Types of differential equations

A system of differential equations can be written in the form

= X(x,t),

where z is an n-dimensional vector and X a vector function. If x =
(x1,x2,...,2,)" then this means

) = Xq1(x1, 22, ...y T, 1)
xh = Xo(x1, %2, ..., T, 1)

== Xn(x17m27 "'7xn7t)

If X is not dependent on ¢ the system is called autonomous otherwise
non-autonomous. If the system can be written in the form 2/ = A(t)x+ f(¢),
where A(t) is a matrix and f : R — R" the system is linear.

Examples:

1) The system 2’ = x is one dimensional, linear and autonomous.

2) The system =’ = = + y,y' = x — y is two dimensional, linear and
autonomous

3) The system 2’ = sin(t)r + y + t?,y/ = z is two dimensional non-
autonomous and linear.

4) The known Mathieu’s equation " + (o cos(t))x = 0 can be written
as a two dimensional non-autonomous linear system z1 = xg, 25 = —(a +
Bcos(t))xy where z1 = x, xo = 2.

5) The linear oscillator x” + k2’ + wir = F cos(wt) can be written as
a two dimensional non-autonomous linear system 1 = x9, b = —kxo —
wdxy + F cos(wt), where 1 = z, x5 = 2'.

6) The pendulum equation z” 4+ asinz = 0 can be written as a two
dimensinal nonlinear autonomous system x| = x9, x5 = —sinxzy, where
1 =x, xo =2’

7) The famous van der Pol’s equation z” + (22 — 1)a’ + 2 = 0 can be
written as a two dimensinal nonlinear autonomous system z} = xo, 24 =
—e(2? — 1)xg — x1, where 21 = 2, 9 = /.

8) The famous forced Duffing equation 2" + k' + ax + B2® = I cos(wt)
can be written as a two dimensinal nonlinear non-autonomous system x} =
T9, Th = —kxe — axq — B} + I cos(wt). where 11 =z, x5 = 2.



9) The famous Lorenz system

= —ox+oy
Y =Rr—y—xz
2= —-Bz+uxy

is a three dimensional nonlinear system which has chaotic behaviour for
many parameter values.
10) The Réssler system

o' =—(y+2)
Yy =x+ay
Z=b+xz—cz

is a three dimensional nonlinear system which has chaotic behaviour for
many parameter values.

It is known that chaotic behaviour can be present only in autonomous
systems of order greater than two or non-autonomous systems of order
greater than one. In such systems chaos is frequent.

Exercise:

What is the type of the following systems:

Da=z+y,y=x+27=y+z

2) a’ = 2%a+ b0 =y +a,

3 u' =z+u+e v ==tu+v

4) @’ = a’z +by,y =bx + ay

Clearly an autonomous system can in some way be counted as a special
case of non-autonomous systems. But also a non-autonomous system can be
considered as an autonomous system by increasing dimension: If the system
2’ = X(x,t) is n-dimensional it can also be written in the autonomous form
2’ = X(x,t), ' =1 as an n + 1-dimensional system.

General properties of solutions of differential equations

The the following statements for solutions of systems of differential equa-
tions are valid.

FEzxistence: For the existence of a solution x(t) in a neighbourhood of
a point (zo,tp) with z(tp) = x¢ it is sufficient that X is continuous in a
neighbourhood of that point.

Uniqueness: For the uniqueness of a solution z(t) in a neighbourhood
of a point (zg,%9) with x(tg) = xo it is sufficient that X and 0X;/0x; are
continuous in a neighbourhood of the point for any ¢ and j where X; and
x; are the components of X and x.

Examples:

1) ' = x has the unique solution z(t) = zpe' !0 satisfying the initial
condition x(ty) = xg existing for any ¢ € R.

2) o' = z* with the initial condition x(0) = zo # 0 has the unique
solution z(t) = xo/(1 — tad)'/? existing for —oo < t < x5° if 29 > 0 and for
x63<t<ooifxg<0.

3) ' = 2° with the initial condition x(0) = zg # 0 has the unique
solution z(t) = /(1 — txd)'/* existing for —oo < t < a5*.

Both the equations in examples 2) and 3) also have the unique solution
x(t) = 0 existing for all ¢.



4) o' = '3 has the solution z(t) = 0, —co < t < C,z(t) = (t —
C)32,C <t < 0o with C = —:L'g/g satifying the initial condition z(0) =
xo > 0 and the solution z(t) = 0, —co < t < C,z(t) = —(t — C)%/%, C <
t < oo with C = —:Ug/?’ satisfying the initial condition z(0) = z¢ < 0. All
solutions of kind z(t) = 0, —oo < t < C,z(t) = +(t — C)?/3,C < t < o0
where C' < 0 satisfy the initial condition z(0) = 0 and thus there is no
uniqueness here.

Trajectories

If z(t) is a solution to a system of differential equations then the set
{z(t)|t € I}, where I is the time interval for which the solution is defined,
is called a trajectory.

Examples:

1) 2/ = x. The solutions are z(t) = x(0)e’ defined for t € R. If z(0) > 0
then {z(t)|t € R} = Ry, if 2(0) < 0 the trajectory is R_, z(0) = 0 the
trajectory is {0}.

2) 2’ = z, ¥ = 2y. The solutions are x(t) = z(0)e’, y(t) = y(0)e*
defined for all t € R. We have the following types of trajectories

{(0,0)} if 2(0) = y(0) = 0

positive z-axis if z(0) > 0 = y(0)

negative z-axis if (0) < 0 = y(0)

positive y-axis if y(0) > 0 = z(0)

negative y-axis if y(0) < 0 = z(0)

{(z,y)|y = kx?, > 0} for some k # 0 if (0) > 0, y(0) # 0

{(z,y)|y = kx?, x < 0} for some k # 0 if 2(0) < 0, y(0) #0

Phase portrait

We consider here autonomous systems. If the solutions satisfy the unique-
ness condition the trajectories do not intersect and they from curves and
points. So we can make a partition of the set where the solutions of the
system exist into non-intersecting sets.

By the phase portrait we mean a collection of solution curves with time
direction demonstrating the geometrical behaviour of the solutions.

Examples:

1) ' = —x has the solutions z = x(0)e™" and the phase portrait

2) ' = z,9 = 2y has the solutions z = z(0)e!, y = y(0)e?. The
solution curves can be seen to be of the form y = kz?.



The phase portrait is

Dynamical systems

Definition: An n-dimensional dynamical system is a continuous map ¢ :
R x R™ — R™ with the following properties:

1) ¢(0,z) = x for any =

2) p(t+ s,x) = @(t, (s, z)) for any x,t, s.

A dynamical system can also be defined analogously in a subset of R".

It is known that if in a system of differential equations 2’ = X (z) both X
and its first derivaties are continuous then the solutions depend continuously
on the initial condition. Thus if ¢(¢, z) is the solution with initial condition
©(0,2) = x and all these solutions exist for any ¢ then these solutions form
a dynamical system.

Example: 2’ = z gives the dynamical system o(t,2) = ze!. (Check the
conditions!)

Topological equivalence of dynamical systems:

Two dynamical systems ¢ and v are said to be topologically equivalent
if there is a homeomorphism of R™ taking solutions to solutions and keeping
the time direction invariant.

Example: The dynamical systems given by 2/ = z and 2/ = 2z are
equivalent using as the homeomorphism the identity. There are three sets
consisting of entire solutions x < 0, x = 0 and = > 0 for both of the
dynamical systems and the time directions on these are the same. The
systems given by 2/ = x and 2’ = —x are not equivalent. The time directions
are opposite on the solution sets.

Exercise: Are the systems given by 2’ =z +1, 2’ =z—landa2’ =1—=x
equivalent?

If the solutions of ' = X (z) escape to infinity in finite time and thus do
not exist for all ¢ then the system 2’ = Y (x), where

X(z)

YW= T X @

has the same phase portrait but the solutions are defined for all t. Why?
Consider 2’ = 2°,7 = 2y° as an example.



