−

2πimk
N F (k) with the minimum amount

of flops (=quickly).

Good Idea 5.13. Compute the coefficients
(
e−

2πi
N

)k

= ωk only once, and store

them in a table. Since ωk+N = ωk, we have e−
2πimk

N = ωmk = ωr where r =

remainder when we divide mk by N . Thus, only N numbers need to be stored.

Thus: We can ignore the number of flops needed to compute the coefficients

e−
2πimk

N (done in advance).

Trivial Solution 5.14. If we count multiplication and addition separetely, then

we need to compute N coefficients (as m = 0, 1, . . . , N − 1), and each coefficient

requires N muliplications and N − 1 additions. This totals

N(2N − 1) = 2N2 − N ≈ 2N2 flops .

This is too much.

Brilliant Idea 5.15. Regroup (=omgruppera) the terms, using the symmetry.

Start by doing even coefficients and odd coefficients separetely:

Suppose for simplicity that N is even. Then, for even m, (put N = 2n)

F̂ (2m) =
1

N

N−1∑

k=0

ω2mkF (k)

=
1

N

[n−1∑

k=0

ω2mkF (k) +

2n−1∑

k=n

ω2mkF (k)

︸ ︷︷ ︸
Replace k by k+n

]

=
1

N

[
n−1∑

k=0

ω2mkF (k) + ω2m(k+n)F (k + n)

]

=
2

N

n−1∑

k=0

e−
2πimk
(N/2)

1

2
[F (k) + F (k + n)] .

This is a new discrete time periodic Fourier transform of the sequence G(k) =

1
2
[F (k) + F (n + k)] with period n =

N

2
.

A similar computation (see Gripenberg) shows that the odd coefficients can be

computed from

F̂ (2m + 1) =
1

n

n−1∑

k=0

e−
2πimk

n H(k),

CHAPTER 5. THE DISCRETE FOURIER TRANSFORM 106

where H(k) = 1
2
e−

iπk
n [F (k) − F (k + n)]. Thus, instead of one transform of order

N we get two transforms of order n = N
2
.

Number of flops: Computing the new transforms by brute force (as in 5.14 on

page 105) we need the following flops:

Even: n(2n − 1) = N2

2
− N

2
+ n additions = N2

2
flops.

Odd: The numbers e−
iπk
n = e−

2iπk
N are found in the table already computed.

We essentially again need the same amount, namely N2

2
+ N

2
(n extra multiplica-

tions).

Total: N2

2
+ N2

2
+ N

2
= N2+ N

2
≈ N2. Thus, this approximately halfed the number

of needed flops.

Repeat 5.16. Divide the new smaller transforms into two halfs, and again, and

again. This is possible if N = 2k for some integer k, e.g., N = 1024 = 210.

Final conclusion: After some smaller adjustments we get down to

3

2
2kk flops.

Here N = 2k, so k = log2 N , and we get

Theorem 5.17. The Fast Fourier Transform with radius 2 outlined above needs

approximately 3
2
N log2 N flops.

This is much smaller than 2N2 − N for large N . For example N = 210 = 1024

gives
3

2
N log2 N ≈ 15000 ≪ 2000000 = 2N2 − N.

Definition 5.18. Fast Fourier transform with




radius 2 : split into 2 parts at each step N = 2k

radius 3 : split into 3 parts at each step N = 3k

radius m : split into m parts at each step N = mk

Note: Based on symmetries. “The same” computations repeat themselves, so by

combining them in a clever way we can do it quicker.

Note: The FFT is so fast that it caused a minor revolution to many branches of

numerical analysis. It made it possible to compute Fourier transforms in practice.

Rest of this chapter: How to use the FFT to compute the other transforms dis-

cussed earlier.

CHAPTER 5. THE DISCRETE FOURIER TRANSFORM 107

5.3 Computation of the Fourier Coefficients of

a Periodic Function

Problem 5.19. Let f ∈ C(T). Compute

f̂(k) =

∫ 1

0

e−2πiktf(t)dt

as efficiently as possible.

Solution: Turn f into a periodic sequence and use FFT!

Conversion 5.20. Choose some N ∈ Z, and put

F (m) = f(
m

N
), m ∈ Z

(equidistant “sampling”). The periodicity of f makes F periodic with period N .

Thus, F ∈ ΠN .

Theorem 5.21 (Error estimte). If f ∈ C(T) and f̂ ∈ ℓ1(Z) (i.e.,
∑

|f̂(k)| < ∞),

then

F̂ (m) − f̂(m) =
∑

k 6=0

f̂(m + kN).

Proof. By the inversion formula, for all t,

f(t) =
∑

j∈Z

e2πijtf̂(j).

Put tk = k
N

⇒

f(tk) = F (k) =
∑

j∈Z

e
2πikj

N f̂(j)

(this series converges uniformly by Lemma 1.14). By the definition of F̂ :

F̂ (m) =
1

N

N−1∑

k=0

e−
2πimk

N F (k)

=
1

N

∑

j∈Z

f̂(j)
N−1∑

k=0

e
2πi(j−m)k

N

︸ ︷︷ ︸

=

8

>

>

<

>

>

:

N, if j−m
N

= integer

0, if j−m
N

6= integer

=
∑

l∈Z

f̂(m + Nl).

CHAPTER 5. THE DISCRETE FOURIER TRANSFORM 108

Take away the term f̂(m) (l = 0) to get

F̂ (m) = f̂(m) +
∑

l 6=0

f̂(m + Nl).

Note: If N is “large” and if f̂(m) → 0 “quickly” as m → ∞, then the error

∑

l 6=0

f̂(m + Nl) ≈ 0.

First Method 5.22. Put

i) f̂(m) ≈ F̂ (m) if |m| < N
2

ii) f̂(m) ≈ 1
2
F̂ (m) if |m| = N

2
(N even)

iii) f̂(m) ≈ 0 if |m| > N
2
.

Here ii) is not important. We could use f̂(N
2
) = 0 or f̂(N

2
) = F̂ (m) instead.

Here

F̂ (m) =
1

N

N−1∑

k=0

e−
2πimk

N F (k).

Notation 5.23. Let us denote (note the extra star)

∗∑

|k|≤N/2

ak =
∑

|k|≤N/2

ak

= the usual sum of ak if N odd (then we have exactly N terms), and

∗∑

|k|≤N/2

ak =

a sum where the first and last terms have been

divided by two (these are the same if the sequence

is periodic with period N , there is “one term too

many” in this case).

First Method 5.24 (Error). The first method gives the error:

i) |m| < N
2

gives the error

|f̂(m) − F̂ (m)| ≤
∑

k 6=0

|f̂(m + kN)|

ii) |m| = N
2

gives the error

|f̂(m) −
1

2
F̂ (m)|

CHAPTER 5. THE DISCRETE FOURIER TRANSFORM 109

iii) |m| > N
2

gives the error |f̂(m)|.

we can simplify this into the following crude (=”grov”) estimate:

sup
m∈Z

|f̂(m) − F̂ (m)| ≤

∗∑

|m|≥N/2

|f̂(m)| (5.1)

(because this sum is ≥ the actual error).

First Method 5.25 (Drawbacks).

1◦ Large error.

2◦ Inaccurate error estimate (5.1).

3◦ The error estimate based on f̂ and not on f .

We need a better method.

Second Method 5.26 (General Principle).

1◦ Evaluate t at the points tk = k
N

(as before), F (k) = f(tk)

2◦ Use the sequence F to construct a new function P ∈ C(T) which “approx-

imates” f .

3◦ Compute the Fourier coefficients of P .

4◦ Approximate f̂(n) by P̂ (n).

For this to succeed we must choose P in a smart way. The final result will be

quite simple, but for later use we shall derive P from some “basic principles”.

Choice of P 5.27. Clearly P depends on F . To simplify the computations we

require P to satisfy (write P = P (F))

A) P is linear: P (λF + µG) = λP (F) + µP (G)

B) P is translation invariant: If we translate F , then P (F) is translated by

the same amount: If we denote

(τjF)(m) = F (m − j), then

P (τjF) = τj/NP (F)

(j discrete steps ⇐⇒ a time difference of j/N).

CHAPTER 5. THE DISCRETE FOURIER TRANSFORM 110

This leads to simple computations: We want to compute P̂ (m) (which we use as

approximations of f̂(m)) Define a δ-sequence:

D(n) =

{
1, for n = 0,±N,±2N, . . .

0, otherwise.

Then

N 2N
period

zero

(τkD)(n) =

{
1, if n = k + jN, j ∈ Z

0, otherwise,

so

[F (k)τkD](n) =

{
F (k), n = k + jN

0, otherwise.

and so

F =

N−1∑

k=0

F (k)τkD

Therefore, the principles A) and B) give

P (F) =

N−1∑

k=0

F (k)P (τkD)

=

N−1∑

k=0

F (k)τk/NP (D),

Where P (D) is the approximation of D = “unit pulse at time zero” D.

CHAPTER 5. THE DISCRETE FOURIER TRANSFORM 111

We denote this function by p. Let us transform P (F):

(P̂ (F))(m) =

∫ 1

0

N+1∑

k=0

F (k)(τk/Np)(s)e−2πismds

=

N+1∑

k=0

F (k)

∫ 1

0

e−2πismp(s −
k

N
)ds (s −

k

N
= t)

=
N+1∑

k=0

F (k)

∫
one

period

e−2πim(t+ k
N

)p(t)dt

=
N+1∑

k=0

F (k)e−
−2πimk

N

∫
one

period

e−2πimtp(t)dt

︸ ︷︷ ︸
p̂(m)

= p̂(m)
N+1∑

k=0

F (k)e−
2πimk

N

︸ ︷︷ ︸
=NF̂ (m)

= Np̂(m)F̂ (m).

We can get rid of the factor N by replacing p by Np. This is our approximation

of the “pulse of size N at zero”

{
N, n = 0 + jN

0, otherwise.

Second Method 5.28. Construct F as in the First Method, and compute F̂ .

Then the approximation of f̂(m) is

f̂(m) ≈ F̂ (m)p̂(m),

where p̂ is the Fourier transform of the function that we get when we apply our

approximation procedure to the sequence

ND(n) =

{
N, n = 0(+jN)

0, otherwise.

Note: The complicated proof of this simple method will pay off in a second!

Approximation Method 5.29. Use any type of translation-invariant inter-

polation method, for example splines. The simplest possible method is linear

interpolation: If we interpolate the pulse ND in this way we get Thus,

CHAPTER 5. THE DISCRETE FOURIER TRANSFORM 112

N points

N

p(t) =

{
N(1 − N |t|), |t| ≤ 1

N

0, 1
N

≤ |t| ≤ 1 − 1
N

(periodic extension)

This is a periodic version of the kernel. A direct computation gives

p̂(m) =

(
sin(πm/N)

πm/N

)2

.

We get the following interesting theorem:

Theorem 5.30. If we first discretize f , i.e. we replace f by the sequence F (k) =

f(k/N), the compute F̂ (m), and finally multiply F̂ (m) by

p̂(m) =

(
sin(πm/N)

πm/N

)2

.

then we get the Fourier coefficients for the function which we get from f by linear

interpolation at the points tk = k/N .

(This corresponds to the computation of the Fourier integral
∫ 1

0
e−2πimtf(t)dt by

using the trapetsoidal rule. Other integration methods have similar interpreta-

tions.)

CHAPTER 5. THE DISCRETE FOURIER TRANSFORM 113

5.4 Trigonometric Interpolation

Problem 5.31. Construct a good method to approximate a periodic function

f ∈ C(T) by a trigonometric polynomial

N∑

m=−N

ame2πimt

(a finite sum, resembles inverse Fourier transformation).

Useful for numerical computation etc.

Note: The earlier “Second Method” gave us a linear interpolation, not trigono-

metric approximation.

Note: This trigonometric polynomial has only finitely many Fourier coefficients

6= 0 (namely am, |m| ≤ N).

Actually, the “First Method” gave us a trigonometric polynomial. There we had





f̂(m) ≈ F̂ (m) for |m| < N
2
,

f̂(m) ≈ 1
2
F̂ (m) for |m| = N

2
,

f̂(m) ≈ 0 for |m| > N
2
.

By inverting this sequence we get a trigonometric approximation of f : f(t) ≈

g(t), where

g(t) =

∗∑

|m|≤N/2

F̂ (m)e2πimt. (5.2)

We have two different errors:

i) f̂(m) is replaced by F̂ (m) = 1
N

∑N−1
k=0 f(k

N
)e

2πikm
N ,

ii) The inverse series was truncated to N terms.

Strange fact: These two errors (partially) cancel each other.

Theorem 5.32. The function g defined in (5.2) satisfies

g(
k

N
) = f(

k

N
), n ∈ Z,

i.e., g interpolates f at the points tk (which were used to construct first F and

then g).

CHAPTER 5. THE DISCRETE FOURIER TRANSFORM 114

Proof. We defined F (k) = f(k
N

), and

F̂ (m) =
∗∑

|k|≤N/2

F (k)e−
2πimk

N .

By the inversion formula on page 103,

g(
k

N
) =

∗∑

|m|≤N/2

F̂ (m)e
2πimk

N (use periodicity)

=

N−1∑

m=0

F̂ (m)e
2πimk

N

= F (k) = f(
k

N
) �

Error estimate: How large is |f(t)−g(t)| between the mesh points tk = k
N

(where

the error is zero)? We get an estimate from the computation in the last section.

Suppose that f̂ ∈ ℓ1(Z) and f ∈ C(T) so that the inversion formula holds for all

t (see Theorem 1.37). Then

f(t) =
∑

m∈Z

f̂(m)e2πimt, and

g(t) =
∗∑

|m|≤N/2

F̂ (m)e2πimt (Theorem 5.21)

=

∗∑

|m|≤N/2

[
f̂(m) +

∑

k 6=0

f̂(m + kN)

]
e2πimt

= f(t) −

∗∑

|m|≥N/2

f̂(m)e2πimt +

∗∑

|m|≤N/2

∑

k 6=0

f̂(m + kN)e2πimt.

Thus

|g(t) − f(t)| ≤
∗∑

|m|≥N/2

|f̂(m)| +
∗∑

|m|≤N/2

∑

k 6=0

|f̂(m + kM)|

︸ ︷︷ ︸
=

P∗
|l|≥N/2|f̂(l)|

= 2
∗∑

|m|≥N/2

|f̂(m)|

(take l = m + kN , every |l| > N
2

appears one time, no |l| < N
2

appears, and

|l| = N
2

two times).

This leads to the following theorem:

CHAPTER 5. THE DISCRETE FOURIER TRANSFORM 115

Theorem 5.33. If
∑∞

m=−∞|f̂(m)| < ∞, then

|g(t) − f(t)| ≤ 2
∗∑

|m|≥N/2

|f̂(m)|,

where
g(t) =

∑∗
|m|≤N/2 F̂ (m)e2πimt, and

F̂ (m) = 1
N

∑∗
|m|≤N/2 e−

2πimk
N f(k

N
).

This is nice if f̂(m) → 0 rapidly as m → ∞. Better accuracy by increasing N .

5.5 Generating Functions

Definition 5.34. The generating function of the sequence Jn(x) is the func-

tion

f(x, z) =
∑

n

Jn(x)zn,

where the sum over n ∈ Z or over n ∈ Z+, depending on for which values of n

the functions Jn(x) are defined.

Note: We did this in the course on special functions. E.g., if Jn = Bessel’s

function of order n, then

f(x, z) = e
x
2
(z−1/2).

Note: For a fixed value of x, this is the “mathematician’s version” of the Z-

transform described on page 101.

Make a change of variable:

z = e2πit ⇒ f(x, e2πit) =
∑

n∈Z

Jn(x)(e2πit)n

=
∑

n∈Z

Jn(x)e2πint,

Comparing this to the inversion formula in Chapter 1 we get

Theorem 5.35. For a fixed x, the n:th Fourier coefficient of the function t 7→

f(x, e2πit) is equal to Jn(x).

Thus, we can compute Jn(x) by the method descibed in Section 5.3 to compute

the coefficients an = Jn(x) (x = fixed, n varies):

CHAPTER 5. THE DISCRETE FOURIER TRANSFORM 116

1) Discretize F (k) = f(x, e
2πik

N)

2) F̂ (m) = 1
N

∑∗
|k|≤N/2 e−

2πimk
N F (k)

3) F̂ (m) − Jn(x) =
∑

k 6=0 am+kN , (Theorem 5.21)

where am+kN = Jm+kN(x).

5.6 One-Sided Sequences

So far we have been talking about periodic sequences (in ΠN). Instead one often

wants to discuss

A) Finite sequences A(0), A(1), . . . , A(N − 1) or

B) One-sided sequences A(n), n ∈ Z+ = {0, 1, 2 . . .}

Note: 5.36. A finite sequence is a special csse of a one-sided sequence: put

A(n) = 0 for n ≥ N .

Note: 5.37. A one-sided sequence is a special case of a two-sided sequence: put

A(n) = 0 for n < 0.

Problem: These extended sequences are not periodic. ⇒ We cannot use the Fast

Fourier Transform directly.

Notation 5.38. CZ+ = {all complex valued sequences A(n), n ∈ Z+}

Definition 5.39. The convolution of two sequences A, B ∈ CZ+ is

(A ∗ B)(m) =

m∑

k=0

A(m − k)B(k), m ∈ Z+

Note: The summation boundaries are the natural ones if we think that A(k) =

B(k) = 0 for k < 0.

Notation 5.40.

A|n(k) =

{
A(k), 0 ≤ k < n

0, k ≥ n.

Thus, this restricts the sequence A(k) to the n first terms.

CHAPTER 5. THE DISCRETE FOURIER TRANSFORM 117

Lemma 5.41. (A ∗ B)|n = (A|n ∗ B|n)|n

Proof. Easy.

Notation 5.42. A = 0n means that A(k) = 0 for 0 ≤ k < n − 1, i.e., A|n = 0.

Lemma 5.43. If A = 0n and B = 0m, then A ∗ B = 0n+m.

Proof. Easy.

Computation of A ∗ B 5.44 (One-sided convolution).

1) Choose a number N ≥ 2n (often a power of 2).

2) Define

F (k) =

{
A(k), 0 ≤ k < n,

0, n ≤ k < N,

and extend F to be periodic, period N .

3) Define

G(k) =

{
B(k), 0 ≤ k < n,

0, n ≤ k < N,

periodic extension: G(k + N) = G(k).

Then, for all m, 0 ≤ m < n,

(F ∗ G)(m)︸ ︷︷ ︸
periodic convolution

=

N−1∑

k=0

F (m − k)G(k)

=

m∑

k=0

F (m − k)G(k)

=
m∑

k=0

A(m − k)G(k) = (A ∗ B)(m)︸ ︷︷ ︸
one-sided convolution

Note: Important that N ≥ 2n.

Thus, this way we have computed the n first coefficients of (A ∗ B).

Theorem 5.45. The method described below allows us to compute (A ∗ B)|n

(=the first n coefficients of A ∗ B) with a number of FLOP:s which is

C · n log2 n, where C is a constant.

Method: 1)-3) same as above

CHAPTER 5. THE DISCRETE FOURIER TRANSFORM 118

4) Use FFT to compute

F̂ · Ĝ(= N(F̂ ∗ G)).

5) Use the inverse FFT to compute

F ∗ G =
1

N
(F̂ · Ĝ)̌

Then (A ∗ B)|n = (F ∗ G)|n.

Note: A “naive” computation of A ∗ B|n requires C1 · n2 FLOPs, where C1 is

another constant.

Note: Use “naive” method if n small. Use “FFT-inverse FFT” if n is large.

Note: The rest of this chapter applies one-sided convolutions to different situa-

tions. In all cases the method described in Theorem 5.45 can be used to compute

these.

5.7 The Polynomial Interpretation of a Finite

Sequence

Problem 5.46. Compute the product of two polynomials:

p(x) =

n∑

k=0

akx
k q(x) =

m∑

l=0

blx
l.

Solution: Define ak = 0 for k > 0 and bl = 0 for l > m. Then

p(x)q(x) =

(∞∑

k=0

akx
k

)(∞∑

l=0

blx
l

)

︸ ︷︷ ︸
sums are actually finite

=
∑

k,l

akblx
k+l (k + l = j, k = j − l)

=
∑

j

xj

j∑

l=0

aj−lbl =
m+n∑

j=0

cjx
j ,

where cj =
∑j

l=0 aj−lbl. This gives

Theorem 5.47.

CHAPTER 5. THE DISCRETE FOURIER TRANSFORM 119

i) Multiplication of two polynomials corresponds to a convolution of their

coefficients: If

p(x) =

n∑

k=0

akx
k, q(x) =

m∑

l=0

blx
l,

then p(x)q(x) =
∑m+n

j=0 cjx
j, where c = a ∗ b.

ii) Addition of two polynomials corresponds to addition of the coefficients:

p(x) + q(x) =
∑

cjx
j , where cj = aj + bj .

iii) Multiplication of a polynomial by a complex constant corresponds to mul-

tiplication of the coefficients by the same constant.

Operation Polynomial Coefficients

Addition p(x) + q(x) {ak + bk}
max{m,n}
k=0

Multiplication by

λ ∈ C

λp(x) {λak}
n
k=0

Multiplication p(x)q(x) (a ∗ b)(k)

Thus there is a one-to-one correspondence between

polynomials ⇐⇒ finite sequences,

where the operations correspond as described above. This is used in all symbolic

computer computations of polynomials.

Note: Two different conventions are in common use:

A) first coefficient is a0 (= lowest order),

B) first coefficient is an (= highest order).

5.8 Formal Power Series and Analytic Functions

Next we extend “polynomials” so that they may contain infinitely many terms.

Definition 5.48. A Formal Power Series (FPS) is a sum of the type

∞∑

k=0

A(k)xk

which need not converge for any x 6= 0. (If it does converge, then it defines an

analytic function in the region of convergence.)

CHAPTER 5. THE DISCRETE FOURIER TRANSFORM 120

Example 5.49.
∑∞

k=0
xk

k!
converges for all x (and the sum is ex).

Example 5.50.
∑∞

k=0 xk converges for |x| < 1 (and the sum is 1
1−x

).

Example 5.51.
∑∞

k=0 k!xk converges for no x 6= 0.

All of these are formal power series (and the first two are “ordinary” power

series).

Calculus with FPS 5.52. We borrow the calculus rules from the polynomials:

i) We add two FPS:s by adding the coefficients:

[∞∑

k=0

A(k)xk

]
+

[∞∑

k=0

B(k)xk

]
=

∞∑

k=0

[A(k) + B(k)]xk.

ii) We multiply a FPS by a constant λ by multiplying each coefficients by λ:

λ

∞∑

k=0

A(k)xk =

∞∑

k=0

[λA(k)]xk.

iii) We multiply two FPS:s with each other by taking the convolution of the

coefficients:

[∞∑

k=0

A(k)xk

][∞∑

k=0

B(k)xk

]
=

∞∑

k=0

C(k)xk,

where C = A ∗ B.

Notation 5.53. We denote Ã(x) =
∑∞

k=0 A(k)xk.

Conclusion 5.54. There is a one-to-one correspondence between all Formal

Power Series and all one-sided sequences (bounded or not). We denoted these by

CZ+ on page 116.

Comment 5.55. In the sequence (=”fortsättningen”) we operate with FPS:s.

These power series often converge, and then they define analytic functions, but

this fact is not used anywhere in the proofs.

CHAPTER 5. THE DISCRETE FOURIER TRANSFORM 121

5.9 Inversion of (Formal) Power Series

Problem 5.56. Given a (formal) power series Ã(x) =
∑

A(k)xk, find the in-

verse formal power series B̃(x) =
∑

B(k)xk.

Thus, we want to find B̃(x) so that

Ã(x)B̃(x) = 1, i.e.,[∞∑

k=0

A(k)xk

][∞∑

l=0

B(l)xl

]
= 1 + 0x + 0x2 + . . .

Notation 5.57. δ0 = {1, 0, 0, . . .} = the sequence whose power series is {1 +

0x + 0x2 + . . .}. This series converges, and the sum is ≡ 1. More generally:

δk = {0, 0, 0, . . . , 0, 1, 0, 0, . . .}

= 0 + 0x + 0x2 + . . . + 0xk−1 + 1xk + 0xk+1 + 0xk+2 + . . .

= xk

Power Series Sequence

δk xk

Solution. We know that A∗B = δ0, or equivalently, Ã(x)B̃(x) = 1. Explicitly,

Ã(x)B̃(x) = A(0)B(0) (times x0) (5.3)

+[A(0)B(1) + A(1)B(0)]x (5.4)

+[A(0)B(2) + A(1)B(1) + A(2)B(0)]x2 (5.5)

+ . . . (5.6)

From this we can solve:

i) A(0)B(0) = 1 =⇒ A(0) 6= 0 and B(0) = 1
A(0)

.

ii) A(0)B(1) + A(1)B(0) = 0 =⇒ B(1) = −A(1)B(0)
A(0)

(always possible)

iii) A(0)B(2) + A(1)B(1) + A(2)B(0) = 1 =⇒ B(2) = − 1
A(0)

[A(1)B(1) +

A(2)B(0)], etc.

we get a theorem:

Theorem 5.58. The FPS Ã(x) can be inverted if and only if A(0) 6= 0. The

inverse series [A(x)]−1 is obtained recursively by the procedure described above.

CHAPTER 5. THE DISCRETE FOURIER TRANSFORM 122

Recursive means:

i) Solve B(0)

ii) Solve B(1) using B(0)

iii) Solve B(2) using B(1) and B(0)

iv) Solve B(3) using B(2), B(1) and B(0), etc.

This is Hard Work. For example

sin(x) = x −
x3

3!
+

x5

5!
− . . .

cos(x) = 1 −
x2

2!
+

x4

4!
− . . .

tan(x) =
sin(x)

cos(x)
= sin(x)

1

cos(x)︸ ︷︷ ︸
convolution

=???

Hard Work means: Number of FLOPS is a constant times N2. Better method:

Use FFT.

Theorem 5.59. Let A(0) 6= 0. and let B̃(x) be the inverse of Ã(x). Then, for

every k ≥ 1,

B|2k = (B|k ∗ (2δ0 − A ∗ B|k))|2k (5.7)

Proof. See Gripenberg.

Usage: First compute B|1 = { 1
A(0)

, 0, 0, 0, . . .}

Then B|2 = {B(0), B(1), 0, 0, 0, . . .} (use (5.7))

Then B|4 = {B(0), B(1), B(2), B(3), 0, , 0, 0, . . .}

Then B|8 = {8 terms 6= 0} etc.

Use the method on page 117 for the convolutions. (Useful only if you need lots

of coefficients).

5.10 Multidimensional FFT

Especially in image processing we also need the discrete Fourier transform in

several dimensions. Let d = {1, 2, 3, . . .} be the “space dimension”. Put Πd
N = {

sequences x(k1, k2, . . . , kd) which are N -periodic in each variable separately}.

CHAPTER 5. THE DISCRETE FOURIER TRANSFORM 123

Definition 5.60. The d-dimensional Fourier transform is obtained by transform-

ing d successive (=”efter varandra”) “ordinary” Fourier transformations, one for

each variable.

Lemma 5.61. The d-dimensional Fourier transform is given by

x̂(m1, m2, . . . , md) =
1

Nd

∑

k1

∑

k2

· · ·
∑

kd

e
−2πi(k1m1+k2m2+...+kdmd)

N x(k1, k2, . . . , kd).

Proof. Easy.

All 1-dimensional results generalize easy to the d-dimensional case.

Notation 5.62. We call k = (k1, k2, . . . , kd) and m = (m1, m2, . . . , md) multi-

indeces (=pluralis av “multi-index”), and put

k · m = k1m1 + k2m2 + . . . + kdmd

(=the “inner product” of k and m).

Lemma 5.63.

x̂(m) =
1

Nd

∑

k

e−
2πim·k

N x(k),

x(k) =
∑

m
e

2πim·k
N x̂(m).

Definition 5.64.

(F · G)(m) = F (m)G(m)

(F ∗ G)(m) =
∑

k

F (m − k)G(k),

where all the components of m and k run over one period.

Theorem 5.65.

(F · G)̂ = F̂ ∗ Ĝ,

(F ∗ G)̂ = NdF̂ · Ĝ.

Proof. Follows from Theorem 5.8.

In practice: Either use one multi-dimensional, or use d one-dimensional trans-

forms (not much difference, multi-dimensional a little faster).

