Chapter 3

Fourier Transforms of Distributions

Questions

1) How do we transform a function $f \notin L^1(\mathbb{R}), f \notin L^2(\mathbb{R}),$ for example Weierstrass function

$$\sigma(t) = \sum_{k=0}^{\infty} a^k \cos(2\pi b^k t),$$

where $b \neq$ integer (if b is an integer, then σ is periodic and we can use Chapter I)?

- 2) Can we interpret both the periodic \mathcal{F} -transform (on $L^1(\mathbb{T})$) and the Fourier integral (on $L^1(\mathbb{R})$) as special cases of a "more general" Fourier transform?
- 3) How do you differentiate a discontinuous function?

The answer: Use "distribution theory", developed in France by Schwartz in 1950's.

3.1 What is a Measure?

We start with a simpler question: what is a " δ -function"? Typical definition:

$$\begin{cases} \delta(x) = 0, & x \neq 0 \\ \delta(0) = \infty & \\ \int_{-\varepsilon}^{\varepsilon} \delta(x) dx = 1, & (\text{for } \varepsilon > 0). \end{cases}$$

We observe: This is pure nonsense. We observe that $\delta(x) = 0$ a.e., so $\int_{-\varepsilon}^{\varepsilon} \delta(x) dx = 0$. Thus: The δ -function is not a function! What is it?

Normally a δ -function is used in the following way: Suppose that f is continuous at the origin. Then

$$\int_{-\infty}^{\infty} f(x)\delta(x)dx = \int_{-\infty}^{\infty} \underbrace{\left[f(x) - f(0)\right]}_{\text{when } x=0} \underbrace{\delta(x)}_{\text{when } x\neq 0} dx + f(0) \int_{-\infty}^{\infty} \delta(x)dx$$
$$= f(0) \int_{-\infty}^{\infty} \delta(x)dx = f(0).$$

This gives us a new interpretation of δ :

The δ -function is the "operator" which evaluates a continuous function at the point zero.

<u>Principle</u>: You feed a function f(x) to δ , and δ gives you back the number f(0) (forget about the integral formula).

Since the formal integral $\int_{-\infty}^{\infty} f(x)\delta(x)dx$ resembles an inner product, we often use the notation $\langle \delta, f \rangle$. Thus

$$\langle \delta, f \rangle = f(0)$$

Definition 3.1. The δ -operator is the (bounded linear) operator which maps $f \in C_0(\mathbb{R})$ into the number f(0). Also called Dirac's delta.

This is a special case of *measure*:

Definition 3.2. A measure μ is a bounded linear operator which maps functions $f \in C_0(\mathbb{R})$ into the set of complex numbers \mathbb{C} (or real). We denote this number by $\langle \mu, f \rangle$.

Example 3.3. The operator which maps $f \in C_0(\mathbb{R})$ into the number

$$f(0) + f(1) + \int_0^1 f(s)ds$$

is a measure.

PROOF. Denote $\langle G, f \rangle = f(0) + f(1) + \int_0^1 f(s) ds$. Then

- i) G maps $C_0(\mathbb{R}) \to \mathbb{C}$.
- ii) G is linear:

$$\begin{split} \langle G, \lambda f + \mu g \rangle &= \lambda f(0) + \mu g(0) + \lambda f(1) + \mu g(1) \\ &+ \int_0^1 (\lambda f(s) + \mu g(s)) ds \\ &= \lambda f(0) + \lambda f(1) + \int_0^1 \lambda f(s) ds \\ &+ \mu g(0) + \mu g(1) + \int_0^1 \mu g(s) ds \\ &= \lambda \langle G, f \rangle + \mu \langle G, g \rangle. \end{split}$$

iii) G is continuous: If $f_n \to f$ in $C_0(\mathbb{R})$, then $\max_{t \in \mathbb{R}} |f_n(t) - f(t)| \to 0$ as $n \to \infty$, so

$$f_n(0) \to f(0), \ f_n(1) \to f(1) \ \ \text{and} \ \ \int_0^1 f_n(s)ds \to \int_0^1 f(s)ds,$$

SO

$$\langle G, f_n \rangle \to \langle G, f \rangle$$
 as $n \to \infty$.

Thus, G is a measure. \square

Warning 3.4. $\langle G, f \rangle$ is linear in f, not conjugate linear:

$$\langle G, \lambda f \rangle = \lambda \langle G, f \rangle, \text{ and not } = \overline{\lambda} \langle G, f \rangle.$$

Alternative notation 3.5. Instead of $\langle G, f \rangle$ many people write G(f) or Gf (for example, Gripenberg). See Gasquet for more details.

3.2 What is a Distribution?

Physisists often also use "the derivative of a δ -function", which is defined as

$$\langle \delta', f \rangle = -f'(0),$$

here f'(0) = derivative of f at zero. This is not a measure: It is not defined for all $f \in C_0(\mathbb{R})$ (only for those that are differentiable at zero). It is linear, but it is not continuous (easy to prove). This is an example of a more general distribution.

Definition 3.6. A **tempered distribution** (=tempererad distribution) is a *continuous linear* operator from S to \mathbb{C} . We denote the set of such distributions by S'. (The set S was defined in Section 2.2).

Theorem 3.7. Every measure is a distribution.

Proof.

- i) Maps S into \mathbb{C} , since $S \subset C_0(\mathbb{R})$.
- ii) Linearity is OK.
- iii) Continuity is OK: If $f_n \to f$ in \mathcal{S} , then $f_n \to f$ in $C_0(\mathbb{R})$, so $\langle \mu, f_n \rangle \to \langle \mu, f \rangle$ (more details below!) \square

Example 3.8. Define $\langle \delta', \varphi \rangle = -\varphi'(0), \varphi \in \mathcal{S}$. Then δ' is a tempered distribution

Proof.

- i) Maps $\mathcal{S} \to \mathbb{C}$? Yes!
- ii) Linear? Yes!
- iii) Continuous? Yes!

(See below for details!) \square

What does $\varphi_n \to \varphi$ in \mathcal{S} mean?

Definition 3.9. $\varphi_n \to \varphi$ in \mathcal{S} means the following: For all positive integers k, m,

$$t^k \varphi_n^{(m)}(t) \to t^k \varphi^{(m)}(t)$$

uniformly in t, i.e.,

$$\lim_{n \to \infty} \max_{t \in \mathbb{R}} |t^k(\varphi_n^{(m)}(t) - \varphi^{(m)}(t))| = 0.$$

Lemma 3.10. If $\varphi_n \to \varphi$ in S, then

$$\varphi_n^{(m)} \to \varphi^{(m)} \ in \ C_0(\mathbb{R})$$

for all m = 0, 1, 2, ...

PROOF. Obvious.

<u>Proof that δ' is continuous</u>: If $\varphi_n \to \varphi$ in \mathcal{S} , then $\max_{t \in \mathbb{R}} |\varphi'_n(t) - \varphi'(t)| \to 0$ as $n \to \infty$, so

$$\langle \delta', \varphi_n \rangle = -\varphi'_n(0) \to \varphi'(0) = \langle \delta', \varphi \rangle. \quad \Box$$

3.3 How to Interpret a Function as a Distribution?

Lemma 3.11. If $f \in L^1(\mathbb{R})$ then the operator which maps $\varphi \in \mathcal{S}$ into

$$\langle F, \varphi \rangle = \int_{-\infty}^{\infty} f(s)\varphi(s)ds$$

is a continuous linear map from S to \mathbb{C} . (Thus, F is a tempered distribution).

Note: No complex conjugate on φ !

Note: F is even a measure.

Proof.

- i) For every $\varphi \in \mathcal{S}$, the integral converges (absolutely), and defines a number in \mathbb{C} . Thus, F maps $\mathcal{S} \to \mathbb{C}$.
- ii) Linearity: for all $\varphi, \psi \in \mathcal{S}$ and $\lambda, \mu \in \mathbb{C}$,

$$\begin{split} \langle F, \lambda \varphi + \mu \psi \rangle &= \int_{\mathbb{R}} f(s) [\lambda \varphi(s) + \mu \psi(s)] ds \\ &= \lambda \int_{\mathbb{R}} f(s) \varphi(s) ds + \mu \int_{\mathbb{R}} f(s) \psi(s) ds \\ &= \lambda \langle F, \varphi \rangle + \mu \langle F, \psi \rangle. \end{split}$$

iii) Continuity: If $\varphi_n \to \varphi$ in S, then $\varphi_n \to \varphi$ in $C_0(\mathbb{R})$, and by Lebesgue's dominated convergence theorem,

$$\langle F, \varphi_n \rangle = \int_{\mathbb{R}} f(s)\varphi_n(s)ds \to \int_{\mathbb{R}} f(s)\varphi(s)ds = \langle F, \varphi \rangle. \quad \Box$$

The same proof plus a little additional work proves:

Theorem 3.12. If

$$\int_{-\infty}^{\infty} \frac{|f(t)|}{1 + |t|^n} dt < \infty$$

for some n = 0, 1, 2, ..., then the formula

$$\langle F, \varphi \rangle = \int_{-\infty}^{\infty} f(s)\varphi(s)ds, \quad \varphi \in \mathcal{S},$$

defines a tempered distribution F.

Definition 3.13. We call the distribution F in Lemma 3.11 and Theorem 3.12 the distribution induced by f, and often write $\langle f, \varphi \rangle$ instead of $\langle F, \varphi \rangle$. Thus,

$$\langle f, \varphi \rangle = \int_{-\infty}^{\infty} f(s)\varphi(s)ds, \quad \varphi \in \mathcal{S}.$$

This is sort of like an inner product, but we cannot change places of f and φ : f is "the distribution" and φ is "the test function" in $\langle f, \varphi \rangle$.

Does "the distribution f" determine "the function f" uniquely? Yes!

Theorem 3.14. Suppose that the two functions f_1 and f_2 satisfy

$$\int_{\mathbb{R}} \frac{|f_i(t)|}{1+|t|^n} dt < \infty \quad (i=1 \text{ or } i=2),$$

and that they induce the same distribution, i.e., that

$$\int_{\mathbb{R}} f_1(t)\varphi(t)dt = \int_{\mathbb{R}} f_2(t)\varphi(t)dt, \quad \varphi \in \mathcal{S}.$$

Then $f_1(t) = f_2(t)$ almost everywhere.

PROOF. Let $g = f_1 - f_2$. Then

$$\int_{\mathbb{R}} g(t)\varphi(t)dt = 0 \quad \text{for all } \varphi \in \mathcal{S} \iff$$

$$\int_{\mathbb{R}} \frac{g(t)}{(1+t^2)^{n/2}} (1+t^2)^{n/2} \varphi(t)dt = 0 \quad \forall \varphi \in \mathcal{S}.$$

Easy to show that $\underbrace{(1+t^2)^{n/2}\varphi(t)}_{\psi(t)} \in \mathcal{S} \iff \varphi \in \mathcal{S}$. If we define $h(t) = \frac{g(t)}{(1+t^2)^{n/2}}$,

then $h \in L^1(\mathbb{R})$, and

$$\int_{-\infty}^{\infty} h(s)\psi(s)ds = 0 \quad \forall \psi \in \mathcal{S}.$$

If $\psi \in \mathcal{S}$ then also the function $s \mapsto \psi(t-s)$ belongs to \mathcal{S} , so

$$\int_{\mathbb{R}} h(s)\psi(t-s)ds = 0 \quad \begin{cases} \forall \psi \in \mathcal{S}, \\ \forall t \in \mathbb{R}. \end{cases}$$
(3.1)

Take $\psi_n(s) = ne^{-\pi(ns)^2}$. Then $\psi_n \in \mathcal{S}$, and by 3.1,

$$\psi_n * h \equiv 0.$$

On the other hand, by Theorem 2.12, $\psi_n * h \to h$ in $L^1(\mathbb{R})$ as $n \to \infty$, so this gives h(t) = 0 a.e. \square

Corollary 3.15. If we know "the distribution f", then from this knowledge we can reconstruct f(t) for almost all t.

PROOF. Use the same method as above. We know that $h(t) \in L^1(\mathbb{R})$, and that

$$(\psi_n * h)(t) \to h(t) = \frac{f(t)}{(1+t^2)^{n/2}}.$$

As soon as we know "the distribution f", we also know the values of

$$(\psi_n * h)(t) = \int_{-\infty}^{\infty} \frac{f(s)}{(1+s^2)^{n/2}} (1+s^2)^{n/2} \psi_n(t-s) ds$$

for all t. \square

3.4 Calculus with Distributions

(=Räkneregler)

3.16 (Addition). If f and g are two distributions, then f + g is the distribution

$$\langle f + g, \varphi \rangle = \langle f, \varphi \rangle + \langle g, \varphi \rangle, \quad \varphi \in \mathcal{S}.$$

(f and g distributions \iff $f \in \mathcal{S}'$ and $g \in \mathcal{S}'$).

3.17 (Multiplication by a constant). If λ is a constant and $f \in \mathcal{S}'$, then λf is the distribution

$$\langle \lambda f, \varphi \rangle = \lambda \langle f, \varphi \rangle, \quad \varphi \in \mathcal{S}.$$

3.18 (Multiplication by a test function). If $f \in \mathcal{S}'$ and $\eta \in \mathcal{S}$, then ηf is the distribution

$$\langle \eta f, \varphi \rangle = \langle f, \eta \varphi \rangle \quad \varphi \in \mathcal{S}.$$

<u>Motivation</u>: If f would be induced by a function, then this would be the natural definition, because

$$\int_{\mathbb{D}} [\eta(s)f(s)]\varphi(s)ds = \int_{\mathbb{D}} f(s)[\eta(s)\varphi(s)]ds = \langle f, \eta\varphi \rangle.$$

Warning 3.19. In general, you cannot multiply two distributions. For example,

However, it is possible to multiply distributions by a larger class of "test functions":

Definition 3.20. By the class $C_{\text{pol}}^{\infty}(\mathbb{R})$ of tempered test functions we mean the following:

$$\psi \in C^{\infty}_{\text{pol}}(\mathbb{R}) \iff f \in C^{\infty}(\mathbb{R}),$$

and for every k = 0, 1, 2, ... there are two numbers M and n so that

$$|\psi^{(k)}(t)| \le M(1+|t|^n), \quad t \in \mathbb{R}.$$

Thus, $f \in C^{\infty}_{\text{pol}}(\mathbb{R}) \iff f \in C^{\infty}(\mathbb{R})$, and every derivative of f grows at most as a polynomial as $t \to \infty$.

$$\text{Repetition:} \left\{ \begin{array}{rcl} \mathcal{S} &=& \text{``rapidly decaying test functions''} \\ \mathcal{S}' &=& \text{``tempered distributions''} \\ C^{\infty}_{\text{pol}}(\mathbb{R}) &=& \text{``tempered test functions''}. \end{array} \right.$$

Example 3.21. Every polynomial belongs to C_{pol}^{∞} . So do the functions

$$\frac{1}{1+x^2}$$
, $(1+x^2)^{\pm m}$ (*m* need not be an integer)

Lemma 3.22. If $\psi \in C^{\infty}_{pol}(\mathbb{R})$ and $\varphi \in \mathcal{S}$, then

$$\psi\varphi\in\mathcal{S}$$
.

Proof. Easy (special case used on page 72).

Definition 3.23. If $\psi \in C^{\infty}_{pol}(\mathbb{R})$ and $f \in \mathcal{S}'$, then ψf is the distribution

$$\boxed{\langle \psi f, \varphi \rangle = \langle f, \psi \varphi \rangle, \quad \varphi \in \mathcal{S}}$$

(O.K. since $\psi \varphi \in \mathcal{S}$).

Now to the big surprise : Every distribution has a *derivative*, which is another distribution!

Definition 3.24. Let $f \in \mathcal{S}'$. Then the **distribution derivative** of f is the distribution defined by

$$\langle f', \varphi \rangle = -\langle f, \varphi' \rangle, \quad \varphi \in \mathcal{S}$$

(This is O.K., because $\varphi \in \mathcal{S} \implies \varphi' \in \mathcal{S}$, so $-\langle f, \varphi' \rangle$ is defined).

<u>Motivation</u>: If f would be a function in $C^1(\mathbb{R})$ (not too big at ∞), then

$$\langle f, \varphi' \rangle = \int_{-\infty}^{\infty} f(s)\varphi'(s)ds \quad \text{(integrate by parts)}$$

$$= \underbrace{[f(s)\varphi(s)]_{-\infty}^{\infty}}_{=0} - \int_{-\infty}^{\infty} f'(s)\varphi(s)ds$$

$$= -\langle f', \varphi \rangle. \quad \square$$

Example 3.25. Let

$$f(t) = \begin{cases} e^{-t}, & t \ge 0, \\ -e^{t}, & t < 0. \end{cases}$$

Interpret this as a distribution, and compute its distribution derivative.

Solution:

$$\langle f', \varphi \rangle = -\langle f, \varphi' \rangle = -\int_{-\infty}^{\infty} f(s)\varphi'(s)ds$$

$$= \int_{-\infty}^{0} e^{s}\varphi'(s)ds - \int_{0}^{\infty} e^{-s}\varphi'(s)ds$$

$$= [e^{s}\varphi(s)]_{-\infty}^{0} - \int_{-\infty}^{0} e^{s}\varphi(s)ds - [e^{-s}\varphi(s)]_{0}^{\infty} - \int_{0}^{\infty} e^{-s}\varphi(s)ds$$

$$= 2\varphi(0) - \int_{-\infty}^{\infty} e^{-|s|}\varphi(s)ds.$$

Thus, $f' = 2\delta + h$, where h is the "function" $h(s) = -e^{-|s|}$, $s \in \mathbb{R}$, and $\delta =$ the Dirac delta (note that $h \in L^1(\mathbb{R}) \cap C(\mathbb{R})$).

Example 3.26. Compute the second derivative of the function in Example 3.25!

Solution: By definition, $\langle f'', \varphi \rangle = -\langle f', \varphi' \rangle$. Put $\varphi' = \psi$, and apply the rule $\langle f', \psi \rangle = -\langle f, \psi' \rangle$. This gives

$$\langle f'', \varphi \rangle = \langle f, \varphi'' \rangle.$$

By the preceding computation

$$-\langle f, \varphi' \rangle = -2\varphi'(0) - \int_{-\infty}^{\infty} e^{-|s|} \varphi'(s) ds$$

$$= \text{ (after an integration by parts)}$$

$$= -2\varphi'(0) + \int_{-\infty}^{\infty} f(s) \varphi(s) ds$$

(f = original function). Thus,

$$\langle f'', \varphi \rangle = -2\varphi'(0) + \int_{-\infty}^{\infty} f(s)\varphi(s)ds.$$

<u>Conclusion</u>: In the distribution sense,

$$f'' = 2\delta' + f,$$

where $\langle \delta', \varphi \rangle = -\varphi'(0)$. This is the distribution derivative of Dirac's delta. In particular: f is a distribution solution of the differential equation

$$f'' - f = 2\delta'$$
.

This has *something* to do with the differential equation on page 59. More about this later.

3.5 The Fourier Transform of a Distribution

Repetition: By Lemma 2.19, we have

$$\int_{-\infty}^{\infty} f(t)\hat{g}(t)dt = \int_{-\infty}^{\infty} \hat{f}(t)g(t)dt$$

if $f, g \in L^1(\mathbb{R})$. Take $g = \varphi \in \mathcal{S}$. Then $\hat{\varphi} \in \mathcal{S}$ (See Theorem 2.24), so we can interpret both f and \hat{f} in the distribution sense and get

Definition 3.27. The Fourier transform of a distribution $f \in \mathcal{S}$ is the distribution defined by

$$\label{eq:continuity} \boxed{\langle \hat{f}, \varphi \rangle = \langle f, \hat{\varphi} \rangle, \quad \varphi \in \mathcal{S}.}$$

Possible, since $\varphi \in \mathcal{S} \iff \hat{\varphi} \in \mathcal{S}$.

<u>Problem</u>: Is this really a distribution? It is well-defined and linear, but is it continuous? To prove this we need to know that

$$\varphi_n \to \varphi \text{ in } \mathcal{S} \iff \hat{\varphi}_n \to \hat{\varphi} \text{ in } \mathcal{S}.$$

This is a true statement (see Gripenberg or Gasquet for a proof), and we get

Theorem 3.28. The Fourier transform maps the class of tempered distributions onto itself:

$$f \in \mathcal{S}' \iff \hat{f} \in \mathcal{S}'.$$

There is an obvious way of computing the inverse Fourier transform:

Theorem 3.29. The inverse Fourier transform f of a distribution $\hat{f} \in \mathcal{S}'$ is given by

$$\label{eq:continuity} \boxed{\langle f, \varphi \rangle = \langle \hat{f}, \psi \rangle, \quad \varphi \in \mathcal{S},}$$

where $\psi =$ the inverse Fourier transform of φ , i.e., $\psi(t) = \int_{-\infty}^{\infty} e^{2\pi i t \omega} \varphi(\omega) d\omega$.

PROOF. If ψ = the inverse Fourier transform of φ , then $\varphi = \hat{\psi}$ and the formula simply says that $\langle f, \hat{\psi} \rangle = \langle \hat{f}, \psi \rangle$. \square

The Fourier Transform of a Derivative 3.6

Problem 3.30. Let $f \in \mathcal{S}'$. Then $f' \in \mathcal{S}'$. Find the Fourier transform of f'.

Solution: Define $\eta(t)=2\pi it,\ t\in\mathbb{R}$. Then $\eta\in C^{\infty}_{\mathrm{pol}}$, so we can multiply a tempered distribution by η . By various definitions (start with 3.27)

$$\begin{array}{rcl}
\widehat{\langle (f'), \varphi \rangle} &=& \langle f', \hat{\varphi} \rangle & \text{(use Definition 3.24)} \\
&=& -\langle f, (\hat{\varphi})' \rangle & \text{(use Theorem 2.7(g))} \\
&=& -\langle f, \hat{\psi} \rangle & \text{(where } \psi(s) = -2\pi i s \varphi(s)) \\
&=& -\langle \hat{f}, \psi \rangle & \text{(by Definition 3.27)} \\
&=& \langle \hat{f}, \eta \varphi \rangle & \text{(see Definition above of } \eta) \\
&=& \langle \eta \hat{f}, \varphi \rangle & \text{(by Definition 3.23)}.
\end{array}$$

Thus,
$$\widehat{(f')} = \eta \widehat{f}$$
 where $\eta(\omega) = 2\pi i \omega, \omega \in \mathbb{R}$. This proves one half of:

This proves one half of:

Theorem 3.31.

$$\widehat{(f')} = (i2\pi\omega)\widehat{f} \quad and$$

$$\widehat{(-2\pi i t f)} = (\widehat{f})'$$

More precisely, if we define $\eta(t) = 2\pi i t$, then $\eta \in C_{pol}^{\infty}$, and

$$\widehat{(f')} = \eta \hat{f}, \ \widehat{(\eta f)} = -\hat{f}'.$$

By repeating this result several times we get

Theorem 3.32.

$$\widehat{(f^{(k)})} = (2\pi i\omega)^k \hat{f} \quad k \in \mathbb{Z}_+
\widehat{((-2\pi it)^k f)} = \hat{f}^{(k)}.$$

Example 3.33. Compute the Fourier transform of

$$f(t) = \begin{cases} e^{-t}, & t > 0, \\ -e^{t}, & t < 0. \end{cases}$$

Smart solution: By the Examples 3.25 and 3.26.

$$f'' = 2\delta' + f$$
 (in the distribution sense).

Transform this:

$$[(2\pi i\omega)^2 - 1]\hat{f} = 2\widehat{(\delta')} = 2(2\pi i\omega)\hat{\delta}$$

(since δ' is the derivative of δ). Thus, we need $\hat{\delta}$:

$$\langle \hat{\delta}, \varphi \rangle = \langle \delta, \hat{\varphi} \rangle = \hat{\varphi}(0) = \int_{\mathbb{R}} \varphi(s) ds$$
$$= \int_{\mathbb{R}} 1 \cdot \varphi(s) ds = \int_{\mathbb{R}} f(s) \varphi(s) ds,$$

where $f(s) \equiv 1$. Thus $\hat{\delta}$ is the distribution which is induced by the function $f(s) \equiv 1$, i.e., we may write $\hat{\delta} \equiv 1$.

Thus, $-(4\pi^2\omega^2+1)\hat{f}=4\pi i\omega$, so \hat{f} is induced by the function $\frac{4\pi i\omega}{-(1+4\pi^2\omega^2)}$. Thus,

$$\hat{f}(\omega) = \frac{4\pi i \omega}{-(1 + 4\pi^2 \omega^2)}.$$

In particular:

Lemma 3.34.

$$\hat{\delta}(\omega) \equiv 1$$
 and $\hat{1} = \delta$.

(The Fourier transform of δ is the function $\equiv 1$, and the Fourier transform of the function $\equiv 1$ is the Dirac delta.)

Combining this with Theorem 3.32 we get

Lemma 3.35.

$$\widehat{\delta^{(k)}} = (2\pi i \omega)^k, \qquad k \in \mathbb{Z}_+ = 0, 1, 2, \dots \\
\left[\widehat{(-2\pi i t)^k}\right] = \delta^{(k)}$$

3.7 Convolutions ("Faltningar")

It is sometimes (but not always) possible to define the convolution of two distributions. One possibility is the following: If $\varphi, \psi \in \mathcal{S}$, then we know that

$$\widehat{(\varphi * \psi)} = \hat{\varphi}\hat{\psi},$$

so we can define $\varphi * \psi$ to be the inverse Fourier transform of $\hat{\varphi}\hat{\psi}$. The same idea applies to distributions in *some* cases:

Definition 3.36. Let $f \in \mathcal{S}'$ and suppose that $g \in \mathcal{S}'$ happens to be such that $\hat{g} \in C^{\infty}_{\text{pol}}(\mathbb{R})$ (i.e., \hat{g} is induced by a function in $C^{\infty}_{\text{pol}}(\mathbb{R})$, i.e., g is the inverse \mathcal{F} -transform of a function in C^{∞}_{pol}). Then we define

f * g =the inverse Fourier transform of $\hat{f}\hat{g}$,

i.e. (cf. page 77):

$$\langle f * g, \varphi \rangle = \langle \hat{f} \hat{g}, \check{\varphi} \rangle$$

where $\check{\varphi}$ is the *inverse* Fourier transform of φ :

$$\check{\varphi}(t) = \int_{-\infty}^{\infty} e^{2\pi i \omega t} \varphi(\omega) d\omega.$$

This is possible since $\hat{g} \in C_{\text{pol}}^{\infty}$, so that $\hat{f}\hat{g} \in \mathcal{S}'$; see page 74

To get a direct interpretation (which does not involve Fourier transforms) we need two more definitions:

Definition 3.37. Let $t \in \mathbb{R}$, $f \in \mathcal{S}'$, $\varphi \in \mathcal{S}$. Then the **translations** $\tau_t f$ and $\tau_t \varphi$ are given by

$$(\tau_t \varphi)(s) = \varphi(s-t), \quad s \in \mathbb{R}$$

$$\langle \tau_t f, \varphi \rangle = \langle f, \tau_{-t} \varphi \rangle$$

Motivation: $\tau_t \varphi$ translates φ to the right by the amount t (if t > 0, to the left if t < 0).

For ordinary functions f we have

$$\int_{-\infty}^{\infty} (\tau_t f)(s) \varphi(s) ds = \int_{-\infty}^{\infty} f(s-t) \varphi(s) ds \quad (s-t=v)$$

$$= \int_{-\infty}^{\infty} f(v) \varphi(v+t) dv$$

$$= \int_{-\infty}^{\infty} f(v) \tau_{-t} \varphi(v) dv,$$

so the distribution definition coincides with the usual definition for functions interpreted as distributions.

Definition 3.38. The **reflection operator** R is defined by

$$(R\varphi)(s) = \varphi(-s), \qquad \varphi \in \mathcal{S},$$

 $\langle Rf, \varphi \rangle = \langle f, R\varphi \rangle, \qquad f \in \mathcal{S}', \ \varphi \in \mathcal{S}$

Motivation: Extra homework. If $f \in L^1(\mathbb{R})$ and $\eta \in \mathcal{S}$, then we can write $f * \varphi$

in the form

$$(f * \varphi)(t) = \int_{\mathbb{R}} f(s)\eta(t-s)ds$$
$$= \int_{\mathbb{R}} f(s)(R\eta)(s-t)ds$$
$$= \int_{\mathbb{R}} f(s)(\tau_t R\eta)(s)ds,$$

and we get an alternative formula for $f * \eta$ in this case.

Theorem 3.39. If $f \in \mathcal{S}'$ and $\eta \in \mathcal{S}$, then $f * \eta$ as defined in Definition 3.36, is induced by the function

$$t \mapsto \langle f, \tau_t R \eta \rangle,$$

and this function belongs to $C^{\infty}_{pol}(\mathbb{R})$.

We shall give a partial proof of this theorem (skipping the most complicated part). It is based on some auxiliary results which will be used later, too.

Lemma 3.40. Let $\varphi \in \mathcal{S}$, and let

$$\varphi_{\varepsilon}(t) = \frac{\varphi(t+\varepsilon) - \varphi(t)}{\varepsilon}, \quad t \in \mathbb{R}.$$

Then $\varphi_{\varepsilon} \to \varphi'$ in \mathcal{S} as $\varepsilon \to 0$.

PROOF. (Outline) Must show that

$$\lim_{\varepsilon \to 0} \sup_{t \in \mathbb{R}} |t|^k |\varphi_{\varepsilon}^{(m)}(t) - \varphi^{(m+1)}(t)| = 0$$

for all $t, m \in \mathbb{Z}_+$. By the mean value theorem,

$$\varphi^{(m)}(t+\varepsilon) = \varphi^{(m)}(t) + \varepsilon \varphi^{(m+1)}(\xi)$$

where $t < \xi < t + \varepsilon$ (if $\varepsilon > 0$). Thus

$$\begin{split} |\varphi_{\varepsilon}^{(m)}(t) - \varphi^{(m+1)}(t)| &= |\varphi^{(m+1)}(\xi) - \varphi^{(m+1)}(t)| \\ &= |\int_{\xi}^{t} \varphi^{(m+2)}(s) ds| \quad \left(\begin{array}{c} \text{where } t < \xi < t + \varepsilon \text{ if } \varepsilon > 0 \\ \text{or } t + \varepsilon < \xi < t \text{ if } \varepsilon < 0 \end{array} \right) \\ &\leq \int_{t-|\varepsilon|}^{t+|\varepsilon|} |\varphi^{(m+2)}(s)| ds, \end{split}$$

and this multiplied by $|t|^k$ tends uniformly to zero as $\varepsilon \to 0$. (Here I am skipping a couple of lines). \square

Lemma 3.41. For every $f \in \mathcal{S}'$ there exist two numbers M > 0 and $N \in \mathbb{Z}_+$ so that

$$|\langle f, \varphi \rangle| \le M \max_{\substack{0 \le j, k \le N \\ t \in \mathbb{P}}} |t^j \varphi^{(k)}(t)|. \tag{3.2}$$

Interpretation: Every $f \in \mathcal{S}'$ has a finite order (we need only derivatives $\varphi^{(k)}$ where $k \leq N$) and a finite polynomial growth rate (we need only a finite power t^j with $j \leq N$).

PROOF. Assume to get a contradiction that (3.2) is false. Then for all $n \in \mathbb{Z}_+$, there is a function $\varphi_n \in \mathcal{S}$ so that

$$|\langle f, \varphi_n \rangle| \ge n \max_{\substack{0 \le j,k \le n \\ t \in \mathbb{R}}} |t^j \varphi_n^{(k)}(t)|.$$

Multiply φ_n by a constant to make $\langle f, \varphi_n \rangle = 1$. Then

$$\max_{\substack{0 \le j,k \le n \\ t \in \mathbb{R}}} |t^j \varphi_n^{(k)}(t)| \le \frac{1}{n} \to 0 \text{ as } n \to \infty,$$

so $\varphi_n \to 0$ in \mathcal{S} as $n \to \infty$. As f is continuous, this implies that $\langle f, \varphi_n \rangle \to 0$ as $n \to \infty$. This contradicts the assumption $\langle f, \varphi_n \rangle = 1$. Thus, (3.2) cannot be false. \square

Theorem 3.42. Define $\varphi(t) = \langle f, \tau_t R \eta \rangle$. Then $\varphi \in C_{pol}^{\infty}$, and for all $n \in \mathbb{Z}_+$,

$$\varphi^{(n)}(t) = \langle f^{(n)}, \tau_t R \eta \rangle = \langle f, \tau_t R \eta^{(n)} \rangle.$$

Note: As soon as we have proved Theorem 3.39, we may write this as

$$(f * \eta)^{(n)} = f^{(n)} * \eta = f * \eta^{(n)}.$$

Thus, to differentiate $f * \eta$ it suffices to differentiate either f or η (but not both). The derivatives may also be distributed between f and η :

$$(f * \eta)^{(n)} = f^{(k)} * \eta^{(n-k)}, \quad 0 \le k \le n.$$

<u>Motivation</u>: A formal differentiation of

$$(f * \varphi)(t) = \int_{\mathbb{R}} f(t - s)\varphi(s)ds \text{ gives}$$
$$(f * \varphi)' = \int_{\mathbb{R}} f'(t - s)\varphi(s)ds = f' * \varphi,$$

and a formal differentiation of

$$(f * \varphi)(t) = \int_{\mathbb{R}} f(s)\varphi(t-s)ds$$
 gives
 $(f * \varphi)' = \int_{\mathbb{R}} f(s)\varphi'(t-s)ds = f * \varphi'.$

Proof of Theorem 3.42.

i)
$$\frac{1}{\varepsilon}[\varphi(t+\varepsilon)-\varphi(t)] = \langle f, \frac{1}{\varepsilon}(\tau_{t+\varepsilon}R\eta - \tau_t R\eta) \rangle$$
. Here
$$\frac{1}{\varepsilon}(\tau_{t+\varepsilon}R\eta - \tau_t R\eta)(s) = \frac{1}{\varepsilon}[(R\eta)(s-t-\varepsilon) - R\eta(s-t)]$$

$$= \frac{1}{\varepsilon}[\eta(t+\varepsilon-s) - \eta(t-s)] \text{ (by Lemma 3.40)}$$

$$\to \eta'(t-s) = (R\eta')(s-t) = \tau_t R\eta'.$$

Thus, the following limit exists:

$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon} [\varphi(t+\varepsilon) - \varphi(t)] = \langle f, \tau_t R \eta' \rangle.$$

Repeating the same argument n times we find that φ is n times differentiable, and that

$$\varphi^{(n)} = \langle f, \tau_t R \eta^{(n)} \rangle$$

(or written differently, $(f * \eta)^{(n)} = f * \eta^{(n)}$.)

ii) A direct computation shows: If we put

$$\psi(s) = \eta(t - s) = (R\eta)(s - t) = (\tau_t R\eta)(s),$$

then $\psi'(s) = -\eta'(t-s) = -\tau_t R \eta'$. Thus $\langle f, \tau_t R \eta' \rangle = -\langle f, \psi' \rangle = \langle f', \psi \rangle = \langle f', \tau_t R \eta \rangle$ (by the definition of distributed derivative). Thus, $\varphi' = \langle f, \tau_t R \eta' \rangle = \langle f', \tau_t R \eta \rangle$ (or written differently, $f * \eta' = f' * \eta$). Repeating this n times we get

$$f * \eta^{(n)} = f^{(n)} * \eta.$$

iii) The estimate which shows that $\varphi \in C_{\text{pol}}^{\infty}$: By Lemma 3.41,

$$\begin{aligned} |\varphi^{(n)}(t)| &= |\langle f^{(n)}, \tau_t R \eta \rangle| \\ &\leq M \max_{\substack{0 \leq j,k \leq N \\ s \in \mathbb{R}}} |s^j (\tau_t R \eta)^{(k)}(s)| \quad (\psi \text{ as above}) \\ &= M \max_{\substack{0 \leq j,k \leq N \\ s \in \mathbb{R}}} |s^j \eta^{(k)}(t-s)| \quad (t-s=v) \\ &= M \max_{\substack{0 \leq j,k \leq N \\ v \in \mathbb{R}}} |(t-v)^j \eta^{(k)}(s)| \\ &\leq \text{a polynomial in } |t|. \quad \Box \end{aligned}$$

To prove Theorem 3.39 it suffices to prove the following lemma (if two distributions have the same Fourier transform, then they are equal):

Lemma 3.43. Define $\varphi(t) = \langle f, \tau_t R \eta \rangle$. Then $\hat{\varphi} = \hat{f} \hat{\eta}$.

PROOF. (Outline) By the distribution definition of $\hat{\varphi}$:

$$\langle \hat{\varphi}, \psi \rangle = \langle \varphi, \hat{\psi} \rangle$$
 for all $\psi \in \mathcal{S}$.

We compute this:

$$\langle \varphi, \hat{\psi} \rangle = \int_{-\infty}^{\infty} \underbrace{\varphi(s)}_{\substack{\text{function} \\ \text{in } C_{\text{pol}}^{\infty}}}^{\hat{\psi}(s) ds}$$

$$= \int_{-\infty}^{\infty} \langle f, \tau_s R \eta \rangle \hat{\psi}(s) ds$$

$$= \text{(this step is } too \ difficult: To show that we may move}$$
the integral to the other side of f requires more theory
then we have time to present)
$$= \langle f, \int_{-\infty}^{\infty} \tau_s R \eta \hat{\varphi}(s) ds \rangle = (\star)$$

Here $\tau_s R \eta$ is the function

$$(\tau_s R\eta)(t) = (R\eta)(t-s) = \eta(s-t) = (\tau_t \eta)(s),$$

so the integral is

$$\int_{-\infty}^{\infty} \eta(s-t)\hat{\psi}(s)ds = \int_{-\infty}^{\infty} (\tau_t \eta)(s)\hat{\psi}(s)ds \text{ (see page 43)}$$

$$= \int_{-\infty}^{\infty} \widehat{(\tau_t \eta)}(s)\psi(s)ds \text{ (see page 38)}$$

$$= \underbrace{\int_{-\infty}^{\infty} e^{-2\pi i t s} \hat{\eta}(s)\psi(s)ds}_{\mathcal{F}\text{-transform of }\hat{\eta}\psi}$$

$$(\star) = \langle f, \widehat{\eta}\psi \rangle = \langle \hat{f}, \hat{\eta}\psi \rangle$$

$$= \langle \hat{f}\hat{\eta}, \psi \rangle. \text{ Thus, } \hat{\varphi} = \hat{f}\hat{\eta}. \quad \square$$

Using this result it is easy to prove:

Theorem 3.44. Let $f \in \mathcal{S}'$, $\varphi, \psi \in \mathcal{S}$. Then

$$\underbrace{\underbrace{(f * \varphi)}_{in \ C^{\infty}_{pol}} * \underbrace{\psi}_{in \ S}}_{in \ C^{\infty}_{pol}} = \underbrace{\underbrace{f}_{in \ S'} * \underbrace{(\varphi * \psi)}_{in \ S}}_{in \ C^{\infty}_{pol}}$$

PROOF. Take the Fourier transforms:

$$\underbrace{\underbrace{(f * \varphi)}_{\downarrow} * \underbrace{\psi}_{\hat{f}}}_{(\hat{f}\hat{\varphi})\hat{\psi}} = \underbrace{\underbrace{f}_{\downarrow} * \underbrace{(\varphi * \psi)}_{\hat{f}}}_{\hat{f}(\hat{\varphi}\hat{\psi})}.$$

The transforms are the same, hence so are the original distributions (note that both $(f * \varphi) * \psi$ and $f * (\varphi * \psi)$ are in C_{pol}^{∞} so we are allowed to take distribution Fourier transforms).

3.8 Convergence in S'

We define convergence in \mathcal{S}' by means of test functions in \mathcal{S} . (This is a special case of "weak" or "weak"-convergence).

Definition 3.45. $f_n \to f$ in \mathcal{S}' means that

$$\langle f_n, \varphi \rangle \to \langle f, \varphi \rangle$$
 for all $\varphi \in \mathcal{S}$.

Lemma 3.46. Let $\eta \in \mathcal{S}$ with $\hat{\eta}(0) = 1$, and define $\eta_{\lambda}(t) = \lambda \eta(\lambda t)$, $t \in \mathbb{R}$, $\lambda > 0$. Then, for all $\varphi \in \mathcal{S}$,

$$\eta_{\lambda} * \varphi \to \varphi \text{ in } \mathcal{S} \text{ as } \lambda \to \infty.$$

<u>Note</u>: We had this type of " δ -sequences" also in the L^1 -theory on page 36. PROOF. (Outline.) The Fourier transform is continuous $\mathcal{S} \to \mathcal{S}$ (which we have not proved, but it is true). Therefore

$$\eta_{\lambda} * \varphi \to \varphi \text{ in } \mathcal{S} \iff \widehat{\eta_{\lambda} * \varphi} \to \widehat{\varphi} \text{ in } \mathcal{S}$$

$$\iff \widehat{\eta}_{\lambda} \widehat{\varphi} \to \widehat{\varphi} \text{ in } \mathcal{S}$$

$$\iff \widehat{\eta}(\omega/\lambda) \widehat{\varphi}(\omega) \to \widehat{\varphi}(\omega) \text{ in } \mathcal{S} \text{ as } \lambda \to \infty.$$

Thus, we must show that

$$\sup_{\omega \in \mathbb{R}} \left| \omega^k \left(\frac{d}{d\omega} \right)^j \left[\hat{\eta}(\omega/\lambda) - 1 \right] \hat{\varphi}(\omega) \right| \to 0 \text{ as } \lambda \to \infty.$$

This is a "straightforward" mechanical computation (which does take some time). \Box

Theorem 3.47. Define η_{λ} as in Lemma 3.46. Then

$$\eta_{\lambda} \to \delta \text{ in } \mathcal{S}' \text{ as } \lambda \to \infty.$$

<u>Comment</u>: This is the reason for the name " δ -sequence".

PROOF. The claim (="påstående") is that for all $\varphi \in \mathcal{S}$,

$$\int_{R} \eta_{\lambda}(t)\varphi(t)dt \to \langle \delta, \varphi \rangle = \varphi(0) \text{ as } \lambda \to \infty.$$

(Or equivalently, $\int_R \lambda \eta(\lambda t) \varphi(t) dt \to \varphi(0)$ as $\lambda \to \infty$). Rewrite this as

$$\int_{\mathbb{R}} \eta_{\lambda}(t) (R\varphi)(-t) dt = (\eta_{\lambda} * R\varphi)(0),$$

and by Lemma 3.46, this tends to $(R\varphi)(0) = \varphi(0)$ as $\lambda \to \infty$. Thus,

$$\langle \eta_{\lambda}, \varphi \rangle \to \langle \delta, \varphi \rangle$$
 for all $\varphi \in \mathcal{S}$ as $\lambda \to \infty$,

so $\eta_{\lambda} \to \delta$ in \mathcal{S}' . \square

Theorem 3.48. Define η_{λ} as in Lemma 3.46. Then, for all $f \in \mathcal{S}'$, we have

$$\eta_{\lambda} * f \to f \text{ in } \mathcal{S}' \text{ as } \lambda \to \infty.$$

PROOF. The claim is that

$$\langle \eta_{\lambda} * f, \varphi \rangle \to \langle f, \varphi \rangle$$
 for all $\varphi \in \mathcal{S}$.

Replace φ with the reflected

$$\psi = R\varphi \implies \langle \eta_{\lambda} * f, R\psi \rangle \to \langle f, R\psi \rangle \text{ for all } \varphi \in \mathcal{S}$$

$$\iff \text{ (by Thm 3.39) } ((\eta_{\lambda} * f) * \psi)(0) \to (f * \psi)(0) \text{ (use Thm 3.44)}$$

$$\iff f * (\eta_{\lambda} * \psi)(0) \to (f * \psi)(0) \text{ (use Thm 3.39)}$$

$$\iff \langle f, R(\eta_{\lambda} * \psi) \rangle \to \langle f, R\psi \rangle.$$

This is true because f is continuous and $\eta_{\lambda} * \psi \to \psi$ in \mathcal{S} , according to Lemma 3.46.

There is a General Rule about distributions:

Metatheorem: All reasonable claims about distribution convergence are true.

Problem: What is "reasonable"?

Among others, the following results are reasonable:

Theorem 3.49. All the operations on distributions and test functions which we have defined are continuous. Thus, if

$$f_n \to f \text{ in } \mathcal{S}', \ g_n \to g \text{ in } \mathcal{S}',$$

 $\psi_n \to \psi \text{ in } C_{pol}^{\infty} \text{ (which we have not defined!)},$
 $\varphi_n \to \varphi \text{ in } \mathcal{S},$
 $\lambda_n \to \lambda \text{ in } \mathbb{C}, \text{ then, among others,}$

i)
$$f_n + g_n \to f + g$$
 in \mathcal{S}'

$$ii)$$
 $\lambda_n f_n \to \lambda f$ in \mathcal{S}'

iii)
$$\psi_n f_n \to \psi f$$
 in \mathcal{S}'

iv)
$$\check{\psi}_n * f_n \to \check{\psi} * f$$
 in \mathcal{S}' ($\check{\psi} = inverse \ \mathcal{F} - transform \ of \ \psi$)

v)
$$\varphi_n * f_n \to \varphi * f \text{ in } C_{pol}^{\infty}$$

$$vi)$$
 $f'_n \to f'$ in S'

vii)
$$\hat{f}_n \to \hat{f}$$
 in \mathcal{S}' etc.

PROOF. "Easy" but long.

3.9 Distribution Solutions of ODE:s

Example 3.50. Find the function $u \in L^2(\mathbb{R}_+) \cap C^1(\mathbb{R}_+)$ with an "absolutely continuous" derivative u' which satisfies the equation

$$\begin{cases} u''(x) - u(x) &= f(x), \quad x > 0, \\ u(0) &= 1. \end{cases}$$

Here $f \in L^2(\mathbb{R}_+)$ is given.

Solution. Let v be the solution of homework 22. Then

$$\begin{cases} v''(x) - v(x) = f(x), & x > 0, \\ v(0) = 0. \end{cases}$$
 (3.3)

Define w = u - v. Then w is a solution of

$$\begin{cases} w''(x) - w(x) &= 0, \quad x \ge 0, \\ w(0) &= 1. \end{cases}$$
 (3.4)

In addition we require $w \in L^2(\mathbb{R}_+)$.

ELEMENTARY SOLUTION. The characteristic equation is

$$\lambda^2 - 1 = 0$$
. roots $\lambda = \pm 1$.

general solution

$$w(x) = c_1 e^x + c_2 e^{-x}.$$

The condition $w(x) \in L^2(\mathbb{R}_+)$ forces $c_1 = 0$. The condition w(0) = 1 gives $w(0) = c_2 e^0 = c_2 = 1$. Thus: $w(x) = e^{-x}$, $x \ge 0$.

Original solution: $u(x) = e^{-x} + v(x)$, where v is a solution of homework 22, i.e.,

$$u(x) = e^{-x} + \frac{1}{2}e^{-x} \int_0^\infty e^{-y} f(y) dy - \frac{1}{2} \int_0^\infty e^{-|x-y|} f(y) dy.$$

DISTRIBUTION SOLUTION. Make w an even function, and differentiate: we denote the distribution derivatives by $w^{(1)}$ and $w^{(2)}$. Then

$$w^{(1)} = w'$$
 (since w is continuous at zero)
 $w^{(2)} = w'' + \underbrace{2w'(0)}_{\text{due to jump discontinuity}} \delta_0$ (Dirac delta at the point zero)

The problem says: w'' = w, so

$$w^{(2)} - w = 2w'(0)\delta_0$$
. Transform:
 $((2\pi i\gamma)^2 - 1)\hat{w}(\gamma) = 2w'(0)$ (since $\hat{\delta}_0 \equiv 1$)
 $\implies \hat{w}(\gamma) = \frac{2w'(0)}{1+4\pi^2\gamma^2}$,

whose inverse transform is $-w'(0)e^{-|x|}$ (see page 62). We are only interested in values $x \ge 0$ so

$$w(x) = -w'(0)e^{-x}, \quad x > 0.$$

The condition w(0) = 1 gives -w'(0) = 1, so

$$w(x) = e^{-x}, \quad x \ge 0.$$

Example 3.51. Solve the equation

$$\begin{cases} u''(x) - u(x) &= f(x), & x > 0, \\ u'(0) &= a, \end{cases}$$

where a = given constant, f(x) given function.

Many different ways exist to attack this problem:

METHOD 1. Split u in two parts: u = v + w, where

$$\begin{cases} v''(x) - v(x) &= f(x), \quad x > 0 \\ v'(0) &= 0, \end{cases}$$

and

$$\begin{cases} w''(x) - w(x) = 0, & x > 0 \\ w'(0) = a, \end{cases}$$

We can solve the first equation by making an even extension of v. The second equation can be solved as above.

METHOD 2. Make an *even* extension of u and transform. Let $u^{(1)}$ and $u^{(2)}$ be the distribution derivatives of u. Then as above,

$$u^{(1)} = u' \quad (u \text{ is continuous})$$

$$u^{(2)} = u'' + 2 \underbrace{u'(0)}_{=a} \delta_0 \quad (u' \text{ discontinuous})$$

By the equation: u'' = u + f, so

$$u^{(2)} - u = 2a\delta_0 + f$$

Transform this:

$$[(2\pi i\gamma)^2 - 1]\hat{u} = 2a + \hat{f},$$
 so $\hat{u} = \frac{-2a}{1+4\pi^2\gamma^2} - \frac{\hat{f}}{1+4\pi^2\gamma^2}$

Invert:

$$u(x) = -ae^{-|x|} - \frac{1}{2} \int_{-\infty}^{\infty} e^{-|x-y|} f(y) dy.$$

Since f is even, this becomes for x > 0:

$$u(x) = -ae^{-x} - \frac{1}{2}e^{-x} \int_0^\infty e^{-y} f(y) dy - \frac{1}{2} \int_0^\infty e^{-|x-y|} f(y) dy.$$

METHOD 3. The method to make u and f even or odd works, but it is a "dirty trick" which has to be memorized. A simpler method is to define $u(t) \equiv 0$ and $f(t) \equiv 0$ for t < 0, and to continue as above. We shall return to this method in connection with the *Laplace transform*.

<u>Partial Differential Equations</u> are solved in a similar manner. The computations become slightly more complicated, and the *motivations* become much more complicated. For example, we can replace all the functions in the examples on page 63 and 64 by distributions, and the results "stay the same".

3.10 The Support and Spectrum of a Distribution

"Support" = "the piece of the real line on which the distribution stands"

Definition 3.52. The **support** of a continuous function φ is the closure (="slutna höljet") of the set $\{x \in \mathbb{R} : \varphi(x) \neq 0\}$.

<u>Note</u>: The set $\{x \in \mathbb{R} : \varphi(x) \neq 0\}$ is open, but the support contains, in addition, the boundary points of this set.

Definition 3.53. Let $f \in \mathcal{S}'$ and let $\mathcal{U} \subset \mathbb{R}$ be an open set. Then f vanishes on \mathcal{U} (="försvinner på \mathcal{U} ") if $\langle f, \varphi \rangle = 0$ for all test functions $\varphi \in \mathcal{S}$ whose support is contained in \mathcal{U} .

Interpretation: f has "no mass in \mathcal{U} ", "no action on \mathcal{U} ".

Example 3.54. δ vanishes on $(0, \infty)$ and on $(-\infty, 0)$. Likewise vanishes $\delta^{(k)}$ $(k \in \mathbb{Z}_+ = 0, 1, 2, \ldots)$ on $(-\infty, 0) \cup (0, \infty)$.

Proof. Obvious.

Example 3.55. The function

$$f(t) = \begin{cases} 1 - |t|, & |t| \le 1, \\ 0, & |t| > 1, \end{cases}$$

vanishes on $(-\infty, -1)$ and on $(1, \infty)$. The support of this function is [-1, 1] (note that the end points are *included*).

Definition 3.56. Let $f \in \mathcal{S}'$. Then the **support** of f is the complement of the largest set on which f vanishes. Thus,

$$\operatorname{supp}(f) = M \Leftrightarrow \begin{cases} M \text{ is closed, } f \text{ vanishes on } \mathbb{R} \setminus M, \text{ and} \\ f \text{ does not vanish on any open set } \Omega \\ \text{which is strictly bigger than } \mathbb{R} \setminus M. \end{cases}$$

Example 3.57. The support of the distribution $\delta_a^{(k)}$ is the single point $\{a\}$. Here $k \in \mathbb{Z}_+$, and δ_a is point evaluation at a:

$$\langle \delta_a, \varphi \rangle = \varphi(a).$$

Definition 3.58. The spectrum of a distribution $f \in \mathcal{S}'$ is the support of \hat{f} .

Lemma 3.59. If $M \subset \mathbb{R}$ is closed, then $supp(f) \subset M$ if and only if f vanishes on $\mathbb{R} \setminus M$.

Proof. Easy.

Example 3.60. Interpret $f(t) = t^n$ as a distribution. Then $\hat{f} = \frac{1}{(-2\pi i)^n} \delta^{(n)}$, as we saw on page 78. Thus the support of \hat{f} is $\{0\}$, so the spectrum of f is $\{0\}$.

By adding such functions we get:

Theorem 3.61. The spectrum of the function $f(t) \equiv 0$ is empty. The spectrum of every other polynomial is the single point $\{0\}$.

PROOF. $f(t) \equiv 0 \iff$ spectrum is empty follows from definition. The other half is proved above. \square

The *converse* is true, but much harder to prove:

Theorem 3.62. If $f \in \mathcal{S}'$ and if the spectrum of f is $\{0\}$, then f is a polynomial $(\not\equiv 0)$.

This follows from the following theorem by taking Fourier transforms:

Theorem 3.63. If the support of f is one single point $\{a\}$ then f can be written as a finite sum

$$f = \sum_{k=0}^{n} a_n \delta_a^{(k)}.$$

PROOF. Too difficult to include. See e.g., Rudin's "Functional Analysis".

Possible homework: Show that

Theorem 3.64. The spectrum of f is $\{a\} \iff f(t) = e^{2\pi i a t} P(t)$, where P is a polynomial, $P \not\equiv 0$.

Theorem 3.65. Suppose that $f \in \mathcal{S}'$ has a bounded support, i.e., f vanishes on $(-\infty, -T)$ and on (T, ∞) for some T > 0 (\iff supp $(f) \subset [-T, T]$). Then \hat{f} can be interpreted as a function, namely as

$$\hat{f}(\omega) = \langle f, \eta(t)e^{-2\pi i\omega t} \rangle,$$

where $\eta \in \mathcal{S}$ is an arbitrary function satisfying $\eta(t) \equiv 1$ for $t \in [-T-1, T+1]$ (or, more generally, for $t \in \mathcal{U}$ where \mathcal{U} is an open set containing $\operatorname{supp}(f)$). Moreover, $\hat{f} \in C^{\infty}_{pol}(\mathbb{R})$.

Proof. (Not quite complete)

Step 1. Define

$$\psi(\omega) = \langle f, \eta(t)e^{-2\pi i\omega t} \rangle,$$

where η is as above. If we choose two different η_1 and η_2 , then $\eta_1(t) - \eta_2(t) = 0$ is an open set \mathcal{U} containing supp(f). Since f vanishes on $\mathbb{R} \setminus \mathcal{U}$, we have

$$\langle f, \eta_1(t)e^{-2\pi i\omega t}\rangle = \langle f, \eta_2(t)e^{-2\pi i\omega t}\rangle,$$

so $\psi(\omega)$ does not depend on how we choose η .

Step 2. For simplicity, choose $\eta(t)$ so that $\eta(t) \equiv 0$ for |t| > T + 1 (where T as in the theorem). A "simple" but boring computation shows that

$$\frac{1}{\varepsilon} \left[e^{-2\pi i(\omega + \varepsilon)t} - e^{-2\pi i\omega t} \right] \eta(t) \to \frac{\partial}{\partial \omega} e^{-2\pi i\omega t} \eta(t) = -2\pi i t e^{-2\pi i\omega t} \eta(t)$$

in S as $\varepsilon \to 0$ (all derivatives converge uniformly on [-T-1, T+1], and everything is $\equiv 0$ outside this interval). Since we have convergence in S, also the following limit exists:

$$\begin{split} \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} (\psi(\omega + \varepsilon) - \psi(\omega)) &= \psi'(\omega) \\ &= \lim_{\varepsilon \to 0} \langle f, \frac{1}{\varepsilon} (e^{-2\pi i(\omega + \varepsilon)t} - e^{-2\pi i\omega t}) \eta(t) \rangle \\ &= \langle f, -2\pi i t e^{-2\pi i\omega t} \eta(t) \rangle. \end{split}$$

Repeating the same computation with η replaced by $(-2\pi it)\eta(t)$, etc., we find that ψ is infinitely many times differentiable, and that

$$\psi^{(k)}(\omega) = \langle f, (-2\pi i t)^k e^{-2\pi i \omega t} \eta(t) \rangle, \quad k \in \mathbb{Z}_+.$$
 (3.5)

<u>Step 3</u>. Show that the derivatives grow at most polynomially. By Lemma 3.41, we have

$$|\langle f, \varphi \rangle| \le M \max_{\substack{0 \le t, l \le N \\ t \in \mathbb{R}}} |t^j \varphi^{(l)}(t)|.$$

Apply this to $(3.5) \implies$

$$|\psi^{(k)}(\omega)| \le M \max_{\substack{0 \le j, l \le N \\ t \subset \mathbb{R}}} \left| t^j \left(\frac{d}{dt} \right)^l (-2\pi i t)^k e^{-2\pi i \omega t} \eta(t) \right|.$$

The derivative l=0 gives a constant independent of ω .

The derivative l = 1 gives a constant times $|\omega|$.

The derivative l=2 gives a constant times $|\omega|^2$, etc.

Thus, $|\psi^{(k)}(\omega)| \leq \text{const. } x[1+|w|^N], \text{ so } \psi \in C_{\text{pol.}}^{\infty}$

Step 4. Show that $\psi = \hat{f}$. That is, show that

$$\int_{\mathbb{R}} \psi(\omega)\varphi(\omega)d\omega = \langle \hat{f}, \varphi \rangle (= \langle f, \hat{\varphi} \rangle).$$

Here we need the same "advanced" step as on page 83:

$$\begin{split} \int_{\mathbb{R}} \psi(\omega) \varphi(\omega) d\omega &= \int_{\mathbb{R}} \langle f, e^{-2\pi i \omega t} \eta(t) \varphi(\omega) \rangle d\omega \\ &= (\text{why??}) = \langle f, \int_{\mathbb{R}} e^{-2\pi i \omega t} \eta(t) \varphi(\omega) d\omega \rangle \\ &= \langle f, \eta(t) \hat{\varphi}(t) \rangle \quad \left(\begin{array}{c} \text{since } \eta(t) \equiv 1 \text{ in a} \\ \text{neighborhood of supp}(f) \end{array} \right) \\ &= \langle f, \hat{\varphi} \rangle. \end{split}$$

A very short explanation of why "why??" is permitted: Replace the integral by a Riemann sum, which converges in S, i.e., approximate

$$\int_{\mathbb{R}} e^{-2\pi i \omega t} \varphi(\omega) d\omega = \lim_{n \to \infty} \sum_{k = -\infty}^{\infty} e^{-2\pi i \omega_k t} \varphi(\omega_k) \frac{1}{n},$$

where $\omega_k = k/n$.

3.11 Trigonometric Polynomials

Definition 3.66. A trigonometric polynomial is a sum of the form

$$\psi(t) = \sum_{j=1}^{m} c_j e^{2\pi i \omega_j t}.$$

The numbers ω_j are called the **frequencies** of ψ .

Theorem 3.67. If we interpret ψ as a polynomial then the spectrum of ψ is $\{\omega_1, \omega_2, \ldots, \omega_m\}$, i.e., the spectrum consists of the frequencies of the polynomial.

PROOF. Follows from homework 27, since supp $(\delta_{\omega_j}) = \{\omega_j\}$. \square

Example 3.68. Find the spectrum of the Weierstrass function

$$\sigma(t) = \sum_{k=0}^{\infty} a^k \cos(2\pi b^k t),$$

where $0 < a < 1, ab \ge 1$.

To solve this we need the following lemma

Lemma 3.69. Let 0 < a < 1, b > 0. Then

$$\sum_{k=0}^{N} a^k \cos(2\pi b^k t) \to \sum_{k=0}^{\infty} a^k \cos(2\pi b^k t)$$

in S' as $N \to \infty$.

PROOF. Easy. Must show that for all $\varphi \in \mathcal{S}$,

$$\int_{\mathbb{R}} \left(\sum_{k=0}^{N} - \sum_{k=0}^{\infty} \right) a^k \cos(2\pi b^k t) \varphi(t) dt \to 0 \text{ as } N \to \infty.$$

This is true because

$$\int_{\mathbb{R}} \sum_{k=N+1}^{\infty} |a^k \cos(2\pi b^k t) \varphi(t)| dt \leq \int_{\mathbb{R}} \sum_{k=N+1}^{\infty} a^k |\varphi(t)| dt
\leq \sum_{k=N+1}^{\infty} a^k \int_{-\infty}^{\infty} |\varphi(t)| dt
= \frac{a^{N+1}}{1-a} \int_{-\infty}^{\infty} |\varphi(t)| dt \to 0 \text{ as } N \to \infty.$$

Solution of 3.68: Since $\sum_{k=0}^{N} \to \sum_{k=0}^{\infty}$ in \mathcal{S}' , also the Fourier transforms converge in \mathcal{S}' , so to find $\hat{\sigma}$ it is enough to find the transform of $\sum_{k=0}^{N} a^k \cos(2\pi b^k t)$ and to let $N \to \infty$. This transform is

$$\delta_0 + \frac{1}{2} [a(\delta_b + \delta_{-b}) + a^2(\delta_{-b^2} + \delta_{b^2}) + \dots + a^N(\delta_{-b^N} + \delta_{b^N})].$$

Thus.

$$\hat{\sigma} = \delta_0 + \frac{1}{2} \sum_{n=1}^{\infty} a^n (\delta_{-b^n} + \delta_{b^n}),$$

where the sum converges in S', and the support of this is $\{0, \pm b, \pm b^2, \pm b^3, \ldots\}$, which is also the spectrum of σ .

Example 3.70. Let f be *periodic* with period 1, and suppose that $f \in L^1(\mathbb{T})$, i.e., $\int_0^1 |f(t)| dt < \infty$. Find the Fourier transform and the spectrum of f.

Solution: (Outline) The inversion formula for the periodic transform says that

$$f = \sum_{n = -\infty}^{\infty} \hat{f}(n)e^{2\pi i n t}.$$

Working as on page 86 (but a little bit harder) we find that the sum converges in S', so we are allowed to take transforms:

$$\hat{f} = \sum_{n=-\infty}^{\infty} \hat{f}(n)\delta_n$$
 (converges still in \mathcal{S}').

Thus, the spectrum of f is $\{n \in \mathbb{N} : \hat{f}(n) \neq 0\}$. Compare this to the theory of Fourier series.

General Conclusion 3.71. The distribution Fourier transform contains all the other Fourier transforms in this course. A "universal transform".

3.12 Singular differential equations

Definition 3.72. A linear differential equation of the type

$$\sum_{k=0}^{n} a_k u^{(k)} = f \tag{3.6}$$

is **regular** if it has exactly one solution $u \in \mathcal{S}'$ for every $f \in \mathcal{S}'$. Otherwise it is **singular**.

Thus: Singular means: For some $f \in \mathcal{S}'$ it has either no solution or more than one solution.

Example 3.73. The equation u' = f. Taking f = 0 we get many different solutions, namely u = constant (different constants give different solutions). Thus, this equation is singular.

Example 3.74. We saw earlier on page 59-63 that if we work with L^2 -functions instead of distributions, then the equation

$$u'' + \lambda u = f$$

is singular iff $\lambda > 0$. The same result is true for distributions:

Theorem 3.75. The equation (3.6) is regular

$$\Leftrightarrow \sum_{k=0}^{n} a_k (2\pi i \omega)^k \neq 0 \quad \text{for all } \omega \in \mathbb{R}.$$

Before proving this, let us define

Definition 3.76. The function $D(\omega) = \sum_{k=0}^{n} a^k (2\pi i \omega)^k$ is called the **symbol** of (3.6)

Thus: Singular \Leftrightarrow the symbol vanishes for some $\omega \in \mathbb{R}$.

PROOF OF THEOREM 3.75. Part 1: Suppose that $D(\omega) \neq 0$ for all $\omega \in \mathbb{R}$. Transform (3.6):

$$\sum_{k=0}^{n} a_k (2\pi i\omega)^k \hat{u} = \hat{f} \quad \Leftrightarrow \quad D(\omega)\hat{u} = \hat{f}.$$

If $D(\omega) \neq 0$ for all ω , then $\frac{1}{D(\omega)} \in C_{pol}^{\infty}$, so we can multiply by $\frac{1}{D(\omega)}$:

$$\hat{u} = \frac{1}{D(\omega)}\hat{f} \quad \Leftrightarrow \quad u = K * f$$

where K is the inverse distribution Fourier transform of $\frac{1}{D(\omega)}$. Therefore, (3.6) has exactly one solution $u \in \mathcal{S}'$ for every $f \in \mathcal{S}'$.

Part 2: Suppose that D(a) = 0 for some $a \in \mathbb{R}$. Then

$$\langle D\delta_a, \varphi \rangle = \langle \delta_a, D\varphi \rangle = D(a)\varphi(a) = 0.$$

This is true for all $\varphi \in \mathcal{S}$, so $D\delta_a$ is the zero distribution: $D\delta_a = 0$.

$$\Leftrightarrow \sum_{k=0}^{n} a_k (2\pi i\omega)^k \delta_a = 0.$$

Let v be the inverse transform of δ_a , i.e.,

$$v(t) = e^{2\pi i a t} \implies \sum_{k=0}^{n} a_k v^{(k)} = 0.$$

Thus, v is one solution of (3.6) with $f \equiv 0$. Another solution is $v \equiv 0$. Thus, (3.6) has at least two different solutions \Rightarrow the equation is singular. \square

Definition 3.77. If (3.6) is regular, then we call K =inverse transform of $\frac{1}{D(\omega)}$ the **Green's function** of (3.6). (Not defined for singular problems.)

<u>How many solutions does a singular equation have?</u> Find them all! (Solution later!)

Example 3.78. If $f \in C(\mathbb{R})$ (and $|f(t)| \leq M(1+|t|^k)$ for some M and k), then the equation

$$u' = f$$

has at least the solutions

$$u(x) = \int_0^x f(x)dx + \text{constant}$$

Does it have more solutions?

Answer: No! Why?

Suppose that u' = f and $v' = f \Rightarrow u' - v' = 0$. Transform this $\Rightarrow (2\pi i\omega)(\hat{u} - \hat{v}) = 0$.

Let φ be a test function which vanishes in some interval $[-\varepsilon, \varepsilon]$ (\Leftrightarrow the support of φ is in $(-\infty, -\varepsilon] \cup [\varepsilon, \infty)$). Then

$$\psi(\omega) = \frac{\varphi(\omega)}{2\pi i \omega}$$

is also a test function (it is $\equiv 0$ in $[-\varepsilon, \varepsilon]$), since $(2\pi i\omega)(\hat{u} - \hat{v}) = 0$ we get

$$0 = \langle (2\pi i\omega)(\hat{u} - \hat{v}), \psi \rangle$$
$$= \langle \hat{u} - \hat{v}, 2\pi i\omega\psi(\omega) \rangle = \langle \hat{u} - \hat{v}, \varphi \rangle.$$

Thus, $\langle \hat{u} - \hat{v}, \varphi \rangle = 0$ when $\operatorname{supp}(\varphi) \subset (-\infty, -\varepsilon] \cup [\varepsilon, \infty)$, so by definition, $\operatorname{supp}(\hat{u} - \hat{v}) \subset \{0\}$. By theorem 3.63, $\hat{u} - \hat{v}$ is a polynomial. The only polynomial whose derivative is zero is the constant function, so u - v is a constant. \square

A more sophisticated version of the same argument proves the following theorem:

Theorem 3.79. Suppose that the equation

$$\sum_{k=0}^{n} a_k u^{(k)} = f (3.7)$$

is singular, and suppose that the symbol $D(\omega)$ has exactly r simple zeros $\omega_1, \omega_2, \ldots, \omega_r$. If the equation (3.7) has a solution v, then every other solution $u \in \mathcal{S}'$ of (3.7) is of the form

$$u = v + \sum_{j=1}^{r} b_j e^{2\pi i \omega_j t},$$

where the coefficients b_j can be chosen arbitrarily.

Compare this to example 3.78: The symbol of the equation u' = f is $2\pi i\omega$, which has a simple zero at zero.

Comment 3.80. The equation (3.7) always has a distribution solution, for all $f \in S'$. This is proved for the equation u' = f in [GW99, p. 277], and this can be extended to the general case.

Comment 3.81. A zero ω_j of order $r \geq 2$ of D gives rise to terms of the type $P(t)e^{2\pi i\omega_j t}$, where P(t) is a polynomial of degree $\leq r-1$.