Chapter 4

The Fourier Transform of a Sequence (Discrete Time)

From our earlier results we very quickly get a Fourier transform theory for sequences $\{a_n\}_{n=-\infty}^{\infty}$. We interpret this sequence as the distribution

$$\sum_{n=-\infty}^{\infty} a_n \delta_n \qquad (\delta_n = \text{Dirac's delta at the point } n)$$

For example, this converges in S' if

$$|a_n| \le M(1+|n|^N)$$
 for some M, N

and the Fourier transform is:

$$\sum_{n=-\infty}^{\infty} a_n e^{-2\pi i \omega n} = \sum_{k=-\infty}^{\infty} a_{-k} e^{2\pi i \omega k}$$

which also converges in S'. This transform is *identical* to the *inverse* transform discussed in Chapter 1 (periodic function!), except for the fact that we replace i by -i (or equivalently, replace n by -n). Therefore:

Theorem 4.1. All the results listed in Chapter 1 can be applied to the theory of Fourier transforms of sequences, provided that we intercharge the Fourier transform and the inverse Fourier transform.

Notation 4.2. To simplify the notations we write the original sequence as f(n), $n \in \mathbb{Z}$, and denote the Fourier transform as \hat{f} . Then \hat{f} is periodic (function or

distribution, depending on the size of |f(n)| as $n \to \infty$), and

$$\hat{f}(\omega) = \sum_{n=-\infty}^{\infty} f(n)e^{-2\pi i\omega n}.$$

From Chapter 1 we can give e.g., the following results:

Theorem 4.3.

- $i) \ f \in \ell^2(\mathbb{Z}) \Leftrightarrow \hat{f} \in L^2(\mathbb{T}),$
- $ii) \ f \in \ell^1(\mathbb{Z}) \Rightarrow \hat{f} \in C(\mathbb{T}) \ (converse \ false),$

$$iii) \ (\widehat{fg}) = \widehat{f} * \widehat{g} \ if \ e.g. \ \left\{ \begin{array}{ll} \widehat{f} \in L^1(\mathbb{T}) & or \\ \widehat{g} \in L^1(\mathbb{T}) \end{array} \right. \ or \left\{ \begin{array}{ll} f \in \ell^2(\mathbb{Z}) \\ g \in \ell^2(\mathbb{Z}) \end{array} \right.$$

iv) Etc.

We can also define discrete convolutions:

Definition 4.4.
$$(f * g)(n) = \sum_{k=-\infty}^{\infty} f(n-k)g(k)$$
.

This is defined whenever the sum converges absolutely. For example, if $f(k) \neq 0$ only for finitely many k or if

$$f \in \ell^1(\mathbb{Z}), g \in \ell^\infty(\mathbb{Z}), \text{ or if}$$

 $f \in \ell^2(\mathbb{Z}), g \in \ell^2(\mathbb{Z}), \text{ etc.}$

Lemma 4.5.

$$i) \ f \in \ell^1(\mathbb{Z}), g \in L^p(\mathbb{Z}), \ 1 \le p \le \infty, \Rightarrow f * g \in \ell^p(\mathbb{Z})$$

$$ii) f \in \ell^1(\mathbb{Z}), g \in c_0(\mathbb{Z}) \Rightarrow f * g \in c_0(\mathbb{Z}).$$

PROOF. "Same" as in Chapter 1 (replace all integrals by sums).

Theorem 4.6. If $f \in \ell^1(\mathbb{Z})$ and $g \in \ell^1(\mathbb{Z})$, then

$$\widehat{(f * g)}(\omega) = \widehat{f}(\omega)\widehat{g}(\omega).$$

Also true if e.g. $f \in \ell^2(\mathbb{Z})$ and $g \in \ell^2(\mathbb{Z})$.

PROOF. ℓ^1 -case: "Same" as proof of Theorem 1.21 (replace integrals by sums). In the ℓ^2 -case we first approximate by an ℓ^1 -sequence, use the ℓ^1 -theory, and pass to the limit.

Notation 4.7. Especially in the engineering literature, but also in mathematical literature, one often makes a change of variable: we have

$$\hat{f}(\omega) = \sum_{n=-\infty}^{\infty} f(n)e^{-2\pi i\omega n} = \sum_{n=-\infty}^{\infty} f(n) \left(e^{-2\pi i\omega}\right)^n$$
$$= \sum_{n=-\infty}^{\infty} f(n)z^{-n},$$

where $z = e^{2\pi i \omega}$.

Definition 4.8. Engineers define $F(z) = \sum_{n=-\infty}^{\infty} f(n)z^{-n}$ as the (bilateral) (="dubbelsidig") Z-transformation of f.

Definition 4.9. Most mathematicians define $F(z) = \sum_{n=-\infty}^{\infty} f(n)z^n$ instead.

<u>Note</u>: If f(n) = 0 for n < 0 we get the onesided (=unilateral) transform

$$F(z) = \sum_{n=0}^{\infty} f(n)z^{-n}$$
 (or $\sum_{n=0}^{\infty} f(n)z^{n}$).

Note: The Z-transform is reduced to the Fourier transform by a change of variable

$$z = e^{2\pi i\omega}$$
, so $\omega \in [0,1] \Leftrightarrow |z| = 1$

Thus, z takes values on the unit circle. In the case of one-sided sequences we can also allow |z| > 1 (engineers) or |z| < 1 (mathematicians) and get power series like those studied in the theory of analytic functions.

All Fourier transform results apply