
Chapter 1

The Fourier Series of a Periodic

Function

1.1 Introduction

Notation 1.1. We use the letter T with a double meaning:

a) T = [0, 1)

b) In the notations Lp(T), C(T), Cn(T) and C∞(T) we use the letter T to

imply that the functions are periodic with period 1, i.e., f(t + 1) = f(t)

for all t ∈ R. In particular, in the continuous case we require f(1) = f(0).

Since the functions are periodic we know the whole function as soon as we

know the values for t ∈ [0, 1).

Notation 1.2. ‖f‖Lp(T) =
(∫ 1

0
|f(t)|pdt

)1/p

, 1 ≤ p < ∞. ‖f‖C(T) = maxt∈T |f(t)|
(f continuous).

Definition 1.3. f ∈ L1(T) has the Fourier coefficients

f̂(n) =

∫ 1

0

e−2πintf(t)dt, n ∈ Z,

where Z = {0,±1,±2, . . .}. The sequence {f̂(n)}n∈Z is the (finite) Fourier

transform of f .

Note:

f̂(n) =

∫ s+1

s

e−2πintf(t)dt ∀s ∈ R,

10
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since the function inside the integral is periodic with period 1.

Note: The Fourier transform of a periodic function is a discrete sequence.

Theorem 1.4.

i) |f̂(n)| ≤ ‖f‖L1(T), ∀n ∈ Z

ii) limn→±∞ f̂(n) = 0.

Note: ii) is called the Riemann–Lebesgue lemma.

Proof.

i) |f̂(n)| = |
∫ 1

0
e−2πintf(t)dt| ≤

∫ 1

0
|e−2πintf(t)|dt =

∫ 1

0
|f(t)|dt = ‖f‖L1(T) (by

the triangle inequality for integrals).

ii) First consider the case where f is continuously differentiable, with f(0) = f(1).

Then integration by parts gives

f̂(n) =

∫ 1

0

e−2πintf(t)dt

=
1

−2πin

[
e−2πintf(t)

]1
0
+

1

2πin

∫ 1

0

e−2πintf ′(t)dt

= 0 +
1

2πin
f̂ ′(n), so by i),

|f̂(n)| =
1

2πn
|f̂ ′(n)| ≤ 1

2πn

∫ 1

0

|f ′(s)|ds → 0 as n → ∞.

In the general case, take f ∈ L1(T) and ε > 0. By Theorem 0.11 we can

choose some g which is continuously differentiable with g(0) = g(1) = 0 so

that

‖f − g‖L1(T) =

∫ 1

0

|f(t) − g(t)|dt ≤ ε/2.

By i),

|f̂(n)| = |f̂(n) − ĝ(n) + ĝ(n)|
≤ |f̂(n) − ĝ(n)| + |ĝ(n)|
≤ ‖f − g‖L1(T) + |ĝ(n)|
≤ ǫ/2 + |ĝ(n)|.

By the first part of the proof, for n large enough, |ĝ(n)| ≤ ε/2, and so

|f̂(n)| ≤ ε.

This shows that |f̂(n)| → 0 as n → ∞. �
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Question 1.5. If we know {f̂(n)}∞n=−∞ then can we reconstruct f(t)?

Answer: is more or less ”Yes”.

Definition 1.6. Cn(T) = n times continuously differentiable functions, periodic

with period 1. (In particular, f (k)(1) = f (k)(0) for 0 ≤ k ≤ n.)

Theorem 1.7. For all f ∈ C1(T) we have

f(t) = lim
N→∞
M→∞

N∑

n=−M

f̂(n)e2πint, t ∈ R. (1.1)

We shall see later that the convergence is actually uniform in t.

Proof. Step 1. We shift the argument of f by replacing f(s) by g(s) = f(s+t).

Then

ĝ(n) = e2πintf̂(n),

and (1.1) becomes

f(t) = g(0) = lim
N→∞
M→∞

N∑

n=−M

f̂(n)e2πint.

Thus, it suffices to prove the case where t = 0 .

Step 2: If g(s) is the constant function g(s) ≡ g(0) = f(t), then (1.1) holds since

ĝ(0) = g(0) and ĝ(n) = 0 for n 6= 0 in this case. Replace g(s) by

h(s) = g(s) − g(0).

Then h satisfies all the assumptions which g does, and in addition, h(0) = 0.

Thus it suffices to prove the case where both t = 0 and f(0) = 0. For simplicity

we write f instead of h, but we suppose below that t = 0 and f(0) = 0

Step 2: Define

g(s) =

{
f(s)

e−2πis−1
, s 6= integer (=“heltal”)

if ′(0)
2π

, s = integer.

For s = n = integer we have e−2πis − 1 = 0, and by l’Hospital’s rule

lim
s→n

g(s) = lim
s→0

f ′(s)

−2πie−2πis
=

f ′(s)

−2πi
= g(n)
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(since e−i2πn = 1). Thus g is continuous. We clearly have

f(s) =
(
e−2πis − 1

)
g(s), (1.2)

so

f̂(n) =

∫

T

e−2πinsf(s)ds (use (1.2))

=

∫

T

e−2πins(e−2πis − 1)g(s)ds

=

∫

T

e−2πi(n+1)sg(s)ds −
∫

T

e−2πinsg(s)ds

= ĝ(n + 1) − ĝ(n).

Thus,
N∑

n=−M

f̂(n) = ĝ(N + 1) − ĝ(−M) → 0

by the Rieman–Lebesgue lemma (Theorem 1.4) �

By working a little bit harder we get the following stronger version of Theorem

1.7:

Theorem 1.8. Let f ∈ L1(T), t0 ∈ R, and suppose that

∫ t0+1

t0−1

∣∣∣f(t) − f(t0)

t − t0

∣∣∣dt < ∞. (1.3)

Then

f(t0) = lim
N→∞
M→∞

N∑

n=−M

f̂(n)e2πint0 t ∈ R

Proof. We can repeat Steps 1 and 2 of the preceding proof to reduce the The-

orem to the case where t0 = 0 and f(t0) = 0. In Step 3 we define the function

g in the same way as before for s 6= n, but leave g(s) undefined for s = n.

Since lims→0 s−1(e−2πis − 1) = −2πi 6= 0, the function g belongs to L1(T) if and

only if condition (1.3) holds. The continuity of g was used only to ensure that

g ∈ L1(T), and since g ∈ L1(T) already under the weaker assumption (1.3), the

rest of the proof remains valid without any further changes. �
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Summary 1.9. If f ∈ L1(T), then the Fourier transform {f̂(n)}∞n=−∞ of f is

well-defined, and f̂(n) → 0 as n → ∞. If f ∈ C1(T), then we can reconstruct f

from its Fourier transform through

f(t) =

∞∑

n=−∞

f̂(n)e2πint

(
= lim

N→∞
M→∞

N∑

n=−M

f̂(n)e2πint

)
.

The same reconstruction formula remains valid under the weaker assumption of

Theorem 1.8.

1.2 L2-Theory (“Energy theory”)

This theory is based on the fact that we can define an inner product (scalar

product) in L2(T), namely

〈f, g〉 =

∫ 1

0

f(t)g(t)dt, f, g ∈ L2(T).

Scalar product means that for all f, g, h ∈ L2(T)

i) 〈f + g, h〉 = 〈f, h〉 + 〈g, h〉

ii) 〈λf, g〉 = λ〈f, g〉 ∀λ ∈ C

iii) 〈g, f〉 = 〈f, g〉 (complex conjugation)

iv) 〈f, f〉 ≥ 0, and = 0 only when f ≡ 0.

These are the same rules that we know from the scalar products in Cn. In

addition we have

‖f‖2
L2(T) =

∫

T

|f(t)|2dt =

∫

T

f(t)f(t)dt = 〈f, f〉.

This result can also be used to define the Fourier transform of a function f ∈
L2(T), since L2(T) ⊂ L1(T).

Lemma 1.10. Every function f ∈ L2(T) also belongs to L1(T), and

‖f‖L1(T) ≤ ‖f‖L2(T).
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Proof. Interpret
∫

T
|f(t)|dt as the inner product of |f(t)| and g(t) ≡ 1. By

Schwartz inequality (see course on Analysis II),

|〈f, g〉| =
∫

T

|f(t)| · 1dt ≤ ‖f‖L2 · ‖g‖L2 = ‖f‖L2(T)

∫

T

12dt = ‖f‖L2(T).

Thus, ‖f‖L1(T) ≤ ‖f‖L2(T). Therefore:

f ∈ L2(t) =⇒
∫

T

|f(t)|dt < ∞

=⇒ f̂(n) =

∫

T

e−2πintf(t)dt is defined for all n.

It is not true that L2(R) ⊂ L1(R). Counter example:

f(t) =
1√

1 + t2





∈ L2(R)

/∈ L1(R)

∈ C∞(R)

(too large at ∞).

Notation 1.11. en(t) = e2πint, n ∈ Z, t ∈ R.

Theorem 1.12 (Plancherel’s Theorem). Let f ∈ L2(T). Then

i)
∑∞

n=−∞|f̂(n)|2 =
∫ 1

0
|f(t)|2dt = ‖f‖2

L2(T),

ii) f =
∑∞

n=−∞ f̂(n)en in L2(T) (see explanation below).

Note: This is a very central result in, e.g., signal processing.

Note: It follows from i) that the sum
∑∞

n=−∞|f̂(n)|2 always converges if f ∈ L2(T)

Note: i) says that

∞∑

n=−∞

|f̂(n)|2 = the square of the total energy of the Fourier coefficients

= the square of the total energy of the original signal f

=

∫

T

|f(t)|2dt

Note: Interpretation of ii): Define

fM,N =

N∑

n=−M

f̂(n)en =

N∑

n=−M

f̂(n)e2πint.
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Then

lim
M→∞
N→∞

‖f − fM,N‖2 = 0 ⇐⇒

lim
M→∞
N→∞

∫ 1

0

|f(t) − fM,N(t)|2dt = 0

(fM,N(t) need not converge to f(t) at every point, and not even almost every-

where).

The proof of Theorem 1.12 is based on some auxiliary results:

Theorem 1.13. If gn ∈ L2(T), fN =
∑N

n=0 gn, gn ⊥ gm, and
∑∞

n=0‖gn‖2
L2(T) < ∞,

then the limit

f = lim
N→∞

N∑

n=0

gn

exists in L2.

Proof. Course on “Analysis II” and course on “Hilbert Spaces”. �

Interpretation: Every orthogonal sum with finite total energy converges.

Lemma 1.14. Suppose that
∑∞

n=−∞|c(n)| < ∞. Then the series

∞∑

n=−∞

c(n)e2πint

converges uniformly to a continuous limit function g(t).

Proof.

i) The series
∑∞

n=−∞ c(n)e2πint converges absolutely (since |e2πint| = 1), so

the limit

g(t) =

∞∑

n=−∞

c(n)e2πint

exist for all t ∈ R.

ii) The convergens is uniform, because the error

|
m∑

n=−m

c(n)e2πint − g(t)| = |
∑

|n|>m

c(n)e2πint|

≤
∑

|n|>m

|c(n)e2πint|

=
∑

|n|>m

|c(n)| → 0 as m → ∞.
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iii) If a sequence of continuous functions converge uniformly, then the limit is

continuous (proof “Analysis II”).

proof of Theorem 1.12. (Outline)

0 ≤ ‖f − fM,N‖2 = 〈f − fM,N , f − fM,N〉
= 〈f, f〉︸ ︷︷ ︸

I

−〈fM,N , f〉︸ ︷︷ ︸
II

−〈f, fM,N〉︸ ︷︷ ︸
III

+ 〈fM,N , fM,N〉︸ ︷︷ ︸
IV

I = 〈f, f〉 = ‖f‖2
L2(T).

II = 〈
N∑

n=−M

f̂(n)en, f〉 =

N∑

n=−M

f̂(n)〈en, f〉

=
N∑

n=−M

f̂(n)〈f, en〉 =
N∑

n=−M

f̂(n)f̂(n)

=

N∑

n=−M

|f̂(n)|2.

III = (the complex conjugate of II) = II.

IV =
〈 N∑

n=−M

f̂(n)en,

N∑

m=−M

f̂(m)em

〉

=
N∑

n=−M

f̂(n)f̂(m) 〈en, em〉︸ ︷︷ ︸
δm
n

=
N∑

n=−M

|f̂(n)|2 = II = III.

Thus, adding I − II − III + IV = I − II ≥ 0, i.e.,

‖f‖2
L2(T) −

N∑

n=−M

|f̂(n)|2 ≥ 0.

This proves Bessel’s inequality

∞∑

n=−∞

|f̂(n)|2 ≤ ‖f‖2
L2(T). (1.4)

How do we get equality?

By Theorem 1.13, applied to the sums

N∑

n=0

f̂(n)en and

−1∑

n=−M

f̂(n)en,
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the limit

g = lim
M→∞
N→∞

fM,N = lim
M→∞
N→∞

N∑

n=−M

f̂(n)en (1.5)

does exist. Why is f = g? (This means that the sequence en is complete!). This

is (in principle) done in the following way

i) Argue as in the proof of Theorem 1.4 to show that if f ∈ C2(T), then

|f̂(n)| ≤ 1/(2πn)2‖f ′′‖L1 for n 6= 0. In particular, this means that
∑∞

n=−∞|f̂(n)| < ∞. By Lemma 1.14, the convergence in (1.5) is actually

uniform, and by Theorem 1.7, the limit is equal to f . Uniform convergence

implies convergence in L2(T), so even if we interpret (1.5) in the L2-sense,

the limit is still equal to f a.e. This proves that fM,N → f in L2(T) if

f ∈ C2(T).

ii) Approximate an arbitrary f ∈ L2(T) by a function h ∈ C2(T) so that

‖f − h‖L2(T) ≤ ε.

iii) Use i) and ii) to show that ‖f − g‖L2(T) ≤ ε, where g is the limit in (1.5).

Since ε is arbitrary, we must have g = f . �

Definition 1.15. Let 1 ≤ p < ∞.

ℓp(Z) = set of all sequences {an}∞n=−∞ satisfying
∞∑

n=−∞

|an|p < ∞.

The norm of a sequence a ∈ ℓp(Z) is

‖a‖ℓp(Z) =

(
∞∑

n=−∞

|an|p
)1/p

Analogous to Lp(I):

p = 1 ‖a‖ℓ1(Z) = ”total mass” (probability),

p = 2 ‖a‖ℓ2(Z) = ”total energy”.

In the case of p = 2 we also define an inner product

〈a, b〉 =

∞∑

n=−∞

anbn.
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Definition 1.16. ℓ∞(Z) = set of all bounded sequences {an}∞n=−∞. The norm

in ℓ∞(Z) is

‖a‖ℓ∞(Z) = sup
n∈Z

|an|.

For details: See course in ”Analysis II”.

Definition 1.17. c0(Z) = the set of all sequences {an}∞n=−∞ satisfying limn→±∞ an = 0.

We use the norm

‖a‖c0(Z) = max
n∈Z

|an|

in c0(Z).

Note that c0(Z) ⊂ ℓ∞(Z), and that

‖a‖c0(Z) = ‖a‖ℓ∞(Z)

if {a}∞n=−∞ ∈ c0(Z).

Theorem 1.18. The Fourier transform maps L2(T) one to one onto ℓ2(Z), and

the Fourier inversion formula (see Theorem 1.12 ii) maps ℓ2(Z) one to one onto

L2(T). These two transforms preserves all distances and scalar products.

Proof. (Outline)

i) If f ∈ L2(T) then f̂ ∈ ℓ2(Z). This follows from Theorem 1.12.

ii) If {an}∞n=−∞ ∈ ℓ2(Z), then the series

N∑

n=−M

ane
2πint

converges to some limit function f ∈ L2(T). This follows from Theorem

1.13.

iii) If we compute the Fourier coefficients of f , then we find that an = f̂(n).

Thus, {an}∞n=−∞ is the Fourier transform of f . This shows that the Fourier

transform maps L2(T) onto ℓ2(Z).

iv) Distances are preserved. If f ∈ L2(T), g ∈ L2(T), then by Theorem 1.12

i),

‖f − g‖L2(T) = ‖f̂(n) − ĝ(n)‖ℓ2(Z),

i.e., ∫

T

|f(t) − g(t)|2dt =

∞∑

n=−∞

|f̂(n) − ĝ(n)|2.
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v) Inner products are preserved:

∫

T

|f(t) − g(t)|2dt = 〈f − g, f − g〉

= 〈f, f〉 − 〈f, g〉 − 〈g, f〉 + 〈g, g〉
= 〈f, f〉 − 〈f, g〉 − 〈f, g〉 + 〈g, g〉
= 〈f, f〉 + 〈g, g〉 − 2ℜRe〈f, g〉.

In the same way,

∞∑

n=−∞

|f̂(n) − ĝ(n)|2 = 〈f̂ − ĝ, f̂ − ĝ〉

= 〈f̂ , f̂〉 + 〈ĝ, ĝ〉 − 2ℜ〈f̂ , ĝ〉.

By iv), subtracting these two equations from each other we get

ℜ〈f, g〉 = ℜ〈f̂ , ĝ〉.

If we replace f by if , then

Im〈f, g〉 = Re i〈f, g〉 = ℜ〈if, g〉
= ℜ〈if̂ , ĝ〉 = Re i〈f̂ , ĝ〉
= Im〈f̂ , ĝ〉.

Thus, 〈f, g〉L2(R) = 〈f̂ , ĝ〉ℓ2(Z), or more explicitely,

∫

T

f(t)g(t)dt =

∞∑

n=−∞

f̂(n)ĝ(n). (1.6)

This is called Parseval’s identity.

Theorem 1.19. The Fourier transform maps L1(T) into c0(Z) (but not onto),

and it is a contraction, i.e., the norm of the image is ≤ the norm of the original

function.

Proof. This is a rewritten version of Theorem 1.4. Parts i) and ii) say that

{f̂(n)}∞n=−∞ ∈ c0(Z), and part i) says that ‖f̂(n)‖c0(Z) ≤ ‖f‖L1(T). �

The proof that there exist sequences in c0(Z) which are not the Fourier transform

of some function f ∈ L1(T) is much more complicated.
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1.3 Convolutions (”Faltningar”)

Definition 1.20. The convolution (”faltningen”) of two functions f, g ∈ L1(T)

is

(f ∗ g)(t) =

∫

T

f(t − s)g(s)ds,

where
∫

T
=
∫ α+1

α
for all α ∈ R, since the function s 7→ f(t − s)g(s) is periodic.

Note: In this integral we need values of f and g outside of the interval [0, 1), and

therefore the periodicity of f and g is important.

Theorem 1.21. If f, g ∈ L1(T), then (f ∗ g)(t) is defined almost everywhere,

and f ∗ g ∈ L1(T). Furthermore,

∥∥f ∗ g
∥∥

L1(T)
≤
∥∥f
∥∥

L1(T)

∥∥g
∥∥

L1(T)
(1.7)

Proof. (We ignore measurability)

We begin with (1.7)

∥∥f ∗ g
∥∥

L1(T)
=

∫

T

|(f ∗ g)(t)| dt

=

∫

T

∣∣
∫

T

f(t − s)g(s) ds
∣∣ dt

△-ineq.

≤
∫

t∈T

∫

s∈T

|f(t− s)g(s)| ds dt

Fubini
=

∫

s∈T

(∫

t∈T

|f(t − s)| dt

)
|g(s)| ds

Put v=t−s,dv=dt
=

∫

s∈T

(∫

v∈T

|f(v)| dv

)

︸ ︷︷ ︸
=‖f‖

L1(T)

|g(s)| ds

= ‖f‖L1(T)

∫

s∈T

|g(s)| ds = ‖f‖L1(T)‖g‖L1(T)

This integral is finite. By Fubini’s Theorem 0.15
∫

T

f(t − s)g(s)ds

is defined for almost all t. �

Theorem 1.22. For all f, g ∈ L1(T) we have

(f̂ ∗ g)(n) = f̂(n)ĝ(n), n ∈ Z
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Proof. Homework.

Thus, the Fourier transform maps convolution onto pointwise multiplication.

Theorem 1.23. If k ∈ Cn(T) (n times continuously differentiable) and f ∈ L1(T),

then k ∗ f ∈ Cn(T), and (k ∗ f)(m)(t) = (k(m) ∗ f)(t) for all m = 0, 1, 2, . . . , n.

Proof. (Outline) We have for all h > 0

1

h
[(k ∗ f) (t + h) − (k ∗ f)(t)] =

1

h

∫ 1

0

[k(t + h − s) − k(t − s)] f(s)ds.

By the mean value theorem,

k(t + h − s) = k(t − s) + hk′(ξ),

for some ξ ∈ [t−s, t−s+h], and 1
h
[k(t+h−s)−k(t−s)] = f(ξ) → k′(t−s) as

h → 0, and
∣∣ 1
h
[k(t+h−s)−k(t−s)]

∣∣ = |f ′(ξ)| ≤ M, where M = supT |k′(s)|. By

the Lebesgue dominated convergence theorem (which is true also if we replace

n → ∞ by h → 0)(take g(x) = M |f(x)|)

lim
h→0

∫ 1

0

1

h
[k(t + h − s) − k(t − s)]f(s) ds =

∫ 1

0

k′(t − s)f(s) ds,

so k ∗ f is differentiable, and (k ∗ f)′ = k′ ∗ f . By repeating this n times we find

that k ∗ f is n times differentiable, and that (k ∗ f)(n) = k(n) ∗ f . We must still

show that k(n) ∗ f is continuous. This follows from the next lemma. �

Lemma 1.24. If k ∈ C(T) and f ∈ L1(T), then k ∗ f ∈ C(T).

Proof. By Lebesgue dominated convergence theorem (take g(t) = 2‖k‖C(T)f(t)),

(k ∗ f)(t + h) − (k ∗ f)(t) =

∫ 1

0

[k(t + h − s) − k(t − s)]f(s)ds → 0 as h → 0.

Corollary 1.25. If k ∈ C1(T) and f ∈ L1(T), then for all t ∈ R

(k ∗ f)(t) =

∞∑

n=−∞

e2πintk̂(n)f̂(n).

Proof. Combine Theorems 1.7, 1.22 and 1.23.

Interpretation: This is a generalised inversion formula. If we choose k̂(n) so

that
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i) k̂(n) ≈ 1 for small |n|

ii) k̂(n) ≈ 0 for large |n|,

then we set a “filtered” approximation of f , where the “high frequences” (= high

values of |n|) have been damped but the “low frequences” (= low values of |n|)
remain. If we can take k̂(n) = 1 for all n then this gives us back f itself, but this

is impossible because of the Riemann-Lebesgue lemma.

Problem: Find a “good” function k ∈ C1(T) of this type.

Solution: “The Fejer kernel” is one possibility. Choose k̂(n) to be a “triangular

function”:

n = 0 n = 4

F (n)
4

Fix m = 0, 1, 2 . . . , and define

F̂m(n) =

{
m+1−|n|

m+1
, |n| ≤ m

0 , |n| > m

( 6= 0 in 2m + 1 points.)

We get the corresponding time domain function Fm(t) by using the invertion

formula:

Fm(t) =

m∑

n=−m

F̂m(n)e2πint.

Theorem 1.26. The function Fm(t) is explicitly given by

Fm(t) =
1

m + 1

sin2 ((m + 1)πt)

sin2(πt)
.

Proof. We are going to show that

m∑

j=0

j∑

n=−j

e2πint =
(sin(π(m + 1)t)

sin πt

)2
when t 6= 0.
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Let z = e2πit, z = e−2πit, for t 6= n, n = 0, 1, 2, . . . . Also z 6= 1, and

j∑

n=−j

e2πint =

j∑

n=0

e2πint +

j∑

n=1

e−2πint =

j∑

n=0

zn +

j∑

n=1

zn

=
1 − zj+1

1 − z
+

z(1 − zj)

1 − z
=

1 − zj+1

1 − z
+

=1︷︸︸︷
z · z(1 − zj)

z − z · z︸︷︷︸
=1

=
zj − zj+1

1 − z
.

Hence

m∑

j=0

j∑

n=−j

e2πint =
m∑

j=0

zj − zj+1

1 − z
=

1

1 − z

(
m∑

j=0

zj −
m∑

j=0

zj+1

)

=
1

1 − z

(
1 − zm+1

1 − z
− z

(
1 − zm+1

1 − z

))

=
1

1 − z

[1 − zm+1

1 − z
−

=1︷︸︸︷
z · z(1 − zm+1

z(1 − z)

]

=
1

1 − z

[1 − zm+1

1 − z
− 1 − zm+1

z − 1

]

=
−zm+1 + 2 − zm+1

|1 − z|2 .

sin t = 1
2i

(eit − e−it), cos t = 1
2
(eit + e−it). Now

|1 − z| = |1 − e2πit| = |eiπt(e−iπt − eiπt)| = |e−iπt − eiπt| = 2|sin(πt)|

and

zm+1 − 2 + zm+1 = e2πi(m+1) − 2 + e−2πi(m+1)

=
(
eπi(m+1) − e−πi(m+1)

)2
=
(
2i sin(π(m + 1))

)2
.

Hence
m∑

j=0

j∑

n=−j

e2πint =
4(sin(π(m + 1)))2

4(sin(πt))2
=
(sin(π(m + 1))

sin(πt)

)2

Note also that

m∑

j=0

j∑

n=−j

e2πint =

m∑

n=−m

m∑

j=|n|

e2πint =

m∑

n=−m

(m + 1 − |n|)e2πint.
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Comment 1.27.

i) Fm(t) ∈ C∞(T) (infinitely many derivatives).

ii) Fm(t) ≥ 0.

iii)
∫

T
|Fm(t)|dt =

∫
T
Fm(t)dt = F̂m(0) = 1,

so the total mass of Fm is 1.

iv) For all δ, 0 < δ < 1
2
,

lim
m→∞

∫ 1−δ

δ

Fm(t)dt = 0,

i.e. the mass of Fm gets concentrated to the integers t = 0,±1,±2 . . .

as m → ∞.

Definition 1.28. A sequence of functions Fm with the properties i)-iv) above is

called a (periodic) approximate identity. (Often i) is replaced by Fm ∈ L1(T).)

Theorem 1.29. If f ∈ L1(T), then, as m → ∞,

i) Fm ∗ f → f in L1(T), and

ii) (Fm ∗ f)(t) → f(t) for almost all t.

Here i) means that
∫

T
|(Fm ∗ f)(t) − f(t)|dt → 0 as m → ∞

Proof. See page 27.

By combining Theorem 1.23 and Comment 1.27 we find that Fm ∗ f ∈ C∞(T).

This combined with Theorem 1.29 gives us the following periodic version of

Theorem 0.11:
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Corollary 1.30. For every f ∈ L1(T) and ε > 0 there is a function g ∈ C∞(T)

such that ‖g − f‖L1(T) ≤ ε.

Proof. Choose g = Fm ∗ f where m is large enough. �

To prove Theorem 1.29 we need a number of simpler results:

Lemma 1.31. For all f, g ∈ L1(T) we have f ∗ g = g ∗ f

Proof.

(f ∗ g)(t) =

∫

T

f(t − s)g(s)ds

t−s=v,ds=−dv
=

∫

T

f(v)g(t− v)dv = (g ∗ f)(t) �

We also need:

Theorem 1.32. If g ∈ C(T), then Fm ∗ g → g uniformly as m → ∞, i.e.

max
t∈R

|(Fm ∗ g)(t) − g(t)| → 0 as m → ∞.

Proof.

(Fm ∗ g)(t) − g(t)
Lemma 1.31

= (g ∗ Fm)(t) − g(t)

Comment 1.27
= (g ∗ Fm)(t) − g(t)

∫

T

Fm(s)ds

=

∫

T

[g(t− s) − g(t)]Fm(s)ds.

Since g is continuous and periodic, it is uniformly continuous, and given ε > 0

there is a δ > 0 so that |g(t − s) − g(t)| ≤ ε if |s| ≤ δ. Split the intgral above

into (choose the interval of integration to be [−1
2
, 1

2
])

∫ 1
2

− 1
2

[g(t − s) − g(t)]Fm(s)ds =
(∫ −δ

− 1
2︸︷︷︸

I

+

∫ δ

−δ︸︷︷︸
II

+

∫ 1
2

δ︸︷︷︸
III

)
[g(t − s) − g(t)]Fm(s)ds

Let M = supt∈R
|g(t)|. Then |g(t− s) − g(t)| ≤ 2M , and

|I + III| ≤
(∫ −δ

− 1
2

+

∫ 1
2

δ

)
2MFm(s)ds

= 2M

∫ 1−δ

δ

Fm(s)ds
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and by Comment 1.27iv) this goes to zero as m → ∞. Therefore, we can choose

m so large that

|I + III| ≤ ε (m ≥ m0, and m0 large.)

|II| ≤
∫ δ

−δ

|g(t − s) − g(t)|Fm(s)ds

≤ ε

∫ δ

−δ

Fm(s)ds

≤ ε

∫ 1
2

− 1
2

Fm(s)ds = ε

Thus, for m ≥ m0 we have

|(Fm ∗ g)(t) − g(t)| ≤ 2ε (for all t).

Thus, limm→∞ supt∈R
|(Fm ∗ g)(t) − g(t)| = 0, i.e., (Fm ∗ g)(t) → g(t) uniformly

as m → ∞. �

The proof of Theorem 1.29 also uses the following weaker version of Lemma 0.11:

Lemma 1.33. For every f ∈ L1(T) and ε > 0 there is a function g ∈ C(T) such

that ‖f − g‖L1(T) ≤ ε.

Proof. Course in Lebesgue integration theory. �

(We already used a stronger version of this lemma in the proof of Theorem 1.12.)

Proof of Theorem 1.29, part i): (The proof of part ii) is bypassed, typically

proved in a course on integration theory.)

Let ε > 0, and choose some g ∈ C(T) with ‖f − g‖L1(T) ≤ ε. Then

‖Fm ∗ f − f‖L1(T) ≤ ‖Fm ∗ g − g + Fm ∗ (f − g) − (f − g)‖L1(t)

≤ ‖Fm ∗ g − g‖L1(T) + ‖Fm ∗ (f − g)‖L1(T) + ‖(f − g)‖L1(T)

Thm 1.21
≤ ‖Fm ∗ g − g‖L1(T) + (‖Fm‖L1(T) + 1︸ ︷︷ ︸

=2

) ‖f − g‖L1(T)︸ ︷︷ ︸
≤ε

= ‖Fm ∗ g − g‖L1(T) + 2ε.
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Now ‖Fm ∗ g − g‖L1(T) =

∫ 1

0

|(Fm ∗ g(t) − g(t)| dt

≤
∫ 1

0

max
s∈[0,1]

|(Fm ∗ g(s) − g(s)| dt

= max
s∈[0,1]

|(Fm ∗ g(s) − g(s)| ·
∫ 1

0

dt

︸ ︷︷ ︸
=1

.

By Theorem 1.32, this tends to zero as m → ∞. Thus for large enough m,

‖Fm ∗ f − f‖L1(T) ≤ 3ε,

so Fm ∗ f → f in L1(T) as m → ∞. �

(Thus, we have “almost” proved Theorem 1.29 i): we have reduced it to a proof

of Lemma 1.33 and other “standard properties of integrals”.)

In the proof of Theorem 1.29 we used the “trivial” triangle inequality in L1(T):

‖f + g‖L1(T) =

∫
|f(t) + g(t)| dt ≤

∫
|f(t)| + |g(t)| dt

= ‖f‖L1(T) + ‖g‖L1(T)

Similar inequalities are true in all Lp(T), 1 ≤ p ≤ ∞, and a more “sophisticated”

version of the preceding proof gives:

Theorem 1.34. If 1 ≤ p < ∞ and f ∈ Lp(T), then Fm ∗ f → f in Lp(T) as

m → ∞, and also pointwise a.e.

Proof. See Gripenberg.

Note: This is not true in L∞(T). The correct “L∞-version” is given in Theorem

1.32.

Corollary 1.35. (Important!) If f ∈ Lp(T), 1 ≤ p < ∞, or f ∈ Cn(T), then

lim
m→∞

m∑

n=−m

m + 1 − |n|
m + 1

f̂(n)e2πint = f(t),

where the convergence is in the norm of Lp, and also pointwise a.e. In the case

where f ∈ Cn(T) we have uniform convergence, and the derivatives of order ≤ n

also converge uniformly.
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Proof. By Corollary 1.25 and Comment 1.27,

m∑

n=−m

m + 1 − |n|
m + 1

f̂(n)e2πint = (Fm ∗ f)(t)

The rest follows from Theorems 1.34, 1.32, and 1.23, and Lemma 1.31. �

Interpretation: We improve the convergence of the sum

∞∑

n=−∞

f̂(n)e2πint

by multiplying the coefficients by the “damping factors” m+1−|n|
m+1

, |n| ≤ m. This

particular method is called Césaro summability. (Other “summability” methods

use other damping factors.)

Theorem 1.36. (Important!) The Fourier coefficients f̂(n), n ∈ Z of a func-

tion f ∈ L1(T) determine f uniquely a.e., i.e., if f̂(n) = ĝ(n) for all n, then

f(t) = g(t) a.e.

Proof. Suppose that ĝ(n) = f̂(n) for all n. Define h(t) = f(t) − g(t). Then

ĥ(n) = f̂(n) − ĝ(n) = 0, n ∈ Z. By Theorem 1.29,

h(t) = lim
m→∞

m∑

n=−m

m + 1 − |n|
m + 1

ĥ(n)︸︷︷︸
=0

e2πint = 0

in the “L1-sense”, i.e.

‖h‖ =

∫ 1

0

|h(t)| dt = 0

This implies h(t) = 0 a.e., so f(t) = g(t) a.e. �

Theorem 1.37. Suppose that f ∈ L1(T) and that
∑∞

n=−∞|f̂(n)| < ∞. Then the

series
∞∑

n=−∞

f̂(n)e2πint

converges uniformly to a continuous limit function g(t), and f(t) = g(t) a.e.

Proof. The uniform convergence follows from Lemma 1.14. We must have

f(t) = g(t) a.e. because of Theorems 1.29 and 1.36.

The following theorem is much more surprising. It says that not every sequence

{an}n∈Z is the set of Fourier coefficients of some f ∈ L1(T).
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Theorem 1.38. Let f ∈ L1(T), f̂(n) ≥ 0 for n ≥ 0, and f̂(−n) = −f̂(n) (i.e.

f̂(n) is an odd function). Then

i)

∞∑

n=1

1

n
f̂(n) < ∞

ii)
∞∑

n=−∞
n 6=0

| 1
n

f̂(n)| < ∞.

Proof. Second half easy: Since f̂ is odd,
∑

n 6=0
n∈Z

| 1
n

f̂(n)| =
∑

n>0

| 1
n

f̂(n)| +
∑

n<0

| 1
n

f̂(−n)|

= 2

∞∑

n=1

| 1
n

f̂(n)| < ∞ if i) holds.

i): Note that f̂(n) = −f̂(−n) gives f̂(0) = 0. Define g(t) =
∫ t

0
f(s)ds. Then

g(1)− g(0) =
∫ 1

0
f(s)ds = f̂(0) = 0, so that g is continuous. It is not difficult to

show (=homework) that

ĝ(n) =
1

2πin
f̂(n), n 6= 0.

By Corollary 1.35,

g(0) = ĝ(0) e2πi·0·0
︸ ︷︷ ︸

=1

+ lim
m→∞

m∑

n=−m

m + 1 − |n|
m + 1︸ ︷︷ ︸

even

ĝ(n)︸︷︷︸
even

e2πin0
︸ ︷︷ ︸

=1

= ĝ(0) +
2

2πi
lim

m→∞

m∑

n=0

m + 1 − n

m + 1

f̂(n)

n︸ ︷︷ ︸
≥0

.

Thus

lim
m→∞

m∑

n=1

m + 1 − n

m + 1

f̂(n)

n
= K = a finite pos. number.

In particular, for all finite M ,

M∑

n=1

f̂(n)

n
= lim

m→∞

M∑

n=1

m + 1 − n

m + 1

f̂(n)

n
≤ K,

and so
∑∞

n=1
f̂(n)

n
≤ K < ∞. �

Theorem 1.39. If f ∈ Ck(T) and g = f (k), then ĝ(n) = (2πin)kf̂(n), n ∈ Z.

Proof. Homework.

Note: True under the weaker assumption that f ∈ Ck−1(T), g ∈ L1(T), and

fk−1(t) = fk−1(0) +
∫ t

0
g(s)ds.
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1.4 Applications

1.4.1 Wirtinger’s Inequality

Theorem 1.40 (Wirtinger’s Inequality). Suppose that f ∈ L2(a, b), and that “f

has a derivative in L2(a, b)”, i.e., suppose that

f(t) = f(a) +

∫ t

a

g(s)ds

where g ∈ L2(a, b). In addition, suppose that f(a) = f(b) = 0. Then

∫ b

a

|f(t)|2dt ≤
(

b − a

π

)2 ∫ b

a

|g(t)|2dt (1.8)

(
=

(
b − a

π

)2 ∫ b

a

|f ′(t)|2dt

)
.

Comment 1.41. A function f which can be written in the form

f(t) = f(a) +

∫ t

a

g(s)ds,

where g ∈ L1(a, b) is called absolutely continuous on (a, b). This is the “Lebesgue

version of differentiability”. See, for example, Rudin’s “Real and Complex Anal-

ysis”.

Proof. i) First we reduce the interval (a, b) to (0, 1/2): Define

F (s) = f(a + 2(b − a)s)

G(s) = F ′(s) = 2(b − a)g(a + 2(b − a)s).

Then F (0) = F (1/2) = 0 and F (t) =
∫ t

0
G(s)ds. Change variable in the integral:

t = a + 2(b − a)s, dt = 2(b − a)ds,

and (1.8) becomes

∫ 1/2

0

|F (s)|2ds ≤ 1

4π2

∫ 1/2

0

|G(s)|2ds. (1.9)

We extend F and G to periodic functions, period one, so that F is odd and G

is even: F (−t) = −F (t) and G(−t) = G(t) (first to the interval (−1/2, 1/2) and
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then by periodicity to all of R). The extended function F is continuous since

F (0) = F (1/2) = 0. Then (1.9) becomes
∫

T

|F (s)|2ds ≤ 1

4π2

∫

T

|G(s)|2ds ⇔

‖F‖L2(T) ≤ 1

2π
‖G‖L2(T)

By Parseval’s identity, equation (1.6) on page 20, and Theorem 1.39 this is

equivalent to
∞∑

n=−∞

|F̂ (n)|2 ≤ 1

4π2

∞∑

n=−∞

|2πnF̂ (n)|2. (1.10)

Here

F̂ (0) =

∫ 1/2

−1/2

F (s)ds = 0.

since F is odd, and for n 6= 0 we have (2πn)2 ≥ 4π2. Thus (1.10) is true. �

Note: The constant
(

b−a
π

)2
is the best possible: we get equality if we take

F̂ (1) 6= 0, F̂ (−1) = −F̂ (1), and all other F̂ (n) = 0. (Which function is this?)

1.4.2 Weierstrass Approximation Theorem

Theorem 1.42 (Weierstrass Approximation Theorem). Every continuous func-

tion on a closed interval [a, b] can be uniformly approximated by a polynomial:

For every ε > 0 there is a polynomial P so that

max
t∈[a,b]

|P (t) − f(t)| ≤ ε (1.11)

Proof. First change the variable so that the interval becomes [0, 1/2] (see

previous page). Then extend f to an even function on [−1/2, 1/2] (see previous

page). Then extend f to a continuous 1-periodic function. By Corollary 1.35,

the sequence

fm(t) =
m∑

n=−m

F̂m(n)f̂(n)e2πint

(Fm = Fejer kernel) converges to f uniformly. Choose m so large that

|fm(t) − f(t)| ≤ ε/2

for all t. The function fm(t) is analytic, so by the course in analytic functions,

the series
∞∑

k=0

f
(k)
m (0)

k!
tk
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converges to fm(t), uniformly for t ∈ [−1/2, 1/2]. By taking N large enough we

therefore have

|PN(t) − fm(t)| ≤ ε/2 for t ∈ [−1/2, 1/2],

where PN(t) =
∑N

k=0
f
(k)
m (0)

k!
tk. This is a polynomial, and |PN(t) − f(t)| ≤ ε

for t ∈ [−1/2, 1/2]. Changing the variable t back to the original one we get a

polynomial satisfying (1.11). �

1.4.3 Solution of Differential Equations

There are many ways to use Fourier series to solve differential equations. We

give only two examples.

Example 1.43. Solve the differential equation

y′′(x) + λy(x) = f(x), 0 ≤ x ≤ 1, (1.12)

with boundary conditions y(0) = y(1), y′(0) = y′(1). (These are periodic bound-

ary conditions.) The function f is given, and λ ∈ C is a constant.

Solution. Extend y and f to all of R so that they become periodic, period

1. The equation + boundary conditions then give y ∈ C1(T). If we in addition

assume that f ∈ L2(T), then (1.12) says that y′′ = f − λy ∈ L2(T) (i.e. f ′ is

“absolutely continuous”).

Assuming that f ∈ C1(T) and that f ′ is absolutely continuous we have by one

of the homeworks

(̂y′′)(n) = (2πin)2ŷ(n),

so by transforming (1.12) we get

−4π2n2ŷ(n) + λŷ(n) = f̂(n), n ∈ Z, or (1.13)

(λ − 4π2n2)ŷ(n) = f̂(n), n ∈ Z.

Case A: λ 6= 4π2n2 for all n ∈ Z. Then (1.13) gives

ŷ(n) =
f̂(n)

λ − 4π2n2
.

The sequence on the right is in ℓ1(Z), so ŷ(n) ∈ ℓ1(Z). (i.e.,
∑

|ŷ(n)| < ∞). By

Theorem 1.37,

y(t) =

∞∑

n=−∞

f̂(n)

λ − 4π2n2︸ ︷︷ ︸
=ŷ(n)

e2πint, t ∈ R.
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Thus, this is the only possible solution of (1.12).

How do we know that it is, indeed, a solution? Actually, we don’t, but by working

harder, and using the results from Chapter 0, it can be shown that y ∈ C1(T),

and

y′(t) =

∞∑

n=−∞

2πinŷ(n)e2πint,

where the sequence

2πinŷ(n) =
2πinŷ(n)

λ − 4π2n2

belongs to ℓ1(Z) (both 2πin
λ−4π2n2 and ŷ(n) belongs to ℓ2(Z), and the product of two

ℓ2-sequences is an ℓ1-sequence; see Analysis II). The sequence

(2πin)2ŷ(n) =
−4π2n2

λ − 4π2n2
f̂(n)

is an ℓ2-sequence, and

∞∑

n=−∞

−4π2n2

λ − 4π2n2
f̂(n) → f ′′(t)

in the L2-sense. Thus, f ∈ C1(T), f ′ is “absolutely continuous”, and equation

(1.12) holds in the L2-sense (but not necessary everywhere). (It is called a mild

solution of (1.12)).

Case B: λ = 4π2k2 for some k ∈ Z. Write

λ − 4π2n2 = 4π2(k2 − n2) = 4π2(k − n)(k + n).

We get two additional necessary conditions: f̂(±k) = 0. (If this condition is not

true then the equation has no solutions.)

If f̂(k) = f̂(−k) = 0, then we get infinitely many solutions: Choose ŷ(k) and

ŷ(−k) arbitrarily, and

ŷ(n) =
f̂(n)

4π2(k2 − n2)
, n 6= ±k.

Continue as in Case A.

Example 1.44. Same equation, but new boundary conditions: Interval is [0, 1/2],

and

y(0) = 0 = y(1/2).
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Extend y and f to [−1/2, 1/2] as odd functions

y(t) = −y(−t), −1/2 ≤ t ≤ 0

f(t) = −f(−t), −1/2 ≤ t ≤ 0

and then make them periodic, period 1. Continue as before. This leads to a

Fourier series with odd coefficients, which can be rewritten as a sinus-series.

Example 1.45. Same equation, interval [0, 1/2], boundary conditions

y′(0) = 0 = y′(1/2).

Extend y and f to even functions, and continue as above. This leads to a solution

with even coefficients ŷ(n), and it can be rewritten as a cosinus-series.

1.4.4 Solution of Partial Differential Equations

See course on special functions.


