
Chapter 2

Fourier Integrals

2.1 L1-Theory

Repetition: R = (−∞,∞),

f ∈ L1(R) ⇔
∫ ∞

−∞
|f(t)|dt < ∞ (and f measurable)

f ∈ L2(R) ⇔
∫ ∞

−∞
|f(t)|2dt < ∞ (and f measurable)

Definition 2.1. The Fourier transform of f ∈ L1(R) is given by

f̂(ω) =

∫ ∞

−∞
e−2πiωtf(t)dt, ω ∈ R

Comparison to chapter 1:

f ∈ L1(T) ⇒ f̂(n) defined for all n ∈ Z

f ∈ L1(R) ⇒ f̂(ω) defined for all ω ∈ R

Notation 2.2. C0(R) = “continuous functions f(t) satisfying f(t) → 0 as

t → ±∞”. The norm in C0 is

‖f‖C0(R) = max
t∈R

|f(t)| (= sup
t∈R

|f(t)|).

Compare this to c0(Z).

Theorem 2.3. The Fourier transform F maps L1(R) → C0(R), and it is a

contraction, i.e., if f ∈ L1(R), then f̂ ∈ C0(R) and ‖f̂‖C0(R) ≤ ‖f‖L1(R), i.e.,

36
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i) f̂ is continuous

ii) f̂(ω) → 0 as ω → ±∞

iii) |f̂(ω)| ≤
∫∞
−∞|f(t)|dt, ω ∈ R.

Note: Part ii) is again the Riemann-Lesbesgue lemma.

Proof. iii) “The same” as the proof of Theorem 1.4 i).

ii) “The same” as the proof of Theorem 1.4 ii), (replace n by ω, and prove this

first in the special case where f is continuously differentiable and vanishes outside

of some finite interval).

i) (The only “new” thing):

|f̂(ω + h) − f̂(ω)| =
∣∣
∫

R

(
e−2πi(ω+h)t − e−2πiωt

)
f(t)dt

∣∣

=
∣∣
∫

R

(
e−2πiht − 1

)
e−2πiωtf(t)dt

∣∣

△-ineq.

≤
∫

R

|e−2πiht − 1||f(t)| dt → 0 as h → 0

(use Lesbesgue’s dominated convergens Theorem, e−2πiht → 1 as h → 0, and

|e−2πiht − 1| ≤ 2). �

Question 2.4. Is it possible to find a function f ∈ L1(R) whose Fourier trans-

form is the same as the original function?

Answer: Yes, there are many. See course on special functions. All functions

which are eigenfunctions with eigenvalue 1 are mapped onto themselves.

Special case:

Example 2.5. If h0(t) = e−πt2 , t ∈ R, then ĥ0(ω) = e−πω2
, ω ∈ R

Proof. See course on special functions.

Note: After rescaling, this becomes the normal (Gaussian) distribution function.

This is no coincidence!

Another useful Fourier transform is:

Example 2.6. The Fejer kernel in L1(R) is

F (t) =
(sin(πt)

πt

)2
.
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The transform of this function is

F̂ (ω) =

{
1 − |ω| , |ω| ≤ 1,

0 , otherwise.

Proof. Direct computation. (Compare this to the periodic Fejer kernel on page

23.)

Theorem 2.7 (Basic rules). Let f ∈ L1(R), τ, λ ∈ R

a) g(t) = f(t − τ) ⇒ ĝ(ω) = e−2πiωτ f̂(ω)

b) g(t) = e2πiτtf(t) ⇒ ĝ(ω) = f̂(ω − τ)

c) g(t) = f(−t) ⇒ ĝ(ω) = f̂(−ω)

d) g(t) = f(t) ⇒ ĝ(ω) = f̂(−ω)

e) g(t) = λf(λt) ⇒ ĝ(ω) = f̂(ω
λ
) (λ > 0)

f) g ∈ L1 and h = f ∗ g ⇒ ĥ(ω) = f̂(ω)ĝ(ω)

g)
g(t) = −2πitf(t)

and g ∈ L1

}
⇒

{
f̂ ∈ C1(R), and

f̂ ′(ω) = ĝ(ω)

h)
f is “absolutely continuous“

and f ′ = g ∈ L1(R)

}
⇒ ĝ(ω) = 2πiωf̂(ω).

Proof. (a)-(e): Straightforward computation.

(g)-(h): Homework(?) (or later).

The formal inversion for Fourier integrals is

f̂(ω) =

∫ ∞

−∞
e−2πiωtf(t)dt

f(t)
?
=

∫ ∞

−∞
e2πiωtf̂(ω)dω

This is true in “some cases” in “some sense”. To prove this we need some

additional machinery.

Definition 2.8. Let f ∈ L1(R) and g ∈ Lp(R), where 1 ≤ p ≤ ∞. Then we

define

(f ∗ g)(t) =

∫

R

f(t − s)g(s)ds

for all those t ∈ R for which this integral converges absolutely, i.e.,
∫

R

|f(t − s)g(s)|ds < ∞.
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Lemma 2.9. With f and p as above, f ∗ g is defined a.e., f ∗ g ∈ Lp(R), and

‖f ∗ g‖Lp(R) ≤ ‖f‖L1(R)‖g‖Lp(R).

If p = ∞, then f ∗ g is defined everywhere and uniformly continuous.

Conclusion 2.10. If ‖f‖L1(R) ≤ 1, then the mapping g 7→ f ∗ g is a contraction

from Lp(R) to itself (same as in periodic case).

Proof. p = 1: “same” proof as we gave on page 21.

p = ∞: Boundedness of f ∗ g easy. To prove continuity we approximate f by a

function with compact support and show that ‖f(t)− f(t+h)‖L1 → 0 as h → 0.

p 6= 1,∞: Significantly harder, case p = 2 found in Gasquet.

Notation 2.11. BUC(R) = “all bounded and continuous functions on R”. We

use the norm

‖f‖BUC(R) = sup
t∈R

|f(t)|.

Theorem 2.12 (“Approximate identity”). Let k ∈ L1(R), k̂(0) =
∫∞
−∞ k(t)dt =

1, and define

kλ(t) = λk(λt), t ∈ R, λ > 0.

If f belongs to one of the function spaces

a) f ∈ Lp(R), 1 ≤ p < ∞ (note: p 6= ∞),

b) f ∈ C0(R),

c) f ∈ BUC(R),

then kλ ∗ f belongs to the same function space, and

kλ ∗ f → f as λ → ∞

in the norm of the same function space, i.e.,

‖kλ ∗ f − f‖Lp(R) → 0 as λ → ∞ if f ∈ Lp(R)

supt∈R
|(kλ ∗ f)(t) − f(t)| → 0 as λ → ∞

{
if f ∈ BUC(R),

or f ∈ C0(R).

It also conveges a.e. if we assume that
∫∞
0

(sups≥|t||k(s)|)dt < ∞.
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Proof. “The same” as the proofs of Theorems 1.29, 1.32 and 1.33. That is,

the computations stay the same, but the bounds of integration change (T → R),

and the motivations change a little (but not much). �

Example 2.13 (Standard choices of k).

i) The Gaussian kernel

k(t) = e−πt2 , k̂(ω) = e−πω2

.

This function is C∞ and nonnegative, so

‖k‖L1 =

∫

R

|k(t)|dt =

∫

R

k(t)dt = k̂(0) = 1.

ii) The Fejer kernel

F (t) =
sin(πt)2

(πt)2
.

It has the same advantages, and in addition

F̂ (ω) = 0 for |ω| > 1.

The transform is a triangle:

F̂ (ω) =

{
1 − |ω|, |ω| ≤ 1

0, |ω| > 1

−1                                      1

F(   )ω

iii) k(t) = e−2|t| (or a rescaled version of this function. Here

k̂(ω) =
1

1 + (πω)2
, ω ∈ R.

Same advantages (except C∞)).
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Comment 2.14. According to Theorem 2.7 (e), k̂λ(ω) → k̂(0) = 1 as λ →
∞, for all ω ∈ R. All the kernels above are “low pass filters” (non causal).

It is possible to use “one-sided” (“causal”) filters instead (i.e., k(t) = 0 for

t < 0). Substituting these into Theorem 2.12 we get “approximate identities”,

which “converge to a δ-distribution”. Details later.

Theorem 2.15. If both f ∈ L1(R) and f̂ ∈ L1(R), then the inversion formula

f(t) =

∫ ∞

−∞
e2πiωtf̂(ω)dω (2.1)

is valid for almost all t ∈ R. By redefining f on a set of measure zero we can

make it hold for all t ∈ R (the right hand side of (2.1) is continuous).

Proof. We approximate
∫

R
e2πiωtf̂(ω)dω by

∫
R

e2πiωte−ε2πω2
f̂(ω)dω (where ε > 0 is small)

=
∫

R
e2πiωt−ε2πω2 ∫

R
e−2πiωsf(s)dsdω (Fubini)

=
∫

s∈R
f(s)

∫

ω∈R

e−2πiω(s−t) e−ε2πω2

︸ ︷︷ ︸
k(εω2)

dωds

︸ ︷︷ ︸
(⋆)

(Ex. 2.13 last page)

(⋆) The Fourier transform of k(εω2) at the point s − t. By Theorem 2.7 (e) this

is equal to

=
1

ε
k̂(

s − t

ε
) =

1

ε
k̂(

t − s

ε
)

(since k̂(ω) = e−πω2
is even).

The whole thing is

∫

s∈R

f(s)
1

ε
k

(
t − s

ε

)
ds = (f ∗ k 1

ε
)(t) → f ∈ L1(R)

as ε → 0+ according to Theorem 2.12. Thus, for almost all t ∈ R,

f(t) = lim
ε→0

∫

R

e2πiωte−ε2πω2

f̂(ω)dω.

On the other hand, by the Lebesgue dominated convergence theorem, since

|e2πiωte−ε2πω2

f̂(ω)| ≤ |f̂(ω)| ∈ L1(R),

lim
ε→0

∫

R

e2πiωte−ε2πω2

f̂(ω)dω =

∫

R

e2πiωtf̂(ω)dω.
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Thus, (2.1) holds a.e. The proof of the fact that

∫

R

e2πiωtf̂(ω)dω ∈ C0(R)

is the same as the proof of Theorem 2.3 (replace t by −t). �

The same proof also gives us the following “approximate inversion formula”:

Theorem 2.16. Suppose that k ∈ L1(R), k̂ ∈ L1(R), and that

k̂(0) =

∫

R

k(t)dt = 1.

If f belongs to one of the function spaces

a) f ∈ Lp(R), 1 ≤ p < ∞

b) f ∈ C0(R)

c) f ∈ BUC(R)

then ∫

R

e2πiωtk̂(εω)f̂(ω)dω → f(t)

in the norm of the given space (i.e., in Lp-norm, or in the sup-norm), and also

a.e. if
∫∞
0

(sups≥|t||k(s)|)dt < ∞.

Proof. Almost the same as the proof given above. If k is not even, then we

end up with a convolution with the function kε(t) = 1
ε
k(−t/ε) instead, but we

can still apply Theorem 2.12 with k(t) replaced by k(−t). �

Corollary 2.17. The inversion in Theorem 2.15 can be interpreted as follows:

If f ∈ L1(R) and f̂ ∈ L1(R), then,

ˆ̂
f(t) = f(−t) a.e.

Here
ˆ̂
f(t) = the Fourier transform of f̂ evaluated at the point t.

Proof. By Theorem 2.15,

f(t) =

∫

R

e−2πi(−t)ω f̂(ω)dω

︸ ︷︷ ︸
Fourier transform of f̂ at the point (−t)

a.e.
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Corollary 2.18.
ˆ̂
ˆ̂
f(t) = f(t) (If we repeat the Fourier transform 4 times, then

we get back the original function). (True at least if f ∈ L1(R) and f̂ ∈ L1(R). )

As a prelude (=preludium) to the L2-theory we still prove some additional results:

Lemma 2.19. Let f ∈ L1(R) and g ∈ L1(R). Then

∫

R

f(t)ĝ(t)dt =

∫

R

f̂(s)g(s)ds

Proof.

∫

R

f(t)ĝ(t)dt =

∫

t∈R

f(t)

∫

s∈R

e−2πitsg(s)dsdt (Fubini)

=

∫

s∈R

(∫

t∈R

f(t)e−2πistdt

)
g(s)ds

=

∫

s∈R

f̂(s)g(s)ds. �

Theorem 2.20. Let f ∈ L1(R), h ∈ L1(R) and ĥ ∈ L1(R). Then

∫

R

f(t)h(t)dt =

∫

R

f̂(ω)ĥ(ω)dω. (2.2)

Specifically, if f = h, then (f ∈ L2(R) and)

‖f‖L2(R) = ‖f̂‖L2(R). (2.3)

Proof. Since h(t) =
∫

ω∈R
e2πiωtĥ(ω)dω we have

∫

R

f(t)h(t)dt =

∫

t∈R

f(t)

∫

ω∈R

e−2πiωtĥ(ω)dωdt (Fubini)

=

∫

s∈R

(∫

t∈R

f(t)e−2πistdt

)
ĥ(ω)dω

=

∫

R

f̂(ω)ĥ(ω)dω. �

2.2 Rapidly Decaying Test Functions

(“Snabbt avtagande testfunktioner”).

Definition 2.21. S = the set of functions f with the following properties

i) f ∈ C∞(R) (infinitely many times differentiable)
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ii) tkf (n)(t) → 0 as t → ±∞ and this is true for all

k, n ∈ Z+ = {0, 1, 2, 3, . . .}.

Thus: Every derivative of f → 0 at infinity faster than any negative power of t.

Note: There is no natural norm in this space (it is not a “Banach” space).

However, it is possible to find a complete, shift-invariant metric on this space (it

is a Frechet space).

Example 2.22. f(t) = P (t)e−πt2 ∈ S for every polynomial P (t). For example,

the Hermite functions are of this type (see course in special functions).

Comment 2.23. Gripenberg denotes S by C∞
↓ (R). The functions in S are called

rapidly decaying test functions.

The main result of this section is

Theorem 2.24. f ∈ S ⇐⇒ f̂ ∈ S

That is, both the Fourier transform and the inverse Fourier transform maps this

class of functions onto itself. Before proving this we prove the following

Lemma 2.25. We can replace condition (ii) in the definition of the class S by

one of the conditions

iii)
∫

R
|tkf (n)(t)|dt < ∞, k, n ∈ Z+ or

iv) |
(

d
dt

)n
tkf(t)| → 0 as t → ±∞, k, n ∈ Z+

without changing the class of functions S.

Proof. If ii) holds, then for all k, n ∈ Z+,

sup
t∈R

|(1 + t2)tkf (n)(t)| < ∞

(replace k by k + 2 in ii). Thus, for some constant M,

|tkf (n)(t)| ≤ M

1 + t2
=⇒

∫

R

|tkf (n)(t)|dt < ∞.

Conversely, if iii) holds, then we can define g(t) = tk+1f (n)(t) and get

g′(t) = (k + 1)tkf (n)(t)︸ ︷︷ ︸
∈L1

+ tk+1f (n+1)(t)︸ ︷︷ ︸
∈L1

,
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so g′ ∈ L1(R), i.e., ∫ ∞

−∞
|g′(t)|dt < ∞.

This implies

|g(t)| ≤ |g(0) +

∫ t

0

g′(s)ds|

≤ |g(0)| +
∫ t

0

|g′(s)|ds

≤ |g(0)| +
∫ ∞

−∞
|g′(s)|ds = |g(0)| + ‖g′‖L1 ,

so g is bounded. Thus,

tkf (n)(t) =
1

t
g(t) → 0 as t → ±∞.

The proof that ii) ⇐⇒ iv) is left as a homework. �

Proof of Theorem 2.24. By Theorem 2.7, the Fourier transform of

(−2πit)kf (n)(t) is

(
d

dω

)k

(2πiω)nf̂(ω).

Therefore, if f ∈ S, then condition iii) on the last page holds, and by Theorem

2.3, f̂ satisfies the condition iv) on the last page. Thus f̂ ∈ S. The same ar-

gument with e−2πiωt replaced by e+2πiωt shows that if f̂ ∈ S, then the Fourier

inverse transform of f̂ (which is f) belongs to S. �

Note: Theorem 2.24 is the basis for the theory of Fourier transforms of distribu-

tions. More on this later.

2.3 L2-Theory for Fourier Integrals

As we saw earlier in Lemma 1.10, L2(T) ⊂ L1(T). However, it is not true that

L2(R) ⊂ L1(R). Counter example:

f(t) =
1√

1 + t2





∈ L2(R)

6∈ L1(R)

∈ C∞(R)

(too large at ∞).

So how on earth should we define f̂(ω) for f ∈ L2(R), if the integral
∫

R

e−2πintf(t)dt
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does not converge?

Recall: Lebesgue integral converges ⇐⇒ converges absolutely ⇐⇒
∫
|e−2πintf(t)|dt < ∞ ⇐⇒ f ∈ L1(R).

We are saved by Theorem 2.20. Notice, in particular, condition (2.3) in that

theorem!

Definition 2.26 (L2-Fourier transform).

i) Approximate f ∈ L2(R) by a sequence fn ∈ S which converges to f in

L2(R). We do this e.g. by “smoothing” and “cutting” (“utjämning” och

“klippning”): Let k(t) = e−πt2 , define

kn(t) = nk(nt), and

fn(t) = k

(
t

n

)

︸ ︷︷ ︸
⋆

(kn ∗ f)(t)︸ ︷︷ ︸
⋆⋆

︸ ︷︷ ︸
the product belongs to S

(⋆) this tends to zero faster than any polynomial as t → ∞.

(⋆⋆) “smoothing” by an approximate identity, belongs to C∞ and is bounded.

By Theorem 2.12 kn ∗ f → f in L2 as n → ∞. The functions k
(

t
n

)
tend

to k(0) = 1 at every point t as n → ∞, and they are uniformly bounded

by 1. By using the appropriate version of the Lesbesgue convergence we

let fn → f in L2(R) as n → ∞.

ii) Since fn converges in L2, also f̂n must converge to something in L2. More

about this in “Analysis II”. This follows from Theorem 2.20. (fn → f ⇒
fn Cauchy sequence ⇒ f̂n Cauchy seqence ⇒ f̂n converges.)

iii) Call the limit to which fn converges “The Fourier transform of f”, and

denote it f̂ .

Definition 2.27 (Inverse Fourier transform). We do exactly as above, but re-

place e−2πiωt by e+2πiωt.

Final conclusion:
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Theorem 2.28. The “extended” Fourier transform which we have defined above

has the following properties: It maps L2(R) one-to-one onto L2(R), and if f̂ is the

Fourier transform of f , then f is the inverse Fourier transform of f̂ . Moreover,

all norms, distances and inner products are preserved.

Explanation:

i) “Normes preserved” means
∫

R

|f(t)|2dt =

∫

R

|f̂(ω)|2dω,

or equivalently, ‖f‖L2(R) = ‖f̂‖L2(R).

ii) “Distances preserved” means

‖f − g‖L2(R) = ‖f̂ − ĝ‖L2(R)

(apply i) with f replaced by f − g)

iii) “Inner product preserved” means
∫

R

f(t)g(t)dt =

∫

R

f̂(ω)ĝ(ω)dω,

which is often written as

〈f, g〉L2(R) = 〈f̂ , ĝ〉L2(R).

This was theory. How to do in practice?

One answer: We saw earlier that if [a, b] is a finite interval, and if f ∈ L2[a, b] ⇒
f ∈ L1[a, b], so for each T > 0, the integral

f̂T (ω) =

∫ T

−T

e−2πiωtf(t)dt

is defined for all ω ∈ R. We can try to let T → ∞, and see what happens. (This

resembles the theory for the inversion formula for the periodical L2-theory.)

Theorem 2.29. Suppose that f ∈ L2(R). Then

lim
T→∞

∫ T

−T

e−2πiωtf(t)dt = f̂(ω)

in the L2-sense as T → ∞, and likewise

lim
T→∞

∫ T

−T

e2πiωtf̂(ω)dω = f(t)

in the L2-sense.
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Proof. Much too hard to be presented here. Another possibility: Use the Fejer

kernel or the Gaussian kernel, or any other kernel, and define

f̂(ω) = limn→∞
∫

R
e−2πiωtk

(
t
n

)
f(t)dt,

f(t) = limn→∞
∫

R
e+2πiωtk̂

(
ω
n

)
f̂(ω)dω.

We typically have the same type of convergence as we had in the Fourier inversion

formula in the periodic case. (This is a well-developed part of mathematics, with

lots of results available.) See Gripenberg’s compendium for some additional

results.

2.4 An Inversion Theorem

From time to time we need a better (= more useful) inversion theorem for the

Fourier transform, so let us prove one here:

Theorem 2.30. Suppose that f ∈ L1(R) + L2(R) (i.e., f = f1 + f2, where

f1 ∈ L1(R) and f2 ∈ L2(R)). Let t0 ∈ R, and suppose that

∫ t0+1

t0−1

∣∣∣f(t) − f(t0)

t − t0

∣∣∣dt < ∞. (2.4)

Then

f(t0) = lim
S→∞
T→∞

∫ T

−S

e2πiωt0 f̂(ω)dω, (2.5)

where f̂(ω) = f̂1(ω) + f̂2(ω).

Comment: Condition (2.4) is true if, for example, f is differentiable at the point

t0.

Proof. Step 1. First replace f(t) by g(t) = f(t + t0). Then

ĝ(ω) = e2πiωt0 f̂(ω),

and (2.5) becomes

g(0) = lim
S→∞
T→∞

∫ T

−S

ĝ(ω)dω,

and (2.4) becomes ∫ 1

−1

∣∣∣g(t− t0) − g(0)

t − t0

∣∣∣dt < ∞.

Thus, it suffices to prove the case where t0 = 0 .
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Step 2: We know that the theorem is true if g(t) = e−πt2 (See Example 2.5 and

Theorem 2.15). Replace g(t) by

h(t) = g(t) − g(0)e−πt2.

Then h satisfies all the assumptions which g does, and in addition, h(0) = 0.

Thus it suffices to prove the case where both (⋆) t0 = 0 and f(0) = 0 .

For simplicity we write f instead of h but assume (⋆). Then (2.4) and (2.5)

simplify:

∫ 1

−1

∣∣∣f(t)

t

∣∣∣dt < ∞, (2.6)

lim
S→∞
T→∞

∫ T

−S

f̂(ω)dω = 0. (2.7)

Step 3: If f ∈ L1(R), then we argue as follows. Define

g(t) =
f(t)

−2πit
.

Then g ∈ L1(R). By Fubini’s theorem,

∫ T

−S

f̂(ω)dω =

∫ T

−S

∫ ∞

−∞
e−2πiωtf(t)dtdω

=

∫ ∞

−∞

∫ T

−S

e−2πiωtdωf(t)dt

=

∫ ∞

−∞

[
1

−2πit
e−2πiωt

]T

−S

f(t)dt

=

∫ ∞

−∞

[
e−2πiT t − e−2πi(−S)t

] f(t)

−2πit
dt

= ĝ(T ) − ĝ(−S),

and this tends to zero as T → ∞ and S → ∞ (see Theorem 2.3). This proves

(2.7).

Step 4: If instead f ∈ L2(R), then we use Parseval’s identity

∫ ∞

−∞
f(t)h(t)dt =

∫ ∞

−∞
f̂(ω)ĥ(ω)dω

in a clever way: Choose

ĥ(ω) =

{
1, −S ≤ t ≤ T,

0, otherwise.
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Then the inverse Fourier transform h(t) of ĥ is

h(t) =

∫ T

−S

e2πiωtdω

=

[
1

2πit
e2πiωt

]T

−S

=
1

2πit

[
e2πiT t − e2πi(−S)t

]

so Parseval’s identity gives

∫ T

−S

f̂(ω)dω =

∫ ∞

−∞
f(t)

1

−2πit

[
e−2πiT t − e−2πi(−S)t

]
dt

= (with g(t) as in Step 3)

=

∫ ∞

−∞

[
e−2πiT t − e−2πi(S)t

]
g(t)dt

= ĝ(T ) − ĝ(−S) → 0 as

{
T → ∞,

S → ∞.

Step 5: If f = f1 + f2, where f1 ∈ L1(R) and f2 ∈ L2(R), then we apply Step 3

to f1 and Step 4 to f2, and get in both cases (2.7) with f replaced by f1 and f2.

�

Note: This means that in “most cases” where f is continuous at t0 we have

f(t0) = lim
S→∞
T→∞

∫ T

−S

e2πiωt0 f̂(ω)dω.

(continuous functions which do not satisfy (2.4) do exist, but they are difficult

to find.) In some cases we can even use the inversion formula at a point where

f is discontinuous.

Theorem 2.31. Suppose that f ∈ L1(R) + L2(R). Let t0 ∈ R, and suppose that

the two limits

f(t0+) = lim
t↓t0

f(t)

f(t0−) = lim
t↑t0

f(t)

exist, and that

∫ t0+1

t0

∣∣∣f(t) − f(t0+)

t − t0

∣∣∣dt < ∞,

∫ t0

t0−1

∣∣∣f(t) − f(t0−)

t − t0

∣∣∣dt < ∞.
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Then

lim
T→∞

∫ T

−T

e2πiωt0 f̂(ω)dω =
1

2
[f(t0+) + f(t0−)].

Note: Here we integrate
∫ T

−T
, not

∫ T

−S
, and the result is the average of the right

and left hand limits.

Proof. As in the proof of Theorem 2.30 we may assume that

Step 1: t0 = 0 , (see Step 1 of that proof)

Step 2: f(t0+) + f(t0−) = 0 , (see Step 2 of that proof).

Step 3: The claim is true in the special case where

g(t) =

{
e−t, t > 0,

−et, t < 0,

because g(0+) = 1, g(0−) = −1, g(0+) + g(0−) = 0, and
∫ T

−T

ĝ(ω)dω = 0 for all T,

since f is odd =⇒ ĝ is odd.

Step 4: Define h(t) = f(t)−f(0+) · g(t), where g is the function in Step 3. Then

h(0+) = f(0+) − f(0+) = 0 and

h(0−) = f(0−) − f(0+)(−1) = 0, so

h is continuous. Now apply Theorem 2.30 to h. It gives

0 = h(0) = lim
T→∞

∫ T

−T

ĥ(ω)dω.

Since also

0 = f(0+)[g(0+) + g(0−)] = lim
T→∞

∫ T

−T

ĝ(ω)dω,

we therefore get

0 = f(0+) + f(0−) = lim
T→∞

∫ T

−T

[ĥ(ω) + ĝ(ω)]dω = lim
T→∞

∫ T

−T

f̂(ω)dω. �

Comment 2.32. Theorems 2.30 and 2.31 also remain true if we replace

lim
T→∞

∫ T

−T

e2πiωtf̂(ω)dω

by

lim
ε→0

∫ ∞

−∞
e2πiωte−π(εω)2 f̂(ω)dω (2.8)

(and other similar “summability” formulas). Compare this to Theorem 2.16. In

the case of Theorem 2.31 it is important that the “cutoff kernel” (= e−π(εω)2 in

(2.8)) is even.
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2.5 Applications

2.5.1 The Poisson Summation Formula

Suppose that f ∈ L1(R) ∩ C(R), that
∑∞

n=−∞|f̂(n)| < ∞ (i.e., f̂ ∈ ℓ1(Z)), and

that
∑∞

n=−∞ f(t+n) converges uniformly for all t in some interval (−δ, δ). Then

∞∑

n=−∞
f(n) =

∞∑

n=−∞
f̂(n) (2.9)

Note: The uniform convergence of
∑

f(t + n) can be difficult to check. One

possible way out is: If we define

εn = sup
−δ<t<δ

|f(t + n)|,

and if
∑∞

n=−∞ εn < ∞, then
∑∞

n=−∞ f(t + n) converges (even absolutely), and

the convergence is uniform in (−δ, δ). The proof is roughly the same as what we

did on page 29.

Proof of (2.9). We first construct a periodic function g ∈ L1(T) with the

Fourier coefficients f̂(n):

f̂(n) =

∫ ∞

−∞
e−2πintf(t)dt

=
∞∑

k=−∞

∫ k+1

k

e−2πintf(t)dt

t=k+s
=

∞∑

k=−∞

∫ 1

0

e−2πinsf(s + k)ds

Thm 0.14
=

∫ 1

0

e−2πins

( ∞∑

k=−∞
f(s + k)

)
ds

= ĝ(n), where g(t) =

∞∑

n=−∞
f(t + n).

(For this part of the proof it is enough to have f ∈ L1(R). The other conditions

are needed later.)

So we have ĝ(n) = f̂(n). By the inversion formula for the periodic Fourier

transform:

g(0) =

∞∑

n=−∞
e2πin0ĝ(n) =

∞∑

n=−∞
ĝ(n) =

∞∑

n=−∞
f̂(n),
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provided (=förutsatt) that we are allowed to use the Fourier inversion formula.

This is allowed if g ∈ C[−δ, δ] and ĝ ∈ ℓ1(Z) (Theorem 1.37). This was part of

our assumption.

In addition we need to know that the formula

g(t) =

∞∑

n=−∞
f(t + n)

holds at the point t = 0 (almost everywhere is no good, we need it in exactly

this point). This is OK if
∑∞

n=−∞ f(t + n) converges uniformly in [−δ, δ] (this

also implies that the limit function g is continuous).

Note: By working harder in the proof, Gripenberg is able to weaken some of the

assumptions. There are also some counter-examples on how things can go wrong

if you try to weaken the assumptions in the wrong way.

2.5.2 Is L̂1(R) = C0(R) ?

That is, is every function g ∈ C0(R) the Fourier transform of a function f ∈
L1(R)?

The answer is no, as the following counter-example shows. Take

g(ω) =





ω
ln 2

, |ω| ≤ 1,
1

ln(1+ω)
, ω > 1,

− 1
ln(1−ω)

, ω < −1.

Suppose that this would be the Fourier transform of a function f ∈ L1(R). As

in the proof on the previous page, we define

h(t) =
∞∑

n=−∞
f(t + n).

Then (as we saw there), h ∈ L1(T), and ĥ(n) = f̂(n) for n = 0,±1,±2, . . ..

However, since
∑∞

n=1
1
n
ĥ(n) = ∞, this is not the Fourier sequence of any h ∈

L1(T) (by Theorem 1.38). Thus:

Not every h ∈ C0(R) is the Fourier transform of some f ∈ L1(R).

But:

f ∈ L1(R) ⇒ f̂ ∈ C0(R) ( Page 36)

f ∈ L2(R) ⇔ f̂ ∈ L2(R) ( Page 47)

f ∈ S ⇔ f̂ ∈ S ( Page 44)
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2.5.3 The Euler-MacLauren Summation Formula

Let f ∈ C∞(R+) (where R+ = [0,∞)), and suppose that

f (n) ∈ L1(R+)

for all n ∈ Z+ = {0, 1, 2, 3 . . .}. We define f(t) for t < 0 so that f(t) is even.

Warning: f is continuous at the origin, but f ′ may be discontinuous! For exam-

ple, f(t) = e−|2t|

f(t)=e −2|t|

We want to use Poisson summation formula. Is this allowed?

By Theorem 2.7, f̂ (n) = (2πiω)nf̂(ω), and f̂ (n) is bounded, so

sup
ω∈R

|(2πiω)n||f̂(ω)| < ∞ for all n ⇒
∞∑

n=−∞
|f̂(n)| < ∞.

By the note on page 52, also
∑∞

n=−∞ f(t+n) converges uniformly in (−1, 1). By

the Poisson summation formula:

∞∑

n=0

f(n) =
1

2
f(0) +

1

2

∞∑

n=−∞
f(n)

=
1

2
f(0) +

1

2

∞∑

n=−∞
f̂(n)

=
1

2
f(0) +

1

2
f̂(0) +

1

2

∞∑

n=1

[
f̂(n) + f̂(−n)

]

=
1

2
f(0) +

1

2
f̂(0) +

∞∑

n=1

∫ ∞

−∞

1

2

(
e2πint + e−2πint

)
︸ ︷︷ ︸

cos(2πnt)

f(t)dt

=
1

2
f(0) +

∫ ∞

0

f(t)dt +

∞∑

n=1

∫ ∞

0

cos(2πnt)f(t)dt

Here we integrate by parts several times, always integrating the cosine-function

and differentiating f . All the substitution terms containing odd derivatives of
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f vanish since sin(2πnt) = 0 for t = 0. See Gripenberg for details. The result

looks something like

∞∑

n=0

f(n) =

∫ ∞

0

f(t)dt +
1

2
f(0) − 1

12
f ′(0) +

1

720
f ′′′(0) − 1

30240
f (5)(0) + . . .

2.5.4 Schwartz inequality

The Schwartz inequality will be used below. It says that

|〈f, g〉| ≤ ‖f‖L2‖g‖L2

(true for all possible L2-spaces, both L2(R) and L2(T) etc.)

2.5.5 Heisenberg’s Uncertainty Principle

For all f ∈ L2(R), we have

(∫ ∞

−∞
t2|f(t)|2dt

)(∫ ∞

−∞
ω2|f̂(ω)|2dω

)
≥ 1

16π2

∥∥f
∥∥4

L2(R)

Interpretation: The more concentrated f is in the neighborhood of zero, the

more spread out must f̂ be, and conversely. (Here we must think that ‖f‖L2(R)

is fixed, e.g. ‖f‖L2(R) = 1.)

In quantum mechanics: The product of “time uncertainty” and “space uncer-

tainty” cannot be less than a given fixed number.
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Proof. We begin with the case where f ∈ S. Then

16π

∫

R

|tf(t)|dt

∫

R

|ωf̂(ω)|dω = 4

∫

R

|tf(t)|dt

∫

R

|f ′(t)|dt

(f̂ ′(ω) = 2πiωf̂(ω) and Parseval’s iden. holds). Now use Scwartz ineq.

≥ 4

(∫

R

|tf(t)||f ′(t)|dt

)

= 4

(∫

R

|tf(t)||f ′(t)|dt

)

≥ 4

(∫

R

Re[tf(t)f ′(t)]dt

)

= 4

(∫

R

t

[
1

2

(
f(t)f ′(t) + f(t)f ′(t)

)]
dt

)2

=

∫

R

t
d

dt
(f(t)f(t))︸ ︷︷ ︸

=|f(t)|

dt (integrate by parts)

=
(
[t|f(t)|]∞−∞︸ ︷︷ ︸

=0

−
∫ ∞

−∞
|f(t)|dt

)

=

(∫ ∞

−∞
|f(t)|dt

)

This proves the case where f ∈ S. If f ∈ L(R), but f ∈ S, then we choose a

sequence of functions fn ∈ S so that

∫ ∞

−∞
|fn(t)|dt →

∫ ∞

−∞
|f(t)|dt and

∫ ∞

−∞
|tfn(t)|dt →

∫ ∞

−∞
|tf(t)|dt and

∫ ∞

−∞
|ωf̂n(ω)|dω →

∫ ∞

−∞
|ωf̂(ω)|dω

(This can be done, not quite obvious). Since the inequality holds for each fn, it

must also hold for f .

2.5.6 Weierstrass’ Non-Differentiable Function

Define σ(t) =
∑∞

k=0 ak cos(2πbkt), t ∈ R where 0 < a < 1 and ab≥ 1.

Lemma 2.33. This sum defines a continuous function σ which is not differ-

entiable at any point.



CHAPTER 2. FOURIER INTEGRALS 57

Proof. Convergence easy: At each t,

∞∑

k=0

|ak cos(2πbkt)| ≤
∞∑

k=0

ak =
1

1 − a
< ∞,

and absolute convergence ⇒ convergence. The convergence is even uniform: The

error is

∣∣
∞∑

k=K

ak cos(2πbkt)
∣∣ ≤

∞∑

k=K

|ak cos(2πbkt)| ≤
∞∑

k=K

ak =
aK

1 − a
→ 0 as K → ∞

so by choosing K large enough we can make the error smaller than ε, and the

same K works for all t.

By “Analysis II”: If a sequence of continuous functions converges uniformly, then

the limit function is continuous. Thus, σ is continuous.

Why is it not differentiable? At least does the formal derivative not converge:

Formally we should have

σ′(t) =

∞∑

k=0

ak · 2πbk(−1) sin(2πbkt),

and the terms in this serie do not seem to go to zero (since (ab)k ≥ 1). (If a sum

converges, then the terms must tend to zero.)

To prove that σ is not differentiable we cut the sum appropriatly: Choose some

function ϕ ∈ L1(R) with the following properties:

i) ϕ̂(1) = 1

ii) ϕ̂(ω) = 0 for ω ≤ 1
b

and ω > b

iii)
∫∞
−∞|tϕ(t)|dt < ∞.

 0          1/b          1            b

ϕ(ω)

We can get such a function from the Fejer kernel: Take the square of the Fejer

kernel (⇒ its Fourier transform is the convolution of f̂ with itself), squeeze it

(Theorem 2.7(e)), and shift it (Theorem 2.7(b)) so that it vanishes outside of
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(1
b
, b), and ϕ̂(1) = 1. (Sort of like approximate identity, but ϕ̂(1) = 1 instead of

ϕ̂(0) = 1.)

Define ϕj(t) = bjϕ(bjt), t ∈ R. Then ϕ̂j(ω) = ϕ̂(ωb−j), so ϕ̂(bj) = 1 and

ϕ̂(ω) = 0 outside of the interval (bj−1, bj+1).

ϕ 0ϕ 1ϕ 2ϕ 3

b4 b3 b2 b 1 1/b

Put fj = σ ∗ ϕj . Then

fj(t) =

∫ ∞

−∞
σ(t − s)ϕj(s)ds

=

∫ ∞

−∞

∞∑

k=0

ak 1

2

[
e2πibk(t−s) + e−2πibk(t−s)

]
ϕj(s)ds

(by the uniform convergence)

=
∞∑

k=0

ak

2


e2πibkt
︸ ︷︷ ︸

=δk
j

ϕj(b
k) + e−2πibktϕj(−bk)︸ ︷︷ ︸

=0




=
1

2
aje2πibkt.

(Thus, this particular convolution picks out just one of the terms in the series.)

Suppose (to get a contradiction) that σ can be differentiated at some point t ∈ R.

Then the function

η(s) =

{
σ(t+s)−σ(t)

s
− σ′(t) , s 6= 0

0 , s = 0

is (uniformly) continuous and bounded, and η(0) = 0. Write this as

σ(t − s) = −sη(−s) + σ(t) − sσ′(t)
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i.e.,

fj(t) =

∫

R

σ(t − s)ϕj(s)ds

=

∫

R

−sη(−s)ϕj(s)ds + σ(t)

∫

R

ϕj(s)ds

︸ ︷︷ ︸
=ϕ̂j(0)=0

−σ′(t)

∫

R

sϕj(s)ds

︸ ︷︷ ︸
ϕ̂′

j
(0)

−2πi
=0

= −
∫

R

sη(−s)bjϕ(bjs)ds

bjs=t
= −bj

∫

R

η(
−s

bj
)

︸ ︷︷ ︸
→0 pointwise

sϕ(s)ds︸ ︷︷ ︸
∈L1

→ 0 by the Lesbesgue dominated convergence theorem as j → ∞.

Thus,

b−jfj(t) → 0 as j → ∞ ⇔ 1

2

(a

b

)j

e2πibjt → 0 as j → ∞.

As |e2πibjt| = 1, this is ⇔
(

a
b

)j → 0 as j → ∞. Impossible, since a
b
≥ 1. Our

assumption that σ is differentiable at the point t must be wrong ⇒ σ(t) is not

differentiable in any point!

2.5.7 Differential Equations

Solve the differential equation

u′′(t) + λu(t) = f(t), t ∈ R (2.10)

where we require that f ∈ L2(R), u ∈ L2(R), u ∈ C1(R), u′ ∈ L2(R) and that u′

is of the form

u′(t) = u′(0) +

∫ t

0

v(s)ds,

where v ∈ L2(R) (that is, u′ is “absolutely continuous” and its “generalized

derivative” belongs to L2).

The solution of this problem is based on the following lemmas:

Lemma 2.34. Let k = 1, 2, 3, . . .. Then the following conditions are equivalent:

i) u ∈ L2(R)∩Ck−1(R), u(k−1) is “absolutely continuous” and the “generalized

derivative of u(k−1)” belongs to L2(R).
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ii) û ∈ L2(R) and
∫

R
|ωkû(k)|2dω < ∞.

Proof. Similar to the proof of one of the homeworks, which says that the same

result is true for L2-Fourier series. (There ii) is replaced by
∑

|nf̂(n)|2 < ∞.)

Lemma 2.35. If u is as in Lemma 2.34, then

û(k)(ω) = (2πiω)kû(ω)

(compare this to Theorem 2.7(g)).

Proof. Similar to the same homework.

Solution: By the two preceding lemmas, we can take Fourier transforms in (2.10),

and get the equivalent equation

(2πiω)2û(ω)+λû(ω) = f̂(ω), ω ∈ R ⇔ (λ−4π2ω2)û(ω) = f̂(ω), ω ∈ R (2.11)

Two cases:

Case 1: λ−4π2ω2 6= 0, for all ω ∈ R, i.e., λ must not be zero and not a positive

number (negative is OK, complex is OK). Then

û(ω) =
f̂(ω)

λ − 4π2ω2
, ω ∈ R

so u = k ∗ f , where k = the inverse Fourier transform of

k̂(ω) =
1

λ − 4π2ω2
.

This can be computed explicitly. It is called “Green’s function” for this problem.

Even without computing k(t), we know that

• k ∈ C0(R) (since k̂ ∈ L1(R).)

• k has a generalized derivative in L2(R) (since
∫

R
|ωk̂(ω)|2dω < ∞.)

• k does not have a second generalized derivative in L2 (since
∫

R
|ω2k̂(ω)|2dω = ∞.)

How to compute k? Start with a partial fraction expansion. Write

λ = α2 for some α ∈ C
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(α = pure imaginary if λ < 0). Then

1

λ − 4π2ω2
=

1

α2 − 4π2ω2
=

1

α − 2πω
· 1

α + 2πω

=
A

α − 2πω
+

B

α + 2πω

=
Aα + 2πωA + Bα − 2πωB

(α − 2πω)(α + 2πω)

⇒ (A + B)α = 1

(A − B)2πω = 0

}
⇒ A = B =

1

2α

Now we must still invert 1
α+2πω

and 1
α−2πω

. This we do as follows:

Auxiliary result 1: Compute the transform of

f(t) =

{
e−zt , t ≥ 0,

0 , t < 0,

where Re(z) > 0 (⇒ f ∈ L2(R) ∩L1(R), but f /∈ C(R) because of the jump at

the origin). Simply compute:

f̂(ω) =

∫ ∞

0

e−2πiωte−ztdt

=

[
e−(z+2πiω)t

−(z + 2πiω)

]∞

0

=
1

2πiω + z
.

Auxiliary result 2: Compute the transform of

f(t) =

{
ezt , t ≤ 0,

0 , t > 0,

where Re(z) > 0 (⇒ f ∈ L2(R) ∩ L1(R), but f /∈ C(R))

⇒ f̂(ω) =

∫ 0

−∞
e2πiωteztdt

=

[
e(z−2πiω)t

(z − 2πiω)t

]0

−∞
=

1

z − 2πiω
.

Back to the function k:

k̂(ω) =
1

2α

(
1

α − 2πω
+

1

α + 2πω

)

=
1

2α

(
i

iα − 2πiω
+

i

iα + 2πiω

)
.
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We defined α by requiring α2 = λ. Choose α so that Im(α) < 0 (possible because

α is not a positive real number).

⇒ Re(iα) > 0, and k̂(ω) =
1

2α

(
i

iα − 2πiω
+

i

iα + 2πiω

)

The auxiliary results 1 and 2 gives:

k(t) =

{
i

2α
e−iαt , t ≥ 0

i
2α

eiαt , t < 0

and

u(t) = (k ∗ f)(t) =

∫ ∞

−∞
k(t − s)f(s)ds

Special case: λ = negative number = −a2, where a > 0. Take α = −ia

⇒ iα = i(−i)a = a, and

k(t) =

{
− 1

2a
e−at , t ≥ 0

− 1
2a

eat , t < 0 i.e.

k(t) = − 1

2a
e−|at|, t ∈ R

Thus, the solution of the equation

u′′(t) − a2u(t) = f(t), t ∈ R,

where a > 0, is given by

u = k ∗ f where

k(t) = − 1

2a
e−a|t|, t ∈ R

This function k has many names, depending on the field of mathematics you are

working in:

i) Green’s function (PDE-people)

ii) Fundamental solution (PDE-people, Functional Analysis)

iii) Resolvent (Integral equations people)
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Case 2: λ = a2 = a nonnegative number. Then

f̂(ω) = (a2 − 4π2ω2)û(ω) = (a − 2πω)(a + 2πω)û(ω).

As û(ω) ∈ L2(R) we get a necessary condition for the existence of a solution: If

a solution exists then

∫

R

∣∣ f̂(ω)

(a − 2πω)(a + 2πω)

∣∣2dω < ∞. (2.12)

(Since the denominator vanishes for ω = ± a
2π

, this forces f̂ to vanish at ± a
2π

,

and to be “small” near these points.)

If the condition (2.12) holds, then we can continue the solution as before.

Sideremark: These results mean that this particular problem has no “eigenval-

ues” and no “eigenfunctions”. Instead it has a “contionuous spectrum” consisting

of the positive real line. (Ignore this comment!)

2.5.8 Heat equation

This equation:





∂
∂t

u(t, x) = ∂2

∂x2 u(t, x) + g(t, x),

{
t > 0

x ∈ R

u(0, x) = f(x) (initial value)

is solved in the same way. Rather than proving everything we proceed in a formal

mannor (everything can be proved, but it takes a lot of time and energy.)

Transform the equation in the x-direction,

û(t, γ) =

∫

R

e−2πiγxu(t, x)dx.

Assuming that
∫

R
e−2πiγx ∂

∂t
u(t, x) = ∂

∂t

∫
R

e−2πiγxu(t, x)dx we get

{
∂
∂t

û(t, γ) = (2πiγ)2û(t, γ) + ĝ(t, γ)

û(0, γ) = f̂(γ)

⇔{
∂
∂t

û(t, γ) = −4π2γ2û(t, γ) + ĝ(t, γ)

û(0, γ) = f̂(γ)
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We solve this by using the standard “variation of constants lemma”:

û(t, γ) = f̂(γ)e−4π2γ2t

︸ ︷︷ ︸ +

∫ t

0

e−4π2γ2(t−s)ĝ(s, γ)ds

︸ ︷︷ ︸
= û1(t, γ) + û2(t, γ)

We can invert e−4π2γ2t = e−π(2
√

πtγ)2 = e−π(γ/λ)2 where λ = (2
√

πt)−1:

According to Theorem 2.7 and Example 2.5, this is the transform of

k(t, x) =
1

2
√

πt
e
−π( x

2
√

πt
)2

=
1

2
√

πt
e−

x2

4t

We know that f̂(γ)k̂(γ) = k̂ ∗ f(γ), so

u1(t, x) =
∫∞
−∞

1
2
√

πt
e−(x−y)2/4tf(y)dy,

(By the same argument:

s and t − s are fixed when we transform.)

u2(t, x) =
∫ t

0
(k ∗ g)(s)ds

=
∫ t

0

∫∞
−∞

1

2
√

π(t−s)
e−(x−y)2/4(t−s)g(s, y)dyds,

u(t, x) = u1(t, x) + u2(t, x)

The function

k(t, x) =
1

2
√

πt
e−

x2

4t

is the Green’s function or the fundamental solution of the heat equation on the

real line R = (−∞,∞), or the heat kernel.

Note: To prove that this “solution” is indeed a solution we need to assume that

- all functions are in L2(R) with respect to x, i.e.,
∫ ∞

−∞
|u(t, x)|2dx < ∞,

∫ ∞

−∞
|g(t, x)|2dx < ∞,

∫ ∞

−∞
|f(x)|2dx < ∞,

- some (weak) continuity assumptions with respect to t.

2.5.9 Wave equation




∂2

∂t2
u(t, x) = ∂2

∂x2 u(t, x) + k(t, x),

{
t > 0,

x ∈ R.

u(0, x) = f(x), x ∈ R

∂
∂t

u(0, x) = g(x), x ∈ R
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Again we proceed formally. As above we get





∂2

∂t2
û(t, γ) = −4π2γ2û(t, γ) + k̂(t, γ),

û(0, γ) = f̂(γ),
∂
∂t

û(0, γ) = ĝ(γ).

This can be solved by “the variation of constants formula”, but to simplify the

computations we assume that k(t, x) ≡ 0, i.e., ĥ(t, γ) ≡ 0. Then the solution is

(check this!)

û(t, γ) = cos(2πγt)f̂(γ) +
sin(2πγt)

2πγ
ĝ(γ). (2.13)

To invert the first term we use Theorem 2.7, and get

1

2
[f(x + t) + f(x − t)].

The second term contains the “Dirichlet kernel”, which is inverted as follows:

Ex. If

k(x) =

{
1/2, |t| ≤ 1

0, otherwise,

then k̂(ω) = 1
2πω

sin(2πω).

Proof.

k̂(ω) =
1

2

∫ 1

−1

e−2πiωtdt = . . . =
1

2πω
sin(ωt).

Thus, the inverse Fourier transform of

sin(2πγ)

2πγ
is k(x) =

{
1/2, |x| ≤ 1,

0, |x| > 1,

(inverse transform = ordinary transform since the function is even), and the

inverse Fourier transform (with respect to γ) of

sin(2πγt)

2πγ
= t

sin(2πγt)

2πγt
is

k(
x

t
) =

{
1/2, |x| ≤ t,

0, |x| > t.

This and Theorem 2.7(f), gives the inverse of the second term in (2.13): It is

1

2

∫ x+t

x−t

g(y)dy.
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Conclusion: The solution of the wave equation with h(t, x) ≡ 0 seems to be

u(t, x) =
1

2
[f(x + t) + f(x − t)] +

1

2

∫ x+t

x−t

g(y)dy,

a formula known as d’Alembert’s formula.

Interpretation: This is the sum of two waves: u(t, x) = u+(t, x)+u−(t, x), where

u+(t, x) =
1

2
f(x + t) +

1

2
G(x + t)

moves to the left with speed one, and

u−(t, x) =
1

2
f(x − t) − 1

2
G(x − t)

moves to the right with speed one. Here

G(x) =

∫ x

0

g(y)dy, x ∈ R.


