Chapter 5

The Discrete Fourier Transform

We have studied four types of Fourier transforms:

- i) Periodic functions on $\mathbb{R} \Rightarrow \hat{f}$ defined on \mathbb{Z} .
- ii) Non-periodic functions on $\mathbb{R} \Rightarrow \hat{f}$ defined on \mathbb{R} .
- iii) Distributions on $\mathbb{R} \Rightarrow \hat{f}$ defined on \mathbb{R} .
- iv) Sequences defined on $\mathbb{Z} \Rightarrow \hat{f}$ periodic on \mathbb{R} .

The final addition comes now:

v) f a periodic sequence (on \mathbb{Z}) $\Rightarrow \hat{f}$ a periodic sequence.

5.1 Definitions

Definition 5.1. $\Pi_N = \{\text{all periodic sequences } F(m) \text{ with period } N, \text{ i.e., } F(m+N) = F(m)\}.$

<u>Note</u>: These are in principle defined for all $n \in \mathbb{Z}$, but the periodicity means that it is enough to know $F(0), F(1), \ldots, F(N-1)$ to know the whole sequence (or any other set of N consecutive (= på varandra följande) values).

Definition 5.2. The Fourier transform of a sequence $F \in \Pi_N$ is given by

$$\hat{F}(m) = \frac{1}{N} \sum_{k=0}^{N-1} e^{-\frac{2\pi i m k}{N}} F(k), \quad m \in \mathbb{Z}.$$

Warning 5.3. Some people replace the constant $\frac{1}{N}$ in front of the sum by $\frac{1}{\sqrt{N}}$ or omit it completely. (This affects the inversion formula.)

Lemma 5.4. \hat{F} is periodic with the same period N as F.

Proof.

$$\hat{F}(m+N) = \frac{1}{N} \sum_{\text{one period}} e^{-\frac{2\pi i (m+N)k}{N}} F(k)$$

$$= \frac{1}{N} \sum_{\text{one period}} e^{-\frac{2\pi i k}{N}} e^{-\frac{2\pi i mk}{N}} F(k)$$

$$= \hat{F}(m). \quad \square$$

Thus, $F \in \Pi_N \Rightarrow \hat{F} \in \Pi_N$

Theorem 5.5. F can be reconstructed from \hat{F} by the inversion formula

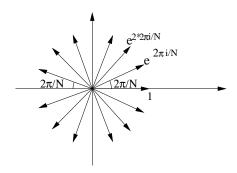
$$F(k) = \sum_{m=0}^{N-1} e^{\frac{2\pi i m k}{N}} \hat{F}(m).$$

Note: No $\frac{1}{N}$ in front here.

Note: Matlab puts the $\frac{1}{N}$ in front of the inversion formula instead! PROOF.

$$\sum_{m} e^{\frac{2\pi i m k}{N}} \frac{1}{N} \sum_{l} e^{-\frac{2\pi i m l}{N}} F(l) = \frac{1}{N} \sum_{l=0}^{N-1} F(l) \underbrace{\sum_{m=0}^{N-1} e^{\frac{2\pi i m (k-l)}{N}}}_{= \begin{cases} N, & \text{if } l = k \\ 0, & \text{if } l \neq k \end{cases}} = F(k)$$

We know that $\left(e^{\frac{2\pi i}{N}}\right)^N=1$, so $e^{\frac{2\pi i}{N}}$ is the N:th root of 1:



We add N numbers, whose absolute value is one, and who point symmetrically in all the different directions indicated above. For symmetry reasons, the sum

must be zero (except when l = k). (You always jump an angle $\frac{2\pi(k-l)}{N}$ for each turn, and go k-l times around before you are done.)

Definition 5.6. The **convolution** F * G of two sequences in Π_N are defined by

$$(F * G)(m) = \sum_{\text{one period}} F(m-k)G(k)$$

(<u>Note</u>: Some indeces get out of the interval [0, N-1]. You must use the *periodicity* of F and G to get the corresponding values of F(m-k)G(k).)

Definition 5.7. The (ordinary) **product** $F \cdot G$ is defined by

$$(F \cdot G)(m) = F(m)G(m), m \in \mathbb{Z}.$$

Theorem 5.8. $(\widehat{F} \cdot \widehat{G}) = \widehat{F} * \widehat{G}$ and $(\widehat{F} * \widehat{G}) = N\widehat{F} \cdot \widehat{G}$ (note the extra factor N).

Proof. Easy. (Homework?)

Definition 5.9. (RF)(n) = F(-n) (reflection operator).

As before: The inverse transform = the ususal transform plus reflection:

Theorem 5.10. $\check{F} = N(\widehat{RF})$ (note the extra factor N), where $\hat{} = Fourier$ transform and $\check{} = Inverse$ Fourier transform.

PROOF. Easy. We could have avoided the factor N by a different scaling (but then it shows up in other places instead).

5.2 FFT=the Fast Fourier Transform

Question 5.11. How many flops do we need to compute the Fourier transform of $F \in \Pi_N$?

 $FLOP = FLoating \ Point \ Operation = \{multiplication \ or \ addition \ or \ combination \ of \ both\}.$

1 Megaflop = 1 million flops/second (10^6)

1 Gigaflop = 1 billion flops/second (10^9)

(Used as speed measures of computers.)

Task 5.12. Compute $\hat{F}(m) = \frac{1}{N} \sum_{k=0}^{N-1} e^{-\frac{2\pi i m k}{N}} F(k)$ with the minimum amount of flops (=quickly).

Good Idea 5.13. Compute the coefficients $\left(e^{-\frac{2\pi i}{N}}\right)^k = \omega^k$ only once, and store them in a table. Since $\omega^{k+N} = \omega^k$, we have $e^{-\frac{2\pi imk}{N}} = \omega^{mk} = \omega^r$ where r = remainder when we divide mk by N. Thus, only N numbers need to be stored. Thus: We can ignore the number of flops needed to compute the coefficients $e^{-\frac{2\pi imk}{N}}$ (done in advance).

Trivial Solution 5.14. If we count multiplication and addition separetely, then we need to compute N coefficients (as m = 0, 1, ..., N - 1), and each coefficient requires N muliplications and N - 1 additions. This totals

$$N(2N-1) = 2N^2 - N \approx 2N^2 \text{ flops}$$

This is too much.

Brilliant Idea 5.15. Regroup (=omgruppera) the terms, using the symmetry. Start by doing even coefficients and odd coefficients separetely: Suppose for simplicity that N is even. Then, for even m, (put N = 2n)

$$\hat{F}(2m) = \frac{1}{N} \sum_{k=0}^{N-1} \omega^{2mk} F(k)$$

$$= \frac{1}{N} \left[\sum_{k=0}^{n-1} \omega^{2mk} F(k) + \sum_{k=n}^{2n-1} \omega^{2mk} F(k) \right]$$

$$= \frac{1}{N} \left[\sum_{k=0}^{n-1} \omega^{2mk} F(k) + \omega^{2m(k+n)} F(k+n) \right]$$

$$= \frac{2}{N} \sum_{k=0}^{n-1} e^{-\frac{2\pi i m k}{(N/2)}} \frac{1}{2} \left[F(k) + F(k+n) \right].$$

This is a new discrete time periodic Fourier transform of the sequence $G(k) = \frac{1}{2} [F(k) + F(n+k)]$ with $period n = \frac{N}{2}$.

A similar computation (see Gripenberg) shows that the odd coefficients can be computed from

$$\hat{F}(2m+1) = \frac{1}{n} \sum_{k=0}^{n-1} e^{-\frac{2\pi i m k}{n}} H(k),$$

where $H(k) = \frac{1}{2}e^{-\frac{i\pi k}{n}}\left[F(k) - F(k+n)\right]$. Thus, instead of one transform of order N we get two transforms of order $n = \frac{N}{2}$.

<u>Number of flops</u>: Computing the new transforms by brute force (as in 5.14 on page 105) we need the following flops:

<u>Even</u>: $n(2n-1) = \frac{N^2}{2} - \frac{N}{2} + n$ additions $= \frac{N^2}{2}$ flops.

<u>Odd</u>: The numbers $e^{-\frac{i\pi k}{n}} = e^{-\frac{2i\pi k}{N}}$ are found in the table already computed.

We essentially again need the same amount, namely $\frac{N^2}{2} + \frac{N}{2}$ (n extra multiplications).

<u>Total</u>: $\frac{N^2}{2} + \frac{N^2}{2} + \frac{N}{2} = N^2 + \frac{N}{2} \approx N^2$. Thus, this approximately halfed the number of needed flops.

Repeat 5.16. Divide the new smaller transforms into two halfs, and again, and again. This is possible if $N = 2^k$ for some integer k, e.g., $N = 1024 = 2^{10}$.

<u>Final conclusion</u>: After some smaller adjustments we get down to

$$\frac{3}{2}2^k k$$
 flops.

Here $N = 2^k$, so $k = \log_2 N$, and we get

Theorem 5.17. The Fast Fourier Transform with radius 2 outlined above needs approximately $\frac{3}{2}N\log_2 N$ flops.

This is much smaller than $2N^2 - N$ for large N. For example $N = 2^{10} = 1024$ gives

$$\frac{3}{2}N\log_2 N \approx 15000 \ll 2000000 = 2N^2 - N.$$

Definition 5.18. Fast Fourier transform with

cussed earlier.

 $\begin{cases} \text{ radius 2:} & \text{split into 2 parts at each step} & N=2^k \\ \text{ radius 3:} & \text{split into 3 parts at each step} & N=3^k \\ \text{ radius } m: & \text{split into } m \text{ parts at each step} & N=m^k \end{cases}$

<u>Note</u>: Based on *symmetries*. "The same" computations repeat themselves, so by combining them in a clever way we can do it quicker.

Note: The FFT is so fast that it caused a minor revolution to many branches of numerical analysis. It made it possible to compute Fourier transforms in practice.

Rest of this chapter: How to use the FFT to compute the other transforms dis-

5.3 Computation of the Fourier Coefficients of a Periodic Function

Problem 5.19. Let $f \in C(\mathbb{T})$. Compute

$$\hat{f}(k) = \int_0^1 e^{-2\pi i kt} f(t) dt$$

as efficiently as possible.

Solution: Turn f into a periodic sequence and use FFT!

Conversion 5.20. Choose some $N \in \mathbb{Z}$, and put

$$F(m) = f(\frac{m}{N}), \quad m \in \mathbb{Z}$$

(equidistant "sampling"). The periodicity of f makes F periodic with period N. Thus, $F \in \Pi_N$.

Theorem 5.21 (Error estimate). If $f \in C(\mathbb{T})$ and $\hat{f} \in \ell^1(\mathbb{Z})$ (i.e., $\sum |\hat{f}(k)| < \infty$), then

$$\hat{F}(m) - \hat{f}(m) = \sum_{k \neq 0} \hat{f}(m + kN).$$

PROOF. By the inversion formula, for all t,

$$f(t) = \sum_{j \in \mathbb{Z}} e^{2\pi i j t} \hat{f}(j).$$

Put $t_k = \frac{k}{N} \Rightarrow$

$$f(t_k) = F(k) = \sum_{j \in \mathbb{Z}} e^{\frac{2\pi i k j}{N}} \hat{f}(j)$$

(this series converges uniformly by Lemma 1.14). By the definition of \hat{F} :

$$\hat{F}(m) = \frac{1}{N} \sum_{k=0}^{N-1} e^{-\frac{2\pi i m k}{N}} F(k)$$

$$= \frac{1}{N} \sum_{j \in \mathbb{Z}} \hat{f}(j) \sum_{k=0}^{N-1} e^{\frac{2\pi i (j-m)k}{N}}$$

$$= \begin{cases} N, & \text{if } \frac{j-m}{N} = \text{integer} \\ 0, & \text{if } \frac{j-m}{N} \neq \text{integer} \end{cases}$$

$$= \sum_{l \in \mathbb{Z}} \hat{f}(m+Nl).$$

Take away the term $\hat{f}(m)$ (l=0) to get

$$\hat{F}(m) = \hat{f}(m) + \sum_{l \neq 0} \hat{f}(m + Nl).$$

<u>Note</u>: If N is "large" and if $\hat{f}(m) \to 0$ "quickly" as $m \to \infty$, then the error

$$\sum_{l \neq 0} \hat{f}(m + Nl) \approx 0.$$

First Method 5.22. Put

- i) $\hat{f}(m) \approx \hat{F}(m)$ if $|m| < \frac{N}{2}$
- ii) $\hat{f}(m) \approx \frac{1}{2}\hat{F}(m)$ if $|m| = \frac{N}{2}$ (N even)
- iii) $\hat{f}(m) \approx 0$ if $|m| > \frac{N}{2}$.

Here ii) is not important. We could use $\hat{f}(\frac{N}{2}) = 0$ or $\hat{f}(\frac{N}{2}) = \hat{F}(m)$ instead. Here

$$\hat{F}(m) = \frac{1}{N} \sum_{k=0}^{N-1} e^{-\frac{2\pi i m k}{N}} F(k).$$

Notation 5.23. Let us denote (note the extra star)

$$\sum_{|k| \le N/2}^* a_k = \sum_{|k| \le N/2} a_k$$

= the usual sum of a_k if N odd (then we have exactly N terms), and

 $\sum_{|k| \leq N/2}^* a_k = \begin{cases} a \text{ sum where the first and last terms have been} \\ divided by two (these are the same if the sequence} \\ is periodic with period N, there is "one term too many" in this case). \end{cases}$

First Method 5.24 (Error). The first method gives the error:

i) $|m| < \frac{N}{2}$ gives the error

$$|\hat{f}(m) - \hat{F}(m)| \le \sum_{k \ne 0} |\hat{f}(m + kN)|$$

ii) $|m| = \frac{N}{2}$ gives the error

$$|\hat{f}(m) - \frac{1}{2}\hat{F}(m)|$$

iii) $|m| > \frac{N}{2}$ gives the error $|\hat{f}(m)|$.

we can simplify this into the following crude (="grov") estimate:

$$\left| \sup_{m \in \mathbb{Z}} |\hat{f}(m) - \hat{F}(m)| \le \sum_{|m| \ge N/2}^{*} |\hat{f}(m)| \right|$$
 (5.1)

(because this sum is \geq the actual error).

First Method 5.25 (Drawbacks).

- 1° Large error.
- 2° Inaccurate error estimate (5.1).
- 3° The error estimate based on \hat{f} and not on f.

We need a better method.

Second Method 5.26 (General Principle).

- 1° Evaluate t at the points $t_k = \frac{k}{N}$ (as before), $F(k) = f(t_k)$
- 2° Use the sequence F to construct a new function $P \in C(T)$ which "approximates" f.
- 3° Compute the Fourier coefficients of P.
- 4° Approximate $\hat{f}(n)$ by $\hat{P}(n)$.

For this to succeed we must choose P in a smart way. The final result will be quite simple, but for later use we shall derive P from some "basic principles".

Choice of P 5.27. Clearly P depends on F. To simplify the computations we require P to satisfy (write P = P(F))

- A) P is linear: $P(\lambda F + \mu G) = \lambda P(F) + \mu P(G)$
- B) P is translation invariant: If we translate F, then P(F) is translated by the same amount: If we denote

$$(\tau_j F)(m) = F(m-j), then$$

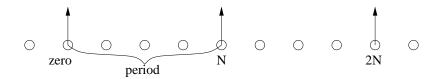
 $P(\tau_j F) = \tau_{j/N} P(F)$

 $(j \ discrete \ steps \iff a \ time \ difference \ of \ j/N).$

This leads to simple computations: We want to compute $\hat{P}(m)$ (which we use as approximations of $\hat{f}(m)$) Define a δ -sequence:

$$D(n) = \begin{cases} 1, & \text{for } n = 0, \pm N, \pm 2N, \dots \\ 0, & \text{otherwise.} \end{cases}$$

Then



$$(\tau_k D)(n) = \begin{cases} 1, & \text{if } n = k + jN, \ j \in \mathbb{Z} \\ 0, & \text{otherwise,} \end{cases}$$

SO

$$[F(k)\tau_k D](n) = \begin{cases} F(k), & n = k + jN \\ 0, & \text{otherwise.} \end{cases}$$

and so

$$F = \sum_{k=0}^{N-1} F(k)\tau_k D$$

Therefore, the principles A) and B) give

$$P(F) = \sum_{k=0}^{N-1} F(k)P(\tau_k D)$$
$$= \sum_{k=0}^{N-1} F(k)\tau_{k/N}P(D),$$

Where P(D) is the approximation of D = "unit pulse at time zero" D.

We denote this function by p. Let us transform P(F):

$$(\widehat{P(F)})(m) = \int_{0}^{1} \sum_{k=0}^{N+1} F(k)(\tau_{k/N}p)(s)e^{-2\pi ism}ds$$

$$= \sum_{k=0}^{N+1} F(k) \int_{0}^{1} e^{-2\pi ism}p(s - \frac{k}{N})ds \quad (s - \frac{k}{N} = t)$$

$$= \sum_{k=0}^{N+1} F(k) \int_{\substack{\text{one} \\ \text{period}}} e^{-2\pi im(t + \frac{k}{N})}p(t)dt$$

$$= \sum_{k=0}^{N+1} F(k)e^{-\frac{-2\pi imk}{N}} \int_{\substack{\text{one} \\ \text{period}}} e^{-2\pi imt}p(t)dt$$

$$= \hat{p}(m) \sum_{k=0}^{N+1} F(k)e^{-\frac{2\pi imk}{N}}$$

$$= N\hat{p}(m)\hat{F}(m).$$

We can get rid of the factor N by replacing p by Np. This is our approximation of the "pulse of size N at zero"

$$\begin{cases} N, & n = 0 + jN \\ 0, & \text{otherwise.} \end{cases}$$

Second Method 5.28. Construct F as in the First Method, and compute \hat{F} . Then the approximation of $\hat{f}(m)$ is

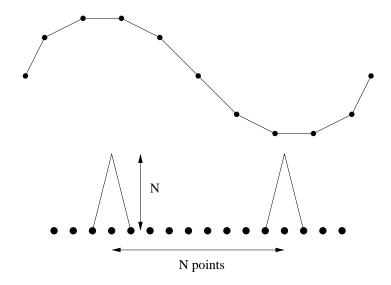
$$\hat{f}(m) \approx \hat{F}(m)\hat{p}(m),$$

where \hat{p} is the Fourier transform of the function that we get when we apply our approximation procedure to the sequence

$$ND(n) = \begin{cases} N, & n = 0(+jN) \\ 0, & otherwise. \end{cases}$$

Note: The complicated proof of this simple method will pay off in a second!

Approximation Method 5.29. Use any type of translation-invariant interpolation method, for example splines. The simplest possible method is linear interpolation: If we interpolate the pulse ND in this way we get Thus,



$$p(t) = \begin{cases} N(1 - N|t|), & |t| \le \frac{1}{N} \\ 0, & \frac{1}{N} \le |t| \le 1 - \frac{1}{N} \end{cases}$$

$$(periodic\ extension)$$

This is a periodic version of the kernel. A direct computation gives

$$\hat{p}(m) = \left(\frac{\sin(\pi m/N)}{\pi m/N}\right)^2.$$

We get the following interesting theorem:

Theorem 5.30. If we first discretize f, i.e. we replace f by the sequence F(k) = f(k/N), the compute $\hat{F}(m)$, and finally multiply $\hat{F}(m)$ by

$$\hat{p}(m) = \left(\frac{\sin(\pi m/N)}{\pi m/N}\right)^2.$$

then we get the Fourier coefficients for the function which we get from f by linear interpolation at the points $t_k = k/N$.

(This corresponds to the computation of the Fourier integral $\int_0^1 e^{-2\pi i mt} f(t) dt$ by using the trapetsoidal rule. Other integration methods have similar interpretations.)

5.4 Trigonometric Interpolation

Problem 5.31. Construct a good method to approximate a periodic function $f \in C(T)$ by a trigonometric polynomial

$$\sum_{m=-N}^{N} a_m e^{2\pi i mt}$$

(a finite sum, resembles inverse Fourier transformation).

Useful for numerical computation etc.

<u>Note</u>: The earlier "Second Method" gave us a *linear interpolation*, not trigonometric approximation.

Note: This trigonometric polynomial has only finitely many Fourier coefficients $\neq 0$ (namely $a_m, |m| \leq N$).

Actually, the "First Method" gave us a trigonometric polynomial. There we had

$$\begin{cases} \hat{f}(m) \approx \hat{F}(m) & \text{for } |m| < \frac{N}{2}, \\ \hat{f}(m) \approx \frac{1}{2}\hat{F}(m) & \text{for } |m| = \frac{N}{2}, \\ \hat{f}(m) \approx 0 & \text{for } |m| > \frac{N}{2}. \end{cases}$$

By inverting this sequence we get a trigonometric approximation of f: $f(t) \approx g(t)$, where

$$g(t) = \sum_{|m| \le N/2}^{*} \hat{F}(m)e^{2\pi imt}.$$
 (5.2)

We have two different errors:

- i) $\hat{f}(m)$ is replaced by $\hat{F}(m) = \frac{1}{N} \sum_{k=0}^{N-1} f(\frac{k}{N}) e^{\frac{2\pi i k m}{N}}$,
- ii) The inverse series was truncated to N terms.

Strange fact: These two errors (partially) cancel each other.

Theorem 5.32. The function g defined in (5.2) satisfies

$$g(\frac{k}{N}) = f(\frac{k}{N}), \quad n \in \mathbb{Z},$$

i.e., g interpolates f at the points t_k (which were used to construct first F and then g).

PROOF. We defined $F(k) = f(\frac{k}{N})$, and

$$\hat{F}(m) = \sum_{|k| \le N/2}^{*} F(k) e^{-\frac{2\pi i m k}{N}}.$$

By the inversion formula on page 103,

$$g(\frac{k}{N}) = \sum_{|m| \le N/2}^{*} \hat{F}(m) e^{\frac{2\pi i m k}{N}} \text{ (use periodicity)}$$

$$= \sum_{m=0}^{N-1} \hat{F}(m) e^{\frac{2\pi i m k}{N}}$$

$$= F(k) = f(\frac{k}{N}) \quad \square$$

Error estimate: How large is |f(t)-g(t)| between the mesh points $t_k = \frac{k}{N}$ (where the error is zero)? We get an estimate from the computation in the last section. Suppose that $\hat{f} \in \ell^1(\mathbb{Z})$ and $f \in C(T)$ so that the inversion formula holds for all t (see Theorem 1.37). Then

$$f(t) = \sum_{m \in \mathbb{Z}} \hat{f}(m)e^{2\pi imt}$$
, and

$$g(t) = \sum_{|m| \le N/2}^{*} \hat{F}(m)e^{2\pi imt} \text{ (Theorem 5.21)}$$

$$= \sum_{|m| \le N/2}^{*} \left[\hat{f}(m) + \sum_{k \ne 0} \hat{f}(m+kN) \right] e^{2\pi imt}$$

$$= f(t) - \sum_{|m| \ge N/2}^{*} \hat{f}(m)e^{2\pi imt} + \sum_{|m| \le N/2}^{*} \sum_{k \ne 0} \hat{f}(m+kN)e^{2\pi imt}.$$

Thus

$$|g(t) - f(t)| \leq \sum_{|m| \geq N/2}^{*} |\hat{f}(m)| + \underbrace{\sum_{|m| \leq N/2}^{*} \sum_{k \neq 0} |\hat{f}(m + kM)|}_{= \sum_{|l| > N/2}^{*} |\hat{f}(l)|} = 2 \sum_{|m| \geq N/2}^{*} |\hat{f}(m)|$$

(take l=m+kN, every $|l|>\frac{N}{2}$ appears one time, no $|l|<\frac{N}{2}$ appears, and $|l|=\frac{N}{2}$ two times).

This leads to the following theorem:

Theorem 5.33. If $\sum_{m=-\infty}^{\infty} |\hat{f}(m)| < \infty$, then

$$|g(t) - f(t)| \le 2 \sum_{|m| \ge N/2}^{*} |\hat{f}(m)|,$$

where

$$g(t) = \sum_{|m| \le N/2}^{*} \hat{F}(m) e^{2\pi i m t}, \text{ and } \hat{F}(m) = \frac{1}{N} \sum_{|m| \le N/2}^{*} e^{-\frac{2\pi i m k}{N}} f(\frac{k}{N}).$$

This is nice if $\hat{f}(m) \to 0$ rapidly as $m \to \infty$. Better accuracy by increasing N.

5.5 Generating Functions

Definition 5.34. The **generating function** of the sequence $J_n(x)$ is the function

$$f(x,z) = \sum_{n} J_n(x)z^n,$$

where the sum over $n \in \mathbb{Z}$ or over $n \in \mathbb{Z}_+$, depending on for which values of n the functions $J_n(x)$ are defined.

<u>Note</u>: We did this in the course on *special functions*. E.g., if J_n = Bessel's function of order n, then

$$f(x,z) = e^{\frac{x}{2}(z-1/2)}.$$

Note: For a fixed value of x, this is the "mathematician's version" of the Z-transform described on page 101.

Make a change of variable:

$$z = e^{2\pi i t} \Rightarrow f(x, e^{2\pi i t}) = \sum_{n \in \mathbb{Z}} J_n(x) (e^{2\pi i t})^n$$
$$= \sum_{n \in \mathbb{Z}} J_n(x) e^{2\pi i n t},$$

Comparing this to the inversion formula in Chapter 1 we get

Theorem 5.35. For a fixed x, the n:th Fourier coefficient of the function $t \mapsto f(x, e^{2\pi i t})$ is equal to $J_n(x)$.

Thus, we can *compute* $J_n(x)$ by the method described in Section 5.3 to compute the coefficients $a_n = J_n(x)$ (x =fixed, n varies):

- 1) Discretize $F(k) = f(x, e^{\frac{2\pi i k}{N}})$
- 2) $\hat{F}(m) = \frac{1}{N} \sum_{|k| < N/2}^{*} e^{-\frac{2\pi i m k}{N}} F(k)$
- 3) $\hat{F}(m) J_n(x) = \sum_{k \neq 0} a_{m+kN}$, (Theorem 5.21)

where $a_{m+kN} = J_{m+kN}(x)$.

5.6 One-Sided Sequences

So far we have been talking about *periodic* sequences (in Π_N). Instead one often wants to discuss

- A) Finite sequences $A(0), A(1), \ldots, A(N-1)$ or
- B) One-sided sequences $A(n), n \in \mathbb{Z}_+ = \{0, 1, 2 \dots\}$

Note: 5.36. A finite sequence is a special csse of a one-sided sequence: put A(n) = 0 for $n \ge N$.

Note: 5.37. A one-sided sequence is a special case of a two-sided sequence: put A(n) = 0 for n < 0.

<u>Problem</u>: These extended sequences are *not periodic*. \Rightarrow We cannot use the Fast Fourier Transform directly.

Notation 5.38. $\mathbb{C}^{\mathbb{Z}_+} = \{ all \ complex \ valued \ sequences \ A(n), n \in \mathbb{Z}_+ \}$

Definition 5.39. The **convolution** of two sequences $A, B \in \mathbb{C}^{\mathbb{Z}_+}$ is

$$(A*B)(m) = \sum_{k=0}^{m} A(m-k)B(k), \ m \in \mathbb{Z}_{+}$$

Note: The summation boundaries are the natural ones if we think that A(k) = B(k) = 0 for k < 0.

Notation 5.40.

$$A_{\mid n}(k) = \begin{cases} A(k), & 0 \le k < n \\ 0, & k \ge n. \end{cases}$$

Thus, this restricts the sequence A(k) to the n first terms.

Lemma 5.41. $(A * B)_{|n} = (A_{|n} * B_{|n})_{|n}$

Proof. Easy.

Notation 5.42. $A = 0_n$ means that A(k) = 0 for $0 \le k < n-1$, i.e., $A_{|n} = 0$.

Lemma 5.43. If $A = 0_n$ and $B = 0_m$, then $A * B = 0_{n+m}$.

Proof. Easy.

Computation of A * B 5.44 (One-sided convolution).

- 1) Choose a number $N \geq 2n$ (often a power of 2).
- 2) Define

$$F(k) = \begin{cases} A(k), & 0 \le k < n, \\ 0, & n \le k < N, \end{cases}$$

and extend F to be periodic, period N.

3) Define

$$G(k) = \begin{cases} B(k), & 0 \le k < n, \\ 0, & n \le k < N, \end{cases}$$

periodic extension: G(k+N) = G(k).

Then, for all $m, 0 \le m < n$,

$$\underbrace{(F * G)(m)}_{periodic\ convolution} = \sum_{k=0}^{N-1} F(m-k)G(k)$$

$$= \sum_{k=0}^{m} F(m-k)G(k)$$

$$= \sum_{k=0}^{m} A(m-k)G(k) = \underbrace{(A * B)(m)}_{one\ sided\ convolution}$$

Note: Important that $N \geq 2n$.

Thus, this way we have computed the n first coefficients of (A * B).

Theorem 5.45. The method described below allows us to compute $(A * B)_{|n}$ (=the first n coefficients of A * B) with a number of FLOP:s which is

 $C \cdot n \log_2 n$, where C is a constant.

<u>Method</u>: 1)-3) same as above

4) Use FFT to compute

$$\hat{F} \cdot \hat{G} (= N(\widehat{F * G})).$$

5) Use the inverse FFT to compute

$$F * G = \frac{1}{N} (\hat{F} \cdot \hat{G})$$

Then $(A * B)_{|n} = (F * G)_{|n}$.

Note: A "naive" computation of $A * B_{|n}$ requires $C_1 \cdot n^2$ FLOPs, where C_1 is another constant.

<u>Note</u>: Use "naive" method if n small. Use "FFT-inverse FFT" if n is large.

<u>Note</u>: The rest of this chapter *applies* one-sided convolutions to different situations. In all cases the method described in Theorem 5.45 can be used to compute these.

5.7 The Polynomial Interpretation of a Finite Sequence

Problem 5.46. Compute the product of two polynomials:

$$p(x) = \sum_{k=0}^{n} a_k x^k$$
 $q(x) = \sum_{l=0}^{m} b_l x^l$.

<u>Solution</u>: Define $a_k = 0$ for k > 0 and $b_l = 0$ for l > m. Then

$$p(x)q(x) = \underbrace{\left(\sum_{k=0}^{\infty} a_k x^k\right) \left(\sum_{l=0}^{\infty} b_l x^l\right)}_{\text{sums are actually finite}}$$

$$= \sum_{k,l} a_k b_l x^{k+l} \quad (k+l=j, \ k=j-l)$$

$$= \sum_j x^j \sum_{l=0}^j a_{j-l} b_l = \sum_{j=0}^{m+n} c_j x^j,$$

where $c_j = \sum_{l=0}^{j} a_{j-l} b_l$. This gives

Theorem 5.47.

i) Multiplication of two polynomials corresponds to a convolution of their coefficients: If

$$p(x) = \sum_{k=0}^{n} a_k x^k, \quad q(x) = \sum_{l=0}^{m} b_l x^l,$$

then $p(x)q(x) = \sum_{j=0}^{m+n} c_j x^j$, where c = a * b.

ii) Addition of two polynomials corresponds to addition of the coefficients:

$$p(x) + q(x) = \sum c_j x^j$$
, where $c_j = a_j + b_j$.

iii) Multiplication of a polynomial by a complex constant corresponds to multiplication of the coefficients by the same constant.

Operation	Polynomial	Coefficients
Addition	p(x) + q(x)	$\{a_k + b_k\}_{k=0}^{\max\{m,n\}}$
Multiplication by	$\lambda p(x)$	$\{\lambda a_k\}_{k=0}^n$
$\lambda \in \mathbb{C}$		
Multiplication	p(x)q(x)	(a*b)(k)

Thus there is a one-to-one correspondence between

polynomials \iff finite sequences,

where the operations correspond as described above. This is used in all symbolic computer computations of polynomials.

Note: Two different conventions are in common use:

- A) first coefficient is a_0 (= lowest order),
- B) first coefficient is a_n (= highest order).

5.8 Formal Power Series and Analytic Functions

Next we extend "polynomials" so that they may contain *infinitely many* terms.

Definition 5.48. A Formal Power Series (FPS) is a sum of the type

$$\sum_{k=0}^{\infty} A(k)x^k$$

which need not converge for any $x \neq 0$. (If it does converge, then it defines an analytic function in the region of convergence.)

Example 5.49. $\sum_{k=0}^{\infty} \frac{x^k}{k!}$ converges for all x (and the sum is e^x).

Example 5.50. $\sum_{k=0}^{\infty} x^k$ converges for |x| < 1 (and the sum is $\frac{1}{1-x}$).

Example 5.51. $\sum_{k=0}^{\infty} k! x^k$ converges for $no \ x \neq 0$.

All of these are formal power series (and the first two are "ordinary" power series).

Calculus with FPS 5.52. We borrow the calculus rules from the polynomials:

i) We add two FPS:s by adding the coefficients:

$$\left[\sum_{k=0}^{\infty} A(k)x^{k}\right] + \left[\sum_{k=0}^{\infty} B(k)x^{k}\right] = \sum_{k=0}^{\infty} [A(k) + B(k)]x^{k}.$$

ii) We multiply a FPS by a constant λ by multiplying each coefficients by λ :

$$\lambda \sum_{k=0}^{\infty} A(k)x^k = \sum_{k=0}^{\infty} [\lambda A(k)]x^k.$$

iii) We multiply two FPS:s with each other by taking the convolution of the coefficients:

$$\left[\sum_{k=0}^{\infty} A(k)x^k\right] \left[\sum_{k=0}^{\infty} B(k)x^k\right] = \sum_{k=0}^{\infty} C(k)x^k,$$

where C = A * B.

Notation 5.53. We denote $\tilde{A}(x) = \sum_{k=0}^{\infty} A(k)x^k$.

Conclusion 5.54. There is a one-to-one correspondence between all Formal Power Series and all one-sided sequences (bounded or not). We denoted these by $\mathbb{C}^{\mathbb{Z}_+}$ on page 116.

Comment 5.55. In the sequence (="fortsättningen") we operate with FPS:s. These power series often converge, and then they define analytic functions, but this fact is not used anywhere in the proofs.

5.9 Inversion of (Formal) Power Series

Problem 5.56. Given a (formal) power series $\tilde{A}(x) = \sum A(k)x^k$, find the inverse formal power series $\tilde{B}(x) = \sum B(k)x^k$.

Thus, we want to find B(x) so that

$$\tilde{A}(x)\tilde{B}(x) = 1$$
, i.e.,
$$\left[\sum_{k=0}^{\infty} A(k)x^k\right] \left[\sum_{l=0}^{\infty} B(l)x^l\right] = 1 + 0x + 0x^2 + \dots$$

Notation 5.57. $\delta_0 = \{1, 0, 0, \ldots\}$ = the sequence whose power series is $\{1 + 0x + 0x^2 + \ldots\}$. This series converges, and the sum is $\equiv 1$. More generally:

$$\delta_k = \{0, 0, 0, \dots, 0, 1, 0, 0, \dots\}$$

$$= 0 + 0x + 0x^2 + \dots + 0x^{k-1} + 1x^k + 0x^{k+1} + 0x^{k+2} + \dots$$

$$= x^k$$

Power Series	Sequence
δ_k	x^k

Solution. We know that $A*B = \delta_0$, or equivalently, $\tilde{A}(x)\tilde{B}(x) = 1$. Explicitly,

$$\tilde{A}(x)\tilde{B}(x) = A(0)B(0) \text{ (times } x^0)$$
(5.3)

$$+[A(0)B(1) + A(1)B(0)]x$$
 (5.4)

$$+[A(0)B(2) + A(1)B(1) + A(2)B(0)]x^{2}$$
 (5.5)

$$+\dots$$
 (5.6)

From this we can solve:

i)
$$A(0)B(0) = 1 \implies A(0) \neq 0 \text{ and } B(0) = \frac{1}{A(0)}$$
.

ii)
$$A(0)B(1) + A(1)B(0) = 0 \implies B(1) = -\frac{A(1)B(0)}{A(0)}$$
 (always possible)

iii)
$$A(0)B(2) + A(1)B(1) + A(2)B(0) = 1 \implies B(2) = -\frac{1}{A(0)}[A(1)B(1) + A(2)B(0)]$$
, etc.

we get a theorem:

Theorem 5.58. The FPS $\tilde{A}(x)$ can be inverted if and only if $A(0) \neq 0$. The inverse series $[A(x)]^{-1}$ is obtained recursively by the procedure described above.

Recursive means:

- i) Solve B(0)
- ii) Solve B(1) using B(0)
- iii) Solve B(2) using B(1) and B(0)
- iv) Solve B(3) using B(2), B(1) and B(0), etc.

This is *Hard Work*. For example

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$$

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots$$

$$\tan(x) = \frac{\sin(x)}{\cos(x)} = \frac{\sin(x)}{\cos(x)} = \frac{1}{\cos(x)} = ???$$

 $Hard\ Work$ means: Number of FLOPS is a constant times N^2 . Better method: Use FFT.

Theorem 5.59. Let $A(0) \neq 0$. and let $\tilde{B}(x)$ be the inverse of $\tilde{A}(x)$. Then, for every $k \geq 1$,

$$B_{|2k} = (B_{|k} * (2\delta_0 - A * B_{|k}))_{|2k}$$
(5.7)

PROOF. See Gripenberg.

<u>Usage</u>: First compute $B_{|1} = \{\frac{1}{A(0)}, 0, 0, 0, \dots\}$

Then $B_{|2} = \{B(0), B(1), 0, 0, 0, \ldots\}$ (use (5.7))

Then $B_{|4} = \{B(0), B(1), B(2), B(3), 0, 0, 0, \dots\}$

Then $B_{|8} = \{8 \text{ terms} \neq 0\} \text{ etc.}$

Use the method on page 117 for the convolutions. (Useful only if you need *lots* of coefficients).

5.10 Multidimensional FFT

Especially in image processing we also need the discrete Fourier transform in several dimensions. Let $d = \{1, 2, 3, ...\}$ be the "space dimension". Put $\Pi_N^d = \{$ sequences $x(k_1, k_2, ..., k_d)$ which are N-periodic in each variable separately $\}$.

Definition 5.60. The *d*-dimensional Fourier transform is obtained by transforming *d* successive (="efter varandra") "ordinary" Fourier transformations, one for each variable.

Lemma 5.61. The d-dimensional Fourier transform is given by

$$\hat{x}(m_1, m_2, \dots, m_d) = \frac{1}{N^d} \sum_{k_1} \sum_{k_2} \dots \sum_{k_d} e^{\frac{-2\pi i (k_1 m_1 + k_2 m_2 + \dots + k_d m_d)}{N}} x(k_1, k_2, \dots, k_d).$$

Proof. Easy.

All 1-dimensional results generalize easy to the d-dimensional case.

Notation 5.62. We call $\underline{k} = (k_1, k_2, \dots, k_d)$ and $\underline{m} = (m_1, m_2, \dots, m_d)$ multi-indexes (=pluralis av "multi-index"), and put

$$\underline{k} \cdot \underline{m} = k_1 m_1 + k_2 m_2 + \ldots + k_d m_d$$

(=the "inner product" of \underline{k} and \underline{m}).

Lemma 5.63.

$$\hat{x}(\underline{m}) = \frac{1}{N^d} \sum_{\underline{k}} e^{-\frac{2\pi i \underline{m} \cdot \underline{k}}{N}} x(\underline{k}),$$

$$x(\underline{k}) = \sum_{\underline{m}} e^{\frac{2\pi i \underline{m} \cdot \underline{k}}{N}} \hat{x}(\underline{m}).$$

Definition 5.64.

$$(F \cdot G)(\underline{\mathbf{m}}) = F(\underline{\mathbf{m}})G(\underline{\mathbf{m}})$$
$$(F * G)(\underline{\mathbf{m}}) = \sum_{\mathbf{k}} F(\underline{\mathbf{m}} - \underline{\mathbf{k}})G(\underline{\mathbf{k}}),$$

where all the components of $\underline{\mathbf{m}}$ and $\underline{\mathbf{k}}$ run over one period.

Theorem 5.65.

$$(F \cdot G)\hat{} = \hat{F} * \hat{G},$$

$$(F * G)\hat{} = N^d \hat{F} \cdot \hat{G}.$$

PROOF. Follows from Theorem 5.8.

In practice: Either use one multi-dimensional, or use d one-dimensional transforms (not much difference, multi-dimensional a little faster).