Chapter 2

Fourier Integrals

2.1 L^1 -Theory

Repetition: $\mathbb{R} = (-\infty, \infty),$

$$f \in L^1(\mathbb{R}) \Leftrightarrow \int_{-\infty}^{\infty} |f(t)| dt < \infty \text{ (and } f \text{ measurable)}$$

$$f \in L^2(\mathbb{R}) \Leftrightarrow \int_{-\infty}^{\infty} |f(t)|^2 dt < \infty \text{ (and } f \text{ measurable)}$$

Definition 2.1. The Fourier transform of $f \in L^1(\mathbb{R})$ is given by

$$\hat{f}(\omega) = \int_{-\infty}^{\infty} e^{-2\pi i \omega t} f(t) dt, \ \omega \in \mathbb{R}$$

Comparison to chapter 1:

$$f \in L^1(\mathbb{T}) \Rightarrow \hat{f}(n)$$
 defined for all $n \in \mathbb{Z}$
 $f \in L^1(\mathbb{R}) \Rightarrow \hat{f}(\omega)$ defined for all $\omega \in \mathbb{R}$

Notation 2.2. $C_0(\mathbb{R}) =$ "continuous functions f(t) satisfying $f(t) \to 0$ as $t \to \pm \infty$ ". The norm in C_0 is

$$||f||_{C_0(\mathbb{R})} = \max_{t \in \mathbb{R}} |f(t)| \ (= \sup_{t \in \mathbb{R}} |f(t)|).$$

Compare this to $c_0(\mathbb{Z})$.

Theorem 2.3. The Fourier transform \mathcal{F} maps $L^1(\mathbb{R}) \to C_0(\mathbb{R})$, and it is a contraction, i.e., if $f \in L^1(\mathbb{R})$, then $\hat{f} \in C_0(\mathbb{R})$ and $\|\hat{f}\|_{C_0(\mathbb{R})} \leq \|f\|_{L^1(\mathbb{R})}$, i.e.,

- i) \hat{f} is continuous
- ii) $\hat{f}(\omega) \to 0$ as $\omega \to \pm \infty$

iii)
$$|\hat{f}(\omega)| \le \int_{-\infty}^{\infty} |f(t)| dt$$
, $\omega \in \mathbb{R}$.

Note: Part ii) is again the Riemann-Lesbesgue lemma.

PROOF. iii) "The same" as the proof of Theorem 1.4 i).

- ii) "The same" as the proof of Theorem 1.4 ii), (replace n by ω , and prove this first in the special case where f is continuously differentiable and vanishes outside of some finite interval).
- i) (The only "new" thing):

$$|\hat{f}(\omega+h) - \hat{f}(\omega)| = \left| \int_{\mathbb{R}} \left(e^{-2\pi i(\omega+h)t} - e^{-2\pi i\omega t} \right) f(t) dt \right|$$

$$= \left| \int_{\mathbb{R}} \left(e^{-2\pi iht} - 1 \right) e^{-2\pi i\omega t} f(t) dt \right|$$

$$\stackrel{\triangle \text{-ineq.}}{\leq} \int_{\mathbb{R}} |e^{-2\pi iht} - 1| |f(t)| dt \to 0 \text{ as } h \to 0$$

(use Lesbesgue's dominated convergens Theorem, $e^{-2\pi i h t} \to 1$ as $h \to 0$, and $|e^{-2\pi i h t} - 1| \le 2$).

Question 2.4. Is it possible to find a function $f \in L^1(\mathbb{R})$ whose Fourier transform is the same as the original function?

<u>Answer</u>: Yes, there are many. See course on special functions. All functions which are eigenfunctions with eigenvalue 1 are mapped onto themselves.

Special case:

Example 2.5. If
$$h_0(t) = e^{-\pi t^2}$$
, $t \in \mathbb{R}$, then $\hat{h}_0(\omega) = e^{-\pi \omega^2}$, $\omega \in \mathbb{R}$

PROOF. See course on special functions.

<u>Note</u>: After rescaling, this becomes the normal (Gaussian) distribution function. This is no coincidence!

Another useful Fourier transform is:

Example 2.6. The Fejer kernel in $L^1(\mathbb{R})$ is

$$F(t) = \left(\frac{\sin(\pi t)}{\pi t}\right)^2.$$

The transform of this function is

$$\hat{F}(\omega) = \begin{cases} 1 - |\omega| &, & |\omega| \le 1, \\ 0 &, & \text{otherwise.} \end{cases}$$

PROOF. Direct computation. (Compare this to the <u>periodic</u> Fejer kernel on page 23.)

Theorem 2.7 (Basic rules). Let $f \in L^1(\mathbb{R}), \tau, \lambda \in \mathbb{R}$

$$\begin{array}{lll} a) & g(t) = f(t - \tau) \\ b) & g(t) = e^{2\pi i \tau t} f(t) \\ c) & g(t) = f(-t) \\ d) & g(t) = \overline{f(t)} \\ e) & g(t) = \lambda f(\lambda t) \\ f) & g \in L^1 \ and \ h = f * g \\ g) & g(t) = -2\pi i t f(t) \\ and & g \in L^1 \\ \end{array} \qquad \begin{array}{ll} \Rightarrow & \hat{g}(\omega) = e^{-2\pi i \omega \tau} \hat{f}(\omega) \\ \Rightarrow & \hat{g}(\omega) = \hat{f}(\omega - \tau) \\ \Rightarrow & \hat{g}(\omega) = \hat{f}(-\omega) \\ \Rightarrow & \hat{g}(\omega) = \hat{f}(-\omega) \\ \Rightarrow & \hat{g}(\omega) = \hat{f}(-\omega) \\ \Rightarrow & \hat{g}(\omega) = \hat{f}(\omega) \\ \Rightarrow & \hat{f}(\omega) = \hat{f}(\omega) \\ \Rightarrow & \hat{f}(\omega$$

PROOF. (a)-(e): Straightforward computation.

(g)-(h): Homework(?) (or later).

The formal inversion for Fourier integrals is

$$\hat{f}(\omega) = \int_{-\infty}^{\infty} e^{-2\pi i \omega t} f(t) dt$$

$$f(t) \stackrel{?}{=} \int_{-\infty}^{\infty} e^{2\pi i \omega t} \hat{f}(\omega) d\omega$$

This is true in "some cases" in "some sense". To prove this we need some additional machinery.

Definition 2.8. Let $f \in L^1(\mathbb{R})$ and $g \in L^p(\mathbb{R})$, where $1 \leq p \leq \infty$. Then we define

$$(f * g)(t) = \int_{\mathbb{D}} f(t - s)g(s)ds$$

for all those $t \in \mathbb{R}$ for which this integral converges absolutely, i.e.,

$$\int_{\mathbb{R}} |f(t-s)g(s)| ds < \infty.$$

Lemma 2.9. With f and p as above, f * g is defined a.e., $f * g \in L^p(\mathbb{R})$, and

$$||f * g||_{L^p(\mathbb{R})} \le ||f||_{L^1(\mathbb{R})} ||g||_{L^p(\mathbb{R})}.$$

If $p = \infty$, then f * g is defined everywhere and uniformly continuous.

Conclusion 2.10. If $||f||_{L^1(\mathbb{R})} \leq 1$, then the mapping $g \mapsto f * g$ is a contraction from $L^p(\mathbb{R})$ to itself (same as in periodic case).

PROOF. p = 1: "same" proof as we gave on page 21.

 $p = \infty$: Boundedness of f * g easy. To prove continuity we approximate f by a function with compact support and show that $||f(t) - f(t+h)||_{L^1} \to 0$ as $h \to 0$. $p \neq 1, \infty$: Significantly harder, case p = 2 found in Gasquet.

Notation 2.11. $\mathcal{BUC}(\mathbb{R}) =$ "all bounded and continuous functions on \mathbb{R} ". We use the norm

$$||f||_{\mathcal{BUC}(\mathbb{R})} = \sup_{t \in \mathbb{R}} |f(t)|.$$

Theorem 2.12 ("Approximate identity"). Let $k \in L^1(\mathbb{R})$, $\hat{k}(0) = \int_{-\infty}^{\infty} k(t)dt = 1$, and define

$$k_{\lambda}(t) = \lambda k(\lambda t), \quad t \in \mathbb{R}, \ \lambda > 0.$$

If f belongs to one of the function spaces

- a) $f \in L^p(\mathbb{R}), 1 \leq p < \infty \text{ (note: } p \neq \infty),$
- $b) f \in C_0(\mathbb{R}),$
- $c) \ f \in \mathcal{BUC}(\mathbb{R}),$

then $k_{\lambda} * f$ belongs to the same function space, and

$$k_{\lambda} * f \to f$$
 as $\lambda \to \infty$

in the norm of the same function space, i.e.,

$$||k_{\lambda} * f - f||_{L^{p}(\mathbb{R})} \to 0 \text{ as } \lambda \to \infty \text{ if } f \in L^{p}(\mathbb{R})$$

$$\sup_{t \in \mathbb{R}} |(k_{\lambda} * f)(t) - f(t)| \to 0 \text{ as } \lambda \to \infty \begin{cases} \text{ if } f \in \mathcal{BUC}(\mathbb{R}), \\ \text{ or } f \in C_{0}(\mathbb{R}). \end{cases}$$

It also conveges a.e. if we assume that $\int_0^\infty (\sup_{s\geq |t|} |k(s)|) dt < \infty$.

PROOF. "The same" as the proofs of Theorems 1.29, 1.32 and 1.33. That is, the *computations* stay the same, but the bounds of integration change $(\mathbb{T} \to \mathbb{R})$, and the motivations change a little (but not much). \square

Example 2.13 (Standard choices of k).

i) The Gaussian kernel

$$k(t) = e^{-\pi t^2}, \ \hat{k}(\omega) = e^{-\pi \omega^2}.$$

This function is C^{∞} and nonnegative, so

$$||k||_{L^1} = \int_{\mathbb{R}} |k(t)| dt = \int_{\mathbb{R}} k(t) dt = \hat{k}(0) = 1.$$

ii) The Fejer kernel

$$F(t) = \frac{\sin(\pi t)^2}{(\pi t)^2}.$$

It has the same advantages, and in addition

$$\hat{F}(\omega) = 0 \text{ for } |\omega| > 1.$$

The transform is a triangle:

$$\hat{F}(\omega) = \begin{cases} 1 - |\omega|, & |\omega| \le 1 \\ 0, & |\omega| > 1 \end{cases}$$

iii) $k(t) = e^{-2|t|}$ (or a rescaled version of this function. Here

$$\hat{k}(\omega) = \frac{1}{1 + (\pi\omega)^2}, \ \omega \in \mathbb{R}.$$

Same advantages (except C^{∞})).

Comment 2.14. According to Theorem 2.7 (e), $\hat{k}_{\lambda}(\omega) \rightarrow \hat{k}(0) = 1$ as $\lambda \rightarrow \infty$, for all $\omega \in \mathbb{R}$. All the kernels above are "low pass filters" (non causal). It is possible to use "one-sided" ("causal") filters instead (i.e., k(t) = 0 for t < 0). Substituting these into Theorem 2.12 we get "approximate identities", which "converge to a δ -distribution". Details later.

Theorem 2.15. If both $f \in L^1(\mathbb{R})$ and $\hat{f} \in L^1(\mathbb{R})$, then the inversion formula

$$f(t) = \int_{-\infty}^{\infty} e^{2\pi i \omega t} \hat{f}(\omega) d\omega \tag{2.1}$$

is valid for almost all $t \in \mathbb{R}$. By redefining f on a set of measure zero we can make it hold for all $t \in \mathbb{R}$ (the right hand side of (2.1) is continuous).

Proof. We approximate $\int_{\mathbb{R}} e^{2\pi i \omega t} \hat{f}(\omega) d\omega$ by

$$\int_{\mathbb{R}} e^{2\pi i\omega t} e^{-\varepsilon^2 \pi \omega^2} \hat{f}(\omega) d\omega \qquad \text{(where } \varepsilon > 0 \text{ is small)}$$

$$= \int_{\mathbb{R}} e^{2\pi i\omega t - \varepsilon^2 \pi \omega^2} \int_{\mathbb{R}} e^{-2\pi i\omega s} f(s) ds d\omega \qquad \text{(Fubini)}$$

$$= \int_{s \in \mathbb{R}} f(s) \underbrace{\int_{\omega \in \mathbb{R}} e^{-2\pi i\omega(s-t)} \underbrace{e^{-\varepsilon^2 \pi \omega^2}}_{k(\varepsilon\omega^2)} d\omega ds} \qquad \text{(Ex. 2.13 last page)}$$

(*) The Fourier transform of $k(\varepsilon\omega^2)$ at the point s-t. By Theorem 2.7 (e) this is equal to

$$=\frac{1}{\varepsilon}\hat{k}(\frac{s-t}{\varepsilon})=\frac{1}{\varepsilon}\hat{k}(\frac{t-s}{\varepsilon})$$

(since $\hat{k}(\omega) = e^{-\pi\omega^2}$ is even).

The whole thing is

$$\int_{s \in \mathbb{R}} f(s) \frac{1}{\varepsilon} k\left(\frac{t-s}{\varepsilon}\right) ds = (f * k_{\frac{1}{\varepsilon}})(t) \to f \in L^1(\mathbb{R})$$

as $\varepsilon \to 0^+$ according to Theorem 2.12. Thus, for almost all $t \in \mathbb{R}$,

$$f(t) = \lim_{\varepsilon \to 0} \int_{\mathbb{R}} e^{2\pi i \omega t} e^{-\varepsilon^2 \pi \omega^2} \hat{f}(\omega) d\omega.$$

On the other hand, by the Lebesgue dominated convergence theorem, since

$$|e^{2\pi i\omega t}e^{-\varepsilon^2\pi\omega^2}\hat{f}(\omega)| \le |\hat{f}(\omega)| \in L^1(\mathbb{R}),$$

$$\lim_{\varepsilon \to 0} \int_{\mathbb{R}} e^{2\pi i\omega t}e^{-\varepsilon^2\pi\omega^2}\hat{f}(\omega)d\omega = \int_{\mathbb{R}} e^{2\pi i\omega t}\hat{f}(\omega)d\omega.$$

Thus, (2.1) holds a.e. The proof of the fact that

$$\int_{\mathbb{R}} e^{2\pi i\omega t} \hat{f}(\omega) d\omega \in C_0(\mathbb{R})$$

is the same as the proof of Theorem 2.3 (replace t by -t). \square

The same proof also gives us the following "approximate inversion formula":

Theorem 2.16. Suppose that $k \in L^1(\mathbb{R})$, $\hat{k} \in L^1(\mathbb{R})$, and that

$$\hat{k}(0) = \int_{\mathbb{R}} k(t)dt = 1.$$

If f belongs to one of the function spaces

- a) $f \in L^p(\mathbb{R}), 1 \leq p < \infty$
- b) $f \in C_0(\mathbb{R})$
- $c) \ f \in \mathcal{BUC}(\mathbb{R})$

then

$$\int_{\mathbb{R}} e^{2\pi i \omega t} \hat{k}(\varepsilon \omega) \hat{f}(\omega) d\omega \to f(t)$$

in the norm of the given space (i.e., in L^p -norm, or in the sup-norm), and also a.e. if $\int_0^\infty (\sup_{s\geq |t|} |k(s)|) dt < \infty$.

PROOF. Almost the same as the proof given above. If k is not even, then we end up with a convolution with the function $k_{\varepsilon}(t) = \frac{1}{\varepsilon}k(-t/\varepsilon)$ instead, but we can still apply Theorem 2.12 with k(t) replaced by k(-t). \square

Corollary 2.17. The inversion in Theorem 2.15 can be interpreted as follows: If $f \in L^1(\mathbb{R})$ and $\hat{f} \in L^1(\mathbb{R})$, then,

$$\hat{f}(t) = f(-t) \ a.e.$$

Here $\hat{f}(t) = the Fourier transform of \hat{f}$ evaluated at the point t.

PROOF. By Theorem 2.15,

$$f(t) = \underbrace{\int_{\mathbb{R}} e^{-2\pi i(-t)\omega} \hat{f}(\omega) d\omega}_{\text{a.e}} \quad \text{a.e}$$

Fourier transform of \hat{f} at the point (-t)

Corollary 2.18. $\hat{\hat{f}}(t) = f(t)$ (If we repeat the Fourier transform 4 times, then we get back the original function). (True at least if $f \in L^1(\mathbb{R})$ and $\hat{f} \in L^1(\mathbb{R})$.)

As a prelude (=preludium) to the L^2 -theory we still prove some additional results:

Lemma 2.19. Let $f \in L^1(\mathbb{R})$ and $g \in L^1(\mathbb{R})$. Then

$$\int_{\mathbb{R}} f(t)\hat{g}(t)dt = \int_{\mathbb{R}} \hat{f}(s)g(s)ds$$

Proof.

$$\int_{\mathbb{R}} f(t)\hat{g}(t)dt = \int_{t \in \mathbb{R}} f(t) \int_{s \in \mathbb{R}} e^{-2\pi i t s} g(s) ds dt \text{ (Fubini)}$$

$$= \int_{s \in \mathbb{R}} \left(\int_{t \in \mathbb{R}} f(t) e^{-2\pi i s t} dt \right) g(s) ds$$

$$= \int_{s \in \mathbb{R}} \hat{f}(s) g(s) ds. \quad \square$$

Theorem 2.20. Let $f \in L^1(\mathbb{R})$, $h \in L^1(\mathbb{R})$ and $\hat{h} \in L^1(\mathbb{R})$. Then

$$\int_{\mathbb{R}} f(t)\overline{h(t)}dt = \int_{\mathbb{R}} \hat{f}(\omega)\overline{\hat{h}(\omega)}d\omega.$$
 (2.2)

Specifically, if f = h, then $(f \in L^2(\mathbb{R}) \text{ and})$

$$||f||_{L^2(\mathbb{R})} = ||\hat{f}||_{L^2(\mathbb{R})}.$$
(2.3)

PROOF. Since $h(t) = \int_{\omega \in \mathbb{R}} e^{2\pi i \omega t} \hat{h}(\omega) d\omega$ we have

$$\int_{\mathbb{R}} f(t)\overline{h(t)}dt = \int_{t\in\mathbb{R}} f(t) \int_{\omega\in\mathbb{R}} e^{-2\pi i \omega t} \overline{\hat{h}(\omega)} d\omega dt \text{ (Fubini)}$$

$$= \int_{s\in\mathbb{R}} \left(\int_{t\in\mathbb{R}} f(t) e^{-2\pi i s t} dt \right) \overline{\hat{h}(\omega)} d\omega$$

$$= \int_{\mathbb{R}} \hat{f}(\omega) \overline{\hat{h}(\omega)} d\omega. \quad \square$$

2.2 Rapidly Decaying Test Functions

("Snabbt avtagande testfunktioner").

Definition 2.21. S =the set of functions f with the following properties

i) $f \in C^{\infty}(\mathbb{R})$ (infinitely many times differentiable)

ii) $t^k f^{(n)}(t) \to 0$ as $t \to \pm \infty$ and this is true for all

$$k, n \in \mathbb{Z}_+ = \{0, 1, 2, 3, \dots\}.$$

<u>Thus</u>: Every derivative of $f \to 0$ at infinity faster than any negative power of t. <u>Note</u>: There is no natural norm in this space (it is not a "Banach" space). However, it is possible to find a complete, shift-invariant metric on this space (it is a Frechet space).

Example 2.22. $f(t) = P(t)e^{-\pi t^2} \in \mathcal{S}$ for every *polynomial* P(t). For example, the *Hermite functions* are of this type (see course in special functions).

Comment 2.23. Gripenberg denotes S by $C^{\infty}_{\downarrow}(\mathbb{R})$. The functions in S are called rapidly decaying test functions.

The main result of this section is

Theorem 2.24.
$$f \in \mathcal{S} \iff \hat{f} \in \mathcal{S}$$

That is, both the Fourier transform and the inverse Fourier transform maps this class of functions onto itself. Before proving this we prove the following

Lemma 2.25. We can replace condition (ii) in the definition of the class S by one of the conditions

iii)
$$\int_{\mathbb{R}} |t^k f^{(n)}(t)| dt < \infty$$
, $k, n \in \mathbb{Z}_+$ or

iv)
$$\left| \left(\frac{d}{dt} \right)^n t^k f(t) \right| \to 0 \text{ as } t \to \pm \infty, \ k, n \in \mathbb{Z}_+$$

without changing the class of functions S.

PROOF. If ii) holds, then for all $k, n \in \mathbb{Z}_+$,

$$\sup_{t \in \mathbb{R}} |(1+t^2)t^k f^{(n)}(t)| < \infty$$

(replace k by k+2 in ii). Thus, for some constant M,

$$|t^k f^{(n)}(t)| \le \frac{M}{1+t^2} \implies \int_{\mathbb{R}} |t^k f^{(n)}(t)| dt < \infty.$$

Conversely, if iii) holds, then we can define $g(t) = t^{k+1} f^{(n)}(t)$ and get

$$g'(t) = \underbrace{(k+1)t^k f^{(n)}(t)}_{\in L^1} + \underbrace{t^{k+1} f^{(n+1)}(t)}_{\in L^1},$$

so
$$g' \in L^1(\mathbb{R})$$
, i.e.,

$$\int_{-\infty}^{\infty} |g'(t)| dt < \infty.$$

This implies

$$\begin{aligned} |g(t)| & \leq |g(0) + \int_0^t g'(s)ds| \\ & \leq |g(0)| + \int_0^t |g'(s)|ds \\ & \leq |g(0)| + \int_{-\infty}^\infty |g'(s)|ds = |g(0)| + ||g'||_{L^1}, \end{aligned}$$

so g is bounded. Thus,

$$t^k f^{(n)}(t) = \frac{1}{t} g(t) \to 0 \text{ as } t \to \pm \infty.$$

The proof that $ii) \iff iv$ is left as a homework. \square

PROOF OF THEOREM 2.24. By Theorem 2.7, the Fourier transform of

$$(-2\pi i t)^k f^{(n)}(t)$$
 is $\left(\frac{d}{d\omega}\right)^k (2\pi i \omega)^n \hat{f}(\omega)$.

Therefore, if $f \in \mathcal{S}$, then condition iii) on the last page holds, and by Theorem 2.3, \hat{f} satisfies the condition iv) on the last page. Thus $\hat{f} \in \mathcal{S}$. The same argument with $e^{-2\pi i \omega t}$ replaced by $e^{+2\pi i \omega t}$ shows that if $\hat{f} \in \mathcal{S}$, then the Fourier inverse transform of \hat{f} (which is f) belongs to \mathcal{S} . \square

<u>Note</u>: Theorem 2.24 is the *basis* for the theory of Fourier transforms of *distributions*. More on this later.

2.3 L^2 -Theory for Fourier Integrals

As we saw earlier in Lemma 1.10, $L^2(\mathbb{T}) \subset L^1(\mathbb{T})$. However, it is not true that $L^2(\mathbb{R}) \subset L^1(\mathbb{R})$. Counter example:

$$f(t) = \frac{1}{\sqrt{1+t^2}} \begin{cases} \in L^2(\mathbb{R}) \\ \not\in L^1(\mathbb{R}) \\ \in C^{\infty}(\mathbb{R}) \end{cases}$$

(too large at ∞).

So how on earth should we define $\hat{f}(\omega)$ for $f \in L^2(\mathbb{R})$, if the integral

$$\int_{\mathbb{R}} e^{-2\pi i n t} f(t) dt$$

does not converge?

Recall: Lebesgue integral converges \iff converges absolutely \iff

$$\int |e^{-2\pi i n t} f(t)| dt < \infty \iff f \in L^1(\mathbb{R}).$$

We are saved by Theorem 2.20. Notice, in particular, condition (2.3) in that theorem!

Definition 2.26 (L^2 -Fourier transform).

i) Approximate $f \in L^2(\mathbb{R})$ by a sequence $f_n \in \mathcal{S}$ which converges to f in $L^2(\mathbb{R})$. We do this e.g. by "smoothing" and "cutting" ("utjämning" och "klippning"): Let $k(t) = e^{-\pi t^2}$, define

$$k_n(t) = nk(nt)$$
, and
$$f_n(t) = \underbrace{k\left(\frac{t}{n}\right)}_{\star} \underbrace{(k_n * f)(t)}_{\star \star}$$

- (\star) this tends to zero faster than any polynomial as $t \to \infty$.
- (**) "smoothing" by an approximate identity, belongs to C^{∞} and is bounded. By Theorem 2.12 $k_n * f \to f$ in L^2 as $n \to \infty$. The functions $k\left(\frac{t}{n}\right)$ tend to k(0) = 1 at every point t as $n \to \infty$, and they are uniformly bounded by 1. By using the appropriate version of the Lesbesgue convergence we let $f_n \to f$ in $L^2(\mathbb{R})$ as $n \to \infty$.
- ii) Since f_n converges in L^2 , also \hat{f}_n must converge to something in L^2 . More about this in "Analysis II". This follows from Theorem 2.20. $(f_n \to f \Rightarrow f_n \text{ Cauchy sequence} \Rightarrow \hat{f}_n \text{ Cauchy sequence} \Rightarrow \hat{f}_n \text{ converges.})$
- iii) Call the limit to which f_n converges "The Fourier transform of f", and denote it \hat{f} .

Definition 2.27 (Inverse Fourier transform). We do exactly as above, but replace $e^{-2\pi i\omega t}$ by $e^{+2\pi i\omega t}$.

Final conclusion:

Theorem 2.28. The "extended" Fourier transform which we have defined above has the following properties: It maps $L^2(\mathbb{R})$ one-to-one onto $L^2(\mathbb{R})$, and if \hat{f} is the Fourier transform of \hat{f} , then f is the inverse Fourier transform of \hat{f} . Moreover, all norms, distances and inner products are preserved.

Explanation:

i) "Normes preserved" means

$$\int_{\mathbb{R}} |f(t)|^2 dt = \int_{\mathbb{R}} |\hat{f}(\omega)|^2 d\omega,$$

or equivalently, $||f||_{L^2(\mathbb{R})} = ||\hat{f}||_{L^2(\mathbb{R})}$.

ii) "Distances preserved" means

$$||f - g||_{L^2(\mathbb{R})} = ||\hat{f} - \hat{g}||_{L^2(\mathbb{R})}$$

(apply i) with f replaced by f - g)

iii) "Inner product preserved" means

$$\int_{\mathbb{R}} f(t)\overline{g(t)}dt = \int_{\mathbb{R}} \hat{f}(\omega)\overline{\hat{g}(\omega)}d\omega,$$

which is often written as

$$\langle f, g \rangle_{L^2(\mathbb{R})} = \langle \hat{f}, \hat{g} \rangle_{L^2(\mathbb{R})}.$$

This was theory. How to do in practice?

One answer: We saw earlier that if [a, b] is a finite interval, and if $f \in L^2[a, b] \Rightarrow f \in L^1[a, b]$, so for each T > 0, the integral

$$\hat{f}_T(\omega) = \int_{-T}^T e^{-2\pi i \omega t} f(t) dt$$

is defined for all $\omega \in \mathbb{R}$. We can try to let $T \to \infty$, and see what happens. (This resembles the theory for the inversion formula for the periodical L^2 -theory.)

Theorem 2.29. Suppose that $f \in L^2(\mathbb{R})$. Then

$$\lim_{T \to \infty} \int_{-T}^{T} e^{-2\pi i \omega t} f(t) dt = \hat{f}(\omega)$$

in the L^2 -sense as $T \to \infty$, and likewise

$$\lim_{T \to \infty} \int_{-T}^{T} e^{2\pi i \omega t} \hat{f}(\omega) d\omega = f(t)$$

in the L^2 -sense.

PROOF. Much too hard to be presented here. Another possibility: Use the Fejer kernel or the Gaussian kernel, or any other kernel, and define

$$\hat{f}(\omega) = \lim_{n \to \infty} \int_{\mathbb{R}} e^{-2\pi i \omega t} k\left(\frac{t}{n}\right) f(t) dt,
f(t) = \lim_{n \to \infty} \int_{\mathbb{R}} e^{+2\pi i \omega t} \hat{k}\left(\frac{\omega}{n}\right) \hat{f}(\omega) d\omega.$$

We typically have the same type of convergence as we had in the Fourier inversion formula in the periodic case. (This is a well-developed part of mathematics, with lots of results available.) See Gripenberg's compendium for some additional results.

2.4 An Inversion Theorem

From time to time we need a better (= more useful) *inversion* theorem for the Fourier transform, so let us prove one here:

Theorem 2.30. Suppose that $f \in L^1(\mathbb{R}) + L^2(\mathbb{R})$ (i.e., $f = f_1 + f_2$, where $f_1 \in L^1(\mathbb{R})$ and $f_2 \in L^2(\mathbb{R})$). Let $t_0 \in \mathbb{R}$, and suppose that

$$\int_{t_0-1}^{t_0+1} \left| \frac{f(t) - f(t_0)}{t - t_0} \right| dt < \infty.$$
 (2.4)

Then

$$f(t_0) = \lim_{\substack{S \to \infty \\ T \to \infty}} \int_{-S}^{T} e^{2\pi i \omega t_0} \hat{f}(\omega) d\omega, \qquad (2.5)$$

where $\hat{f}(\omega) = \hat{f}_1(\omega) + \hat{f}_2(\omega)$.

<u>Comment</u>: Condition (2.4) is true if, for example, f is differentiable at the point t_0 .

PROOF. Step 1. First replace f(t) by $g(t) = f(t + t_0)$. Then

$$\hat{g}(\omega) = e^{2\pi i \omega t_0} \hat{f}(\omega),$$

and (2.5) becomes

$$g(0) = \lim_{\substack{S \to \infty \\ T \to \infty}} \int_{-S}^{T} \hat{g}(\omega) d\omega,$$

and (2.4) becomes

$$\int_{-1}^{1} \left| \frac{g(t - t_0) - g(0)}{t - t_0} \right| dt < \infty.$$

Thus, it suffices to prove the case where $t_0 = 0$

<u>Step 2</u>: We know that the theorem is true if $g(t) = e^{-\pi t^2}$ (See Example 2.5 and Theorem 2.15). Replace g(t) by

$$h(t) = g(t) - g(0)e^{-\pi t^2}.$$

Then h satisfies all the assumptions which g does, and in addition, h(0) = 0. Thus it suffices to prove the case where both $(\star)[t_0 = 0]$ and f(0) = 0. For simplicity we write f instead of h but assume (\star) . Then (2.4) and (2.5) simplify:

$$\int_{-1}^{1} \left| \frac{f(t)}{t} \right| dt < \infty, \tag{2.6}$$

$$\lim_{\substack{S \to \infty \\ T \to \infty}} \int_{-S}^{T} \hat{f}(\omega) d\omega = 0.$$
 (2.7)

Step 3: If $f \in L^1(\mathbb{R})$, then we argue as follows. Define

$$g(t) = \frac{f(t)}{-2\pi it}.$$

Then $g \in L^1(\mathbb{R})$. By Fubini's theorem,

$$\int_{-S}^{T} \hat{f}(\omega)d\omega = \int_{-S}^{T} \int_{-\infty}^{\infty} e^{-2\pi i \omega t} f(t)dt d\omega$$

$$= \int_{-\infty}^{\infty} \int_{-S}^{T} e^{-2\pi i \omega t} d\omega f(t) dt$$

$$= \int_{-\infty}^{\infty} \left[\frac{1}{-2\pi i t} e^{-2\pi i \omega t} \right]_{-S}^{T} f(t) dt$$

$$= \int_{-\infty}^{\infty} \left[e^{-2\pi i T t} - e^{-2\pi i (-S) t} \right] \frac{f(t)}{-2\pi i t} dt$$

$$= \hat{g}(T) - \hat{g}(-S),$$

and this tends to zero as $T \to \infty$ and $S \to \infty$ (see Theorem 2.3). This proves (2.7).

Step 4: If instead $f \in L^2(\mathbb{R})$, then we use Parseval's identity

$$\int_{-\infty}^{\infty} f(t)\overline{h(t)}dt = \int_{-\infty}^{\infty} \hat{f}(\omega)\overline{\hat{h}(\omega)}d\omega$$

in a clever way: Choose

$$\hat{h}(\omega) = \begin{cases} 1, & -S \le t \le T, \\ 0, & \text{otherwise.} \end{cases}$$

Then the inverse Fourier transform h(t) of \hat{h} is

$$h(t) = \int_{-S}^{T} e^{2\pi i\omega t} d\omega$$
$$= \left[\frac{1}{2\pi i t} e^{2\pi i\omega t} \right]_{-S}^{T} = \frac{1}{2\pi i t} \left[e^{2\pi i Tt} - e^{2\pi i(-S)t} \right]$$

so Parseval's identity gives

$$\int_{-S}^{T} \hat{f}(\omega)d\omega = \int_{-\infty}^{\infty} f(t) \frac{1}{-2\pi i t} \left[e^{-2\pi i T t} - e^{-2\pi i (-S)t} \right] dt$$

$$= (\text{with } g(t) \text{ as in Step 3})$$

$$= \int_{-\infty}^{\infty} \left[e^{-2\pi i T t} - e^{-2\pi i (S)t} \right] g(t) dt$$

$$= \hat{g}(T) - \hat{g}(-S) \to 0 \text{ as } \begin{cases} T \to \infty, \\ S \to \infty. \end{cases}$$

Step 5: If $f = f_1 + f_2$, where $f_1 \in L^1(\mathbb{R})$ and $f_2 \in L^2(\mathbb{R})$, then we apply Step 3 to f_1 and Step 4 to f_2 , and get in both cases (2.7) with f replaced by f_1 and f_2 .

<u>Note</u>: This means that in "most cases" where f is continuous at t_0 we have

$$f(t_0) = \lim_{\substack{S \to \infty \\ T \to \infty}} \int_{-S}^{T} e^{2\pi i \omega t_0} \hat{f}(\omega) d\omega.$$

(continuous functions which do *not* satisfy (2.4) do exist, but they are difficult to find.) In some cases we can even use the inversion formula at a point where f is discontinuous.

Theorem 2.31. Suppose that $f \in L^1(\mathbb{R}) + L^2(\mathbb{R})$. Let $t_0 \in \mathbb{R}$, and suppose that the two limits

$$f(t_0+) = \lim_{t \downarrow t_0} f(t)$$

$$f(t_0-) = \lim_{t \uparrow t_0} f(t)$$

exist, and that

$$\int_{t_0}^{t_0+1} \left| \frac{f(t) - f(t_0+)}{t - t_0} \right| dt < \infty,$$

$$\int_{t_0-1}^{t_0} \left| \frac{f(t) - f(t_0-)}{t - t_0} \right| dt < \infty.$$

Then

$$\lim_{T \to \infty} \int_{-T}^{T} e^{2\pi i \omega t_0} \hat{f}(\omega) d\omega = \frac{1}{2} [f(t_0 +) + f(t_0 -)].$$

Note: Here we integrate \int_{-T}^{T} , not \int_{-S}^{T} , and the result is the *average* of the right and left hand limits.

PROOF. As in the proof of Theorem 2.30 we may assume that

Step 1: $t_0 = 0$, (see Step 1 of that proof)

Step 2: $f(t_0+) + f(t_0-) = 0$, (see Step 2 of that proof).

Step 3: The claim is true in the special case where

$$g(t) = \begin{cases} e^{-t}, & t > 0, \\ -e^{t}, & t < 0, \end{cases}$$

because g(0+) = 1, g(0-) = -1, g(0+) + g(0-) = 0, and

$$\int_{-T}^{T} \hat{g}(\omega) d\omega = 0 \quad \text{for all } T,$$

since f is odd $\implies \hat{g}$ is odd.

Step 4: Define $h(t) = f(t) - f(0+) \cdot g(t)$, where g is the function in Step 3. Then

$$h(0+) = f(0+) - f(0+) = 0$$
 and $h(0-) = f(0-) - f(0+)(-1) = 0$, so

h is continuous. Now apply Theorem 2.30 to h. It gives

$$0 = h(0) = \lim_{T \to \infty} \int_{-T}^{T} \hat{h}(\omega) d\omega.$$

Since also

$$0 = f(0+)[g(0+) + g(0-)] = \lim_{T \to \infty} \int_{-T}^{T} \hat{g}(\omega) d\omega,$$

we therefore get

$$0 = f(0+) + f(0-) = \lim_{T \to \infty} \int_{-T}^{T} [\hat{h}(\omega) + \hat{g}(\omega)] d\omega = \lim_{T \to \infty} \int_{-T}^{T} \hat{f}(\omega) d\omega. \quad \Box$$

Comment 2.32. Theorems 2.30 and 2.31 also remain true if we replace

$$\lim_{T\to\infty}\int_{-T}^T e^{2\pi i\omega t} \hat{f}(\omega) d\omega$$

by

$$\lim_{\varepsilon \to 0} \int_{-\infty}^{\infty} e^{2\pi i \omega t} e^{-\pi(\varepsilon \omega)^2} \hat{f}(\omega) d\omega \tag{2.8}$$

(and other similar "summability" formulas). Compare this to Theorem 2.16. In the case of Theorem 2.31 it is important that the "cutoff kernel" (= $e^{-\pi(\varepsilon\omega)^2}$ in (2.8)) is *even*.

2.5 Applications

2.5.1 The Poisson Summation Formula

Suppose that $f \in L^1(\mathbb{R}) \cap C(\mathbb{R})$, that $\sum_{n=-\infty}^{\infty} |\hat{f}(n)| < \infty$ (i.e., $\hat{f} \in \ell^1(\mathbb{Z})$), and that $\sum_{n=-\infty}^{\infty} f(t+n)$ converges uniformly for all t in some interval $(-\delta, \delta)$. Then

$$\sum_{n=-\infty}^{\infty} f(n) = \sum_{n=-\infty}^{\infty} \hat{f}(n)$$
(2.9)

Note: The uniform convergence of $\sum f(t+n)$ can be difficult to check. One possible way out is: If we define

$$\varepsilon_n = \sup_{-\delta < t < \delta} |f(t+n)|,$$

and if $\sum_{n=-\infty}^{\infty} \varepsilon_n < \infty$, then $\sum_{n=-\infty}^{\infty} f(t+n)$ converges (even absolutely), and the convergence is uniform in $(-\delta, \delta)$. The proof is roughly the same as what we did on page 29.

PROOF OF (2.9). We first construct a periodic function $g \in L^1(\mathbb{T})$ with the Fourier coefficients $\hat{f}(n)$:

$$\begin{split} \hat{f}(n) &= \int_{-\infty}^{\infty} e^{-2\pi i n t} f(t) dt \\ &= \sum_{k=-\infty}^{\infty} \int_{k}^{k+1} e^{-2\pi i n t} f(t) dt \\ &\stackrel{t=k+s}{=} \sum_{k=-\infty}^{\infty} \int_{0}^{1} e^{-2\pi i n s} f(s+k) ds \\ &\stackrel{\text{Thm } 0.14}{=} \int_{0}^{1} e^{-2\pi i n s} \left(\sum_{k=-\infty}^{\infty} f(s+k) \right) ds \\ &= \hat{g}(n), \quad \text{where } g(t) = \sum_{n=-\infty}^{\infty} f(t+n). \end{split}$$

(For this part of the proof it is enough to have $f \in L^1(\mathbb{R})$. The other conditions are needed later.)

So we have $\hat{g}(n) = \hat{f}(n)$. By the inversion formula for the periodic Fourier transform:

$$g(0) = \sum_{n=-\infty}^{\infty} e^{2\pi i n 0} \hat{g}(n) = \sum_{n=-\infty}^{\infty} \hat{g}(n) = \sum_{n=-\infty}^{\infty} \hat{f}(n),$$

provided (=förutsatt) that we are allowed to use the Fourier inversion formula. This is allowed if $g \in C[-\delta, \delta]$ and $\hat{g} \in \ell^1(\mathbb{Z})$ (Theorem 1.37). This was part of our assumption.

In addition we need to know that the formula

$$g(t) = \sum_{n = -\infty}^{\infty} f(t+n)$$

holds at the point t=0 (almost everywhere is no good, we need it in exactly this point). This is OK if $\sum_{n=-\infty}^{\infty} f(t+n)$ converges uniformly in $[-\delta, \delta]$ (this also implies that the limit function g is continuous).

<u>Note</u>: By working harder in the proof, Gripenberg is able to weaken some of the assumptions. There are also some counter-examples on how things can go wrong if you try to weaken the assumptions in the wrong way.

2.5.2 Is
$$\widehat{L^1(\mathbb{R})} = C_0(\mathbb{R})$$
 ?

That is, is every function $g \in C_0(\mathbb{R})$ the Fourier transform of a function $f \in L^1(\mathbb{R})$?

The answer is **no**, as the following counter-example shows. Take

$$g(\omega) = \begin{cases} \frac{\omega}{\ln 2} &, & |\omega| \le 1, \\ \frac{1}{\ln(1+\omega)} &, & \omega > 1, \\ -\frac{1}{\ln(1-\omega)} &, & \omega < -1. \end{cases}$$

Suppose that this would be the Fourier transform of a function $f \in L^1(\mathbb{R})$. As in the proof on the previous page, we define

$$h(t) = \sum_{n = -\infty}^{\infty} f(t + n).$$

Then (as we saw there), $h \in L^1(\mathbb{T})$, and $\hat{h}(n) = \hat{f}(n)$ for $n = 0, \pm 1, \pm 2, \ldots$ However, since $\sum_{n=1}^{\infty} \frac{1}{n} \hat{h}(n) = \infty$, this is not the Fourier sequence of any $h \in L^1(\mathbb{T})$ (by Theorem 1.38). Thus:

Not every $h \in C_0(\mathbb{R})$ is the Fourier transform of some $f \in L^1(\mathbb{R})$.

But:

$$f \in L^1(\mathbb{R}) \implies \hat{f} \in C_0(\mathbb{R}) \quad (\text{ Page 36})$$

 $f \in L^2(\mathbb{R}) \iff \hat{f} \in L^2(\mathbb{R}) \quad (\text{ Page 47})$
 $f \in \mathcal{S} \iff \hat{f} \in \mathcal{S} \quad (\text{ Page 44})$

2.5.3 The Euler-MacLauren Summation Formula

Let $f \in C^{\infty}(\mathbb{R}^+)$ (where $\mathbb{R}^+ = [0, \infty)$), and suppose that

$$f^{(n)} \in L^1(\mathbb{R}^+)$$

for all $n \in \mathbb{Z}_+ = \{0, 1, 2, 3 ...\}$. We define f(t) for t < 0 so that f(t) is **even**. Warning: f is continuous at the origin, but f' may be discontinuous! For example, $f(t) = e^{-|2t|}$

We want to use Poisson summation formula. Is this allowed? By Theorem 2.7, $\widehat{f^{(n)}} = (2\pi i\omega)^n \widehat{f}(\omega)$, and $\widehat{f}^{(n)}$ is bounded, so

$$\sup_{\omega \in \mathbb{R}} |(2\pi i \omega)^n| |\hat{f}(\omega)| < \infty \text{ for all } n \Rightarrow \sum_{n=-\infty}^{\infty} |\hat{f}(n)| < \infty.$$

By the note on page 52, also $\sum_{n=-\infty}^{\infty} f(t+n)$ converges uniformly in (-1,1). By the Poisson summation formula:

$$\begin{split} \sum_{n=0}^{\infty} f(n) &= \frac{1}{2} f(0) + \frac{1}{2} \sum_{n=-\infty}^{\infty} f(n) \\ &= \frac{1}{2} f(0) + \frac{1}{2} \sum_{n=-\infty}^{\infty} \hat{f}(n) \\ &= \frac{1}{2} f(0) + \frac{1}{2} \hat{f}(0) + \frac{1}{2} \sum_{n=1}^{\infty} \left[\hat{f}(n) + \hat{f}(-n) \right] \\ &= \frac{1}{2} f(0) + \frac{1}{2} \hat{f}(0) + \sum_{n=1}^{\infty} \int_{-\infty}^{\infty} \underbrace{\frac{1}{2} \left(e^{2\pi i n t} + e^{-2\pi i n t} \right)}_{\cos(2\pi n t)} f(t) dt \\ &= \frac{1}{2} f(0) + \int_{0}^{\infty} f(t) dt + \sum_{n=1}^{\infty} \int_{0}^{\infty} \cos(2\pi n t) f(t) dt \end{split}$$

Here we integrate by parts several times, always integrating the cosine-function and differentiating f. All the substitution terms containing **odd** derivatives of

f vanish since $\sin(2\pi nt) = 0$ for t = 0. See Gripenberg for details. The result looks something like

$$\sum_{n=0}^{\infty} f(n) = \int_{0}^{\infty} f(t)dt + \frac{1}{2}f(0) - \frac{1}{12}f'(0) + \frac{1}{720}f'''(0) - \frac{1}{30240}f^{(5)}(0) + \dots$$

2.5.4 Schwartz inequality

The Schwartz inequality will be used below. It says that

$$|\langle f, g \rangle| \le ||f||_{L^2} ||g||_{L^2}$$

(true for all possible L^2 -spaces, both $L^2(\mathbb{R})$ and $L^2(\mathbb{T})$ etc.)

2.5.5 Heisenberg's Uncertainty Principle

For all $f \in L^2(\mathbb{R})$, we have

$$\left(\int_{-\infty}^{\infty} t^2 |f(t)|^2 dt\right) \left(\int_{-\infty}^{\infty} \omega^2 |\hat{f}(\omega)|^2 d\omega\right) \ge \frac{1}{16\pi^2} \left\|f\right\|_{L^2(\mathbb{R})}^4$$

<u>Interpretation</u>: The more **concentrated** f is in the neighborhood of zero, the more **spread out** must \hat{f} be, and conversely. (Here we must think that $||f||_{L^2(\mathbb{R})}$ is fixed, e.g. $||f||_{L^2(\mathbb{R})} = 1$.)

In <u>quantum mechanics</u>: The product of "time uncertainty" and "space uncertainty" cannot be less than a given fixed number.

PROOF. We begin with the case where $f \in \mathcal{S}$. Then

$$\begin{array}{rcl}
16\pi \int_{\mathbb{R}} |tf(t)| dt \int_{\mathbb{R}} |\omega \hat{f}(\omega)| d\omega & = & 4 \int_{\mathbb{R}} |tf(t)| dt \int_{\mathbb{R}} |f'(t)| dt \\
\widehat{(f'(\omega)}) = 2\pi i \omega \hat{f}(\omega) \text{ and Parseval's iden. holds). Now use Scwartz ineq.} \\
& \geq & 4 \left(\int_{\mathbb{R}} |tf(t)| |f'(t)| dt \right) \\
& = & 4 \left(\int_{\mathbb{R}} |t\overline{f(t)}| |f'(t)| dt \right) \\
& \geq & 4 \left(\int_{\mathbb{R}} Re[t\overline{f(t)}f'(t)] dt \right) \\
& = & 4 \left(\int_{\mathbb{R}} t \left[\frac{1}{2} \left(\overline{f(t)}f'(t) + f(t)\overline{f'(t)} \right) \right] dt \right)^2 \\
& = & \int_{\mathbb{R}} t \frac{d}{dt} \underbrace{\left(f(t)\overline{f(t)} \right)}_{=|f(t)|} dt \text{ (integrate by parts)} \\
& = & \left(\underbrace{\left[[t]f(t)] \right]_{-\infty}^{\infty} - \int_{-\infty}^{\infty} |f(t)| dt \right) \\
& = & \left(\int_{-\infty}^{\infty} |f(t)| dt \right)
\end{array}$$

This proves the case where $f \in \mathcal{S}$. If $f \in L(\mathbb{R})$, but $f \in \mathcal{S}$, then we choose a sequence of functions $f_n \in \mathcal{S}$ so that

$$\int_{-\infty}^{\infty} |f_n(t)| dt \to \int_{-\infty}^{\infty} |f(t)| dt \text{ and}$$

$$\int_{-\infty}^{\infty} |tf_n(t)| dt \to \int_{-\infty}^{\infty} |tf(t)| dt \text{ and}$$

$$\int_{-\infty}^{\infty} |\omega \hat{f}_n(\omega)| d\omega \to \int_{-\infty}^{\infty} |\omega \hat{f}(\omega)| d\omega$$

(This can be done, not quite obvious). Since the inequality holds for each f_n , it must also hold for f.

2.5.6 Weierstrass' Non-Differentiable Function

Define $\sigma(t) = \sum_{k=0}^{\infty} a^k \cos(2\pi b^k t)$, $t \in \mathbb{R}$ where 0 < a < 1 and $ab \ge 1$.

Lemma 2.33. This sum defines a continuous function σ which is not differentiable at any point.

Proof. Convergence easy: At each t,

$$\sum_{k=0}^{\infty} |a^k \cos(2\pi b^k t)| \le \sum_{k=0}^{\infty} a^k = \frac{1}{1-a} < \infty,$$

and absolute convergence \Rightarrow convergence. The convergence is even uniform: The error is

$$\left|\sum_{k=K}^{\infty} a^k \cos(2\pi b^k t)\right| \le \sum_{k=K}^{\infty} |a^k \cos(2\pi b^k t)| \le \sum_{k=K}^{\infty} a^k = \frac{a^K}{1-a} \to 0 \text{ as } K \to \infty$$

so by choosing K large enough we can make the error smaller than ε , and the same K works for all t.

By "Analysis II": If a sequence of continuous functions converges uniformly, then the limit function is continuous. Thus, σ is continuous.

Why is it *not differentiable*? At least does the formal derivative not converge: Formally we should have

$$\sigma'(t) = \sum_{k=0}^{\infty} a^k \cdot 2\pi b^k (-1) \sin(2\pi b^k t),$$

and the terms in this serie do not seem to go to zero (since $(ab)^k \ge 1$). (If a sum converges, then the terms must tend to zero.)

To prove that σ is not differentiable we cut the sum appropriatly: Choose some function $\varphi \in L^1(\mathbb{R})$ with the following properties:

i)
$$\hat{\varphi}(1) = 1$$

ii)
$$\hat{\varphi}(\omega) = 0$$
 for $\omega \leq \frac{1}{b}$ and $\omega > b$

iii)
$$\int_{-\infty}^{\infty} |t\varphi(t)| dt < \infty$$
.

We can get such a function from the Fejer kernel: Take the square of the Fejer kernel (\Rightarrow its Fourier transform is the convolution of \hat{f} with itself), squeeze it (Theorem 2.7(e)), and shift it (Theorem 2.7(b)) so that it vanishes outside of

 $(\frac{1}{b}, b)$, and $\hat{\varphi}(1) = 1$. (Sort of like approximate identity, but $\hat{\varphi}(1) = 1$ instead of $\hat{\varphi}(0) = 1$.)

Define $\varphi_j(t) = b^j \varphi(b^j t)$, $t \in \mathbb{R}$. Then $\hat{\varphi}_j(\omega) = \hat{\varphi}(\omega b^{-j})$, so $\hat{\varphi}(b^j) = 1$ and $\hat{\varphi}(\omega) = 0$ outside of the interval (b^{j-1}, b^{j+1}) .

Put $f_j = \sigma * \varphi_j$. Then

$$f_{j}(t) = \int_{-\infty}^{\infty} \sigma(t-s)\varphi_{j}(s)ds$$

$$= \int_{-\infty}^{\infty} \sum_{k=0}^{\infty} a^{k} \frac{1}{2} \left[e^{2\pi i b^{k}(t-s)} + e^{-2\pi i b^{k}(t-s)} \right] \varphi_{j}(s)ds$$
(by the uniform convergence)
$$= \sum_{k=0}^{\infty} \frac{a^{k}}{2} \left[\underbrace{e^{2\pi i b^{k}t}}_{=\delta_{j}^{k}} \varphi_{j}(b^{k}) + \underbrace{e^{-2\pi i b^{k}t}}_{=0} \varphi_{j}(-b^{k}) \right]$$

$$= \frac{1}{2} a^{j} e^{2\pi i b^{k}t}.$$

(Thus, this particular convolution picks out *just one* of the terms in the series.) Suppose (to get a contradiction) that σ can be differentiated at some point $t \in \mathbb{R}$. Then the function

$$\eta(s) = \begin{cases} \frac{\sigma(t+s) - \sigma(t)}{s} - \sigma'(t) & , \quad s \neq 0 \\ 0 & , \quad s = 0 \end{cases}$$

is (uniformly) continuous and bounded, and $\eta(0) = 0$. Write this as

$$\sigma(t-s) = -s\eta(-s) + \sigma(t) - s\sigma'(t)$$

i.e.,

$$f_{j}(t) = \int_{\mathbb{R}} \sigma(t-s)\varphi_{j}(s)ds$$

$$= \int_{\mathbb{R}} -s\eta(-s)\varphi_{j}(s)ds + \sigma(t) \underbrace{\int_{\mathbb{R}} \varphi_{j}(s)ds}_{=\hat{\varphi}_{j}(0)=0} -\sigma'(t) \underbrace{\int_{\mathbb{R}} s\varphi_{j}(s)ds}_{\frac{\varphi'_{j}(0)}{-2\pi i}=0}$$

$$= -\int_{\mathbb{R}} s\eta(-s)b^{j}\varphi(b^{j}s)ds$$

$$\stackrel{b^{j}s=t}{=} -b^{j}\int_{\mathbb{R}} \underbrace{\eta(\frac{-s}{b^{j}})}_{\to 0 \text{ pointwise}} \underbrace{s\varphi(s)ds}_{\in L^{1}}$$

 $\rightarrow 0$ by the Lesbesgue dominated convergence theorem as $j \rightarrow \infty$.

Thus,

$$b^{-j}f_j(t) \to 0 \text{ as } j \to \infty \iff \frac{1}{2} \left(\frac{a}{b}\right)^j e^{2\pi i b^j t} \to 0 \text{ as } j \to \infty.$$

As $|e^{2\pi i b^j t}| = 1$, this is $\Leftrightarrow \left(\frac{a}{b}\right)^j \to 0$ as $j \to \infty$. Impossible, since $\frac{a}{b} \geq 1$. Our assumption that σ is differentiable at the point t must be wrong $\Rightarrow \sigma(t)$ is not differentiable in any point!

2.5.7 Differential Equations

Solve the differential equation

$$u''(t) + \lambda u(t) = f(t), \ t \in \mathbb{R}$$
 (2.10)

where we require that $f \in L^2(\mathbb{R})$, $u \in L^2(\mathbb{R})$, $u \in C^1(\mathbb{R})$, $u' \in L^2(\mathbb{R})$ and that u' is of the form

$$u'(t) = u'(0) + \int_0^t v(s)ds,$$

where $v \in L^2(\mathbb{R})$ (that is, u' is "absolutely continuous" and its "generalized derivative" belongs to L^2).

The solution of this problem is based on the following lemmas:

Lemma 2.34. Let $k = 1, 2, 3, \ldots$ Then the following conditions are equivalent:

i) $u \in L^2(\mathbb{R}) \cap C^{k-1}(\mathbb{R})$, $u^{(k-1)}$ is "absolutely continuous" and the "generalized derivative of $u^{(k-1)}$ " belongs to $L^2(\mathbb{R})$.

ii)
$$\hat{u} \in L^2(\mathbb{R})$$
 and $\int_{\mathbb{R}} |\omega^k \hat{u}(k)|^2 d\omega < \infty$.

PROOF. Similar to the proof of one of the homeworks, which says that the same result is true for L^2 -Fourier series. (There ii) is replaced by $\sum |n\hat{f}(n)|^2 < \infty$.)

Lemma 2.35. If u is as in Lemma 2.34, then

$$\widehat{u^{(k)}}(\omega) = (2\pi i \omega)^k \hat{u}(\omega)$$

(compare this to Theorem 2.7(g)).

PROOF. Similar to the same homework.

<u>Solution</u>: By the two preceding lemmas, we can take Fourier transforms in (2.10), and get the equivalent equation

$$(2\pi i\omega)^2 \hat{u}(\omega) + \lambda \hat{u}(\omega) = \hat{f}(\omega), \ \omega \in \mathbb{R} \iff (\lambda - 4\pi^2\omega^2)\hat{u}(\omega) = \hat{f}(\omega), \ \omega \in \mathbb{R}$$
 (2.11)

Two cases:

<u>Case 1</u>: $\lambda - 4\pi^2 \omega^2 \neq 0$, for all $\omega \in \mathbb{R}$, i.e., λ must not be zero and not a positive number (negative is OK, complex is OK). Then

$$\hat{u}(\omega) = \frac{\hat{f}(\omega)}{\lambda - 4\pi^2 \omega^2}, \ \omega \in \mathbb{R}$$

so u = k * f, where k = the inverse Fourier transform of

$$\hat{k}(\omega) = \frac{1}{\lambda - 4\pi^2 \omega^2}.$$

This can be computed explicitly. It is called "Green's function" for this problem. Even without computing k(t), we know that

- $k \in C_0(\mathbb{R})$ (since $\hat{k} \in L^1(\mathbb{R})$.)
- k has a generalized derivative in $L^2(\mathbb{R})$ (since $\int_{\mathbb{R}} |\omega \hat{k}(\omega)|^2 d\omega < \infty$.)
- k does not have a second generalized derivative in L^2 (since $\int_{\mathbb{R}} |\omega^2 \hat{k}(\omega)|^2 d\omega = \infty$.)

How to compute k? Start with a partial fraction expansion. Write

$$\lambda = \alpha^2$$
 for some $\alpha \in \mathbb{C}$

 $(\alpha = \text{pure imaginary if } \lambda < 0)$. Then

$$\frac{1}{\lambda - 4\pi^2 \omega^2} = \frac{1}{\alpha^2 - 4\pi^2 \omega^2} = \frac{1}{\alpha - 2\pi\omega} \cdot \frac{1}{\alpha + 2\pi\omega}$$

$$= \frac{A}{\alpha - 2\pi\omega} + \frac{B}{\alpha + 2\pi\omega}$$

$$= \frac{A\alpha + 2\pi\omega A + B\alpha - 2\pi\omega B}{(\alpha - 2\pi\omega)(\alpha + 2\pi\omega)}$$

$$\Rightarrow \frac{(A+B)\alpha = 1}{(A-B)2\pi\omega = 0} \right\} \Rightarrow A = B = \frac{1}{2\alpha}$$

Now we must still invert $\frac{1}{\alpha+2\pi\omega}$ and $\frac{1}{\alpha-2\pi\omega}$. This we do as follows:

Auxiliary result 1: Compute the transform of

$$f(t) = \begin{cases} e^{-zt} & , & t \ge 0, \\ 0 & , & t < 0, \end{cases}$$

where Re(z) > 0 ($\Rightarrow f \in L^2(\mathbb{R}) \cap L^1(\mathbb{R})$, but $f \notin C(\mathbb{R})$ because of the jump at the origin). Simply compute:

$$\hat{f}(\omega) = \int_0^\infty e^{-2\pi i \omega t} e^{-zt} dt$$
$$= \left[\frac{e^{-(z+2\pi i \omega)t}}{-(z+2\pi i \omega)} \right]_0^\infty = \frac{1}{2\pi i \omega + z}.$$

Auxiliary result 2: Compute the transform of

$$f(t) = \begin{cases} e^{zt} & , & t \le 0, \\ 0 & , & t > 0, \end{cases}$$

where Re(z) > 0 ($\Rightarrow f \in L^2(\mathbb{R}) \cap L^1(\mathbb{R})$, but $f \notin C(\mathbb{R})$)

$$\Rightarrow \hat{f}(\omega) = \int_{-\infty}^{0} e^{2\pi i \omega t} e^{zt} dt$$
$$= \left[\frac{e^{(z-2\pi i \omega)t}}{(z-2\pi i \omega)t} \right]_{-\infty}^{0} = \frac{1}{z-2\pi i \omega}.$$

Back to the function k:

$$\hat{k}(\omega) = \frac{1}{2\alpha} \left(\frac{1}{\alpha - 2\pi\omega} + \frac{1}{\alpha + 2\pi\omega} \right)$$
$$= \frac{1}{2\alpha} \left(\frac{i}{i\alpha - 2\pi i\omega} + \frac{i}{i\alpha + 2\pi i\omega} \right).$$

We defined α by requiring $\alpha^2 = \lambda$. Choose α so that $Im(\alpha) < 0$ (possible because α is not a positive real number).

$$\Rightarrow Re(i\alpha) > 0$$
, and $\hat{k}(\omega) = \frac{1}{2\alpha} \left(\frac{i}{i\alpha - 2\pi i\omega} + \frac{i}{i\alpha + 2\pi i\omega} \right)$

The auxiliary results 1 and 2 gives:

$$k(t) = \begin{cases} \frac{i}{2\alpha} e^{-i\alpha t} &, t \ge 0\\ \frac{i}{2\alpha} e^{i\alpha t} &, t < 0 \end{cases}$$

and

$$u(t) = (k * f)(t) = \int_{-\infty}^{\infty} k(t - s)f(s)ds$$

Special case: $\lambda = \text{negative number} = -a^2$, where a > 0. Take $\alpha = -ia$ $\Rightarrow i\alpha = i(-i)a = a$, and

$$k(t) = \begin{cases} -\frac{1}{2a}e^{-at} & , t \ge 0\\ -\frac{1}{2a}e^{at} & , t < 0 & i.e. \end{cases}$$

$$k(t) = -\frac{1}{2a}e^{-|at|}, \ t \in \mathbb{R}$$

Thus, the solution of the equation

$$u''(t) - a^2 u(t) = f(t), \quad t \in \mathbb{R},$$

where a > 0, is given by

$$u = k * f$$
 where

$$u = k * f$$
 where
$$k(t) = -\frac{1}{2a}e^{-a|t|}, \quad t \in \mathbb{R}$$

This function k has many names, depending on the field of mathematics you are working in:

- i) Green's function (PDE-people)
- ii) Fundamental solution (PDE-people, Functional Analysis)
- iii) Resolvent (Integral equations people)

Case 2: $\lambda = a^2 = a$ nonnegative number. Then

$$\hat{f}(\omega) = (a^2 - 4\pi^2\omega^2)\hat{u}(\omega) = (a - 2\pi\omega)(a + 2\pi\omega)\hat{u}(\omega).$$

As $\hat{u}(\omega) \in L^2(\mathbb{R})$ we get a necessary condition for the existence of a solution: If a solution exists then

$$\int_{\mathbb{R}} \left| \frac{\hat{f}(\omega)}{(a - 2\pi\omega)(a + 2\pi\omega)} \right|^2 d\omega < \infty. \tag{2.12}$$

(Since the denominator vanishes for $\omega = \pm \frac{a}{2\pi}$, this forces \hat{f} to vanish at $\pm \frac{a}{2\pi}$, and to be "small" near these points.)

If the condition (2.12) holds, then we can continue the solution as before.

<u>Sideremark</u>: These results mean that this particular problem has no "eigenvalues" and no "eigenfunctions". Instead it has a "continuous spectrum" consisting of the positive real line. (Ignore this comment!)

2.5.8 Heat equation

This equation:

$$\begin{cases} \frac{\partial}{\partial t}u(t,x) &= \frac{\partial^2}{\partial x^2}u(t,x) + g(t,x), \begin{cases} t > 0\\ x \in \mathbb{R} \end{cases} \\ u(0,x) &= f(x) \text{ (initial value)} \end{cases}$$

is solved in the same way. Rather than proving everything we proceed in a formal mannor (everything can be proved, but it takes a lot of time and energy.)

Transform the equation in the x-direction,

$$\hat{u}(t,\gamma) = \int_{\mathbb{R}} e^{-2\pi i \gamma x} u(t,x) dx.$$

Assuming that $\int_{\mathbb{R}} e^{-2\pi i \gamma x} \frac{\partial}{\partial t} u(t,x) = \frac{\partial}{\partial t} \int_{\mathbb{R}} e^{-2\pi i \gamma x} u(t,x) dx$ we get

$$\begin{cases} \frac{\partial}{\partial t}\hat{u}(t,\gamma) &= (2\pi i\gamma)^2\hat{u}(t,\gamma) + \hat{g}(t,\gamma) \\ \hat{u}(0,\gamma) &= \hat{f}(\gamma) \end{cases}$$

$$\begin{cases} \frac{\partial}{\partial t}\hat{u}(t,\gamma) &= -4\pi^2\gamma^2\hat{u}(t,\gamma) + \hat{g}(t,\gamma) \\ \hat{u}(0,\gamma) &= \hat{f}(\gamma) \end{cases}$$

We solve this by using the standard "variation of constants lemma":

$$\hat{u}(t,\gamma) = \underbrace{\hat{f}(\gamma)e^{-4\pi^2\gamma^2t}}_{= \hat{u}_1(t,\gamma)} + \underbrace{\int_0^t e^{-4\pi^2\gamma^2(t-s)}\hat{g}(s,\gamma)ds}_{\hat{u}_2(t,\gamma)}$$

We can invert $e^{-4\pi^2\gamma^2t} = e^{-\pi(2\sqrt{\pi t}\gamma)^2} = e^{-\pi(\gamma/\lambda)^2}$ where $\lambda = (2\sqrt{\pi t})^{-1}$: According to Theorem 2.7 and Example 2.5, this is the transform of

$$k(t,x) = \frac{1}{2\sqrt{\pi t}}e^{-\pi(\frac{x}{2\sqrt{\pi t}})^2} = \frac{1}{2\sqrt{\pi t}}e^{-\frac{x^2}{4t}}$$

We know that $\hat{f}(\gamma)\hat{k}(\gamma) = \widehat{k*f}(\gamma)$, so

$$u_1(t,x) = \int_{-\infty}^{\infty} \frac{1}{2\sqrt{\pi t}} e^{-(x-y)^2/4t} f(y) dy,$$
(By the same argument:
$$s \text{ and } t - s \text{ are fixed when we transform.})$$

$$u_2(t,x) = \int_0^t (k*g)(s) ds$$

$$= \int_0^t \int_{-\infty}^{\infty} \frac{1}{2\sqrt{\pi (t-s)}} e^{-(x-y)^2/4(t-s)} g(s,y) dy ds,$$

$$u(t,x) = u_1(t,x) + u_2(t,x)$$

The function

$$k(t,x) = \frac{1}{2\sqrt{\pi t}}e^{-\frac{x^2}{4t}}$$

is the *Green's function* or the *fundamental solution* of the heat equation on the real line $\mathbb{R} = (-\infty, \infty)$, or the *heat kernel*.

Note: To prove that this "solution" is indeed a solution we need to assume that

- all functions are in $L^2(\mathbb{R})$ with respect to x, i.e.,

$$\int_{-\infty}^{\infty} |u(t,x)|^2 dx < \infty, \ \int_{-\infty}^{\infty} |g(t,x)|^2 dx < \infty, \ \int_{-\infty}^{\infty} |f(x)|^2 dx < \infty,$$

- some (weak) continuity assumptions with respect to t.

2.5.9 Wave equation

$$\begin{cases} \frac{\partial^2}{\partial t^2} u(t,x) &= \frac{\partial^2}{\partial x^2} u(t,x) + k(t,x), & \begin{cases} t > 0, \\ x \in \mathbb{R}. \end{cases} \\ u(0,x) &= f(x), & x \in \mathbb{R} \\ \frac{\partial}{\partial t} u(0,x) &= g(x), & x \in \mathbb{R} \end{cases}$$

Again we proceed formally. As above we get

$$\begin{cases} \frac{\partial^2}{\partial t^2} \hat{u}(t,\gamma) &= -4\pi^2 \gamma^2 \hat{u}(t,\gamma) + \hat{k}(t,\gamma), \\ \hat{u}(0,\gamma) &= \hat{f}(\gamma), \\ \frac{\partial}{\partial t} \hat{u}(0,\gamma) &= \hat{g}(\gamma). \end{cases}$$

This can be solved by "the variation of constants formula", but to *simplify* the computations we assume that $k(t,x) \equiv 0$, i.e., $\hat{h}(t,\gamma) \equiv 0$. Then the solution is (check this!)

$$\hat{u}(t,\gamma) = \cos(2\pi\gamma t)\hat{f}(\gamma) + \frac{\sin(2\pi\gamma t)}{2\pi\gamma}\hat{g}(\gamma). \tag{2.13}$$

To invert the first term we use Theorem 2.7, and get

$$\frac{1}{2}[f(x+t) + f(x-t)].$$

The second term contains the "Dirichlet kernel", which is inverted as follows:

 $\underline{\mathbf{E}}\mathbf{x}$. If

$$k(x) = \begin{cases} 1/2, & |t| \le 1\\ 0, & \text{otherwise,} \end{cases}$$

then $\hat{k}(\omega) = \frac{1}{2\pi\omega} \sin(2\pi\omega)$.

Proof.

$$\hat{k}(\omega) = \frac{1}{2} \int_{-1}^{1} e^{-2\pi i \omega t} dt = \dots = \frac{1}{2\pi \omega} \sin(\omega t).$$

Thus, the inverse Fourier transform of

$$\frac{\sin(2\pi\gamma)}{2\pi\gamma} \quad \text{is} \quad k(x) = \begin{cases} 1/2, & |x| \le 1, \\ 0, & |x| > 1, \end{cases}$$

(inverse transform = ordinary transform since the function is even), and the inverse Fourier transform (with respect to γ) of

$$\frac{\sin(2\pi\gamma t)}{2\pi\gamma} = t \frac{\sin(2\pi\gamma t)}{2\pi\gamma t} \text{ is}$$

$$k(\frac{x}{t}) = \begin{cases} 1/2, & |x| \le t, \\ 0, & |x| > t. \end{cases}$$

This and Theorem 2.7(f), gives the inverse of the second term in (2.13): It is

$$\frac{1}{2} \int_{x-t}^{x+t} g(y) dy.$$

Conclusion: The solution of the wave equation with $h(t,x) \equiv 0$ seems to be

$$u(t,x) = \frac{1}{2}[f(x+t) + f(x-t)] + \frac{1}{2} \int_{x-t}^{x+t} g(y)dy,$$

a formula known as d'Alembert's formula.

Interpretation: This is the sum of two waves: $u(t,x) = u^+(t,x) + u^-(t,x)$, where

$$u^{+}(t,x) = \frac{1}{2}f(x+t) + \frac{1}{2}G(x+t)$$

moves to the left with speed one, and

$$u^{-}(t,x) = \frac{1}{2}f(x-t) - \frac{1}{2}G(x-t)$$

moves to the right with speed one. Here

$$G(x) = \int_0^x g(y)dy, \quad x \in \mathbb{R}.$$