ONE DIMENSIONAL DISCRETE SYSTEMS

We here consider discrete dynamical systems generated by iterates of a
function. For a general definition of a discrete dynamical system we refer to

http://en.wikipedia.org/wiki/Discrete—time_dynamical_system

The n-th iterate x,, n = 0,1,2,... of a function is defined by recursion
zp = f(xn—1), n > 1, where xq is given. Thus the iterates are solutions of the
recurrence equation z, = f(z,_1), where xg is an initial condition.

In practice z,, means the magnitude of the state variable at discrete time
n. For example, in ecology it can be the size of a population at generation
number n. In other applications it can mean the distance to an object at
some time moment number n. It can also be thought of as the magnitude of
currents in physics, the concentration in chemistry, the number of sick people
in epidemics, the amount of money in economics, the humidity in climate and
SO on ..

The equation z, = f(z,—1) means that the state is completely defined
by the previuos state. No other effects are accounted. So the model is valid
only if the state can be determined from the last one and all other effects
are neglible. For example, in populations it means that we always know the
size of the population if we know the size of the population in the previous
generation.

The sequence xg, x1, x2, ... is thus giving the behaviour of the state vari-
able for discrete time. The set {xq, x1, 2, ...} = {f™(zo)ln > 0} is called
the orbit of the point. We define f™ as the function given by f*(z) =
F(f(..f(z)..)), where we have the letter f for n times in the right hand side
and we suppose f° = f. Often we also use notations:

T — f(z), zp— Tp

and

g — ] — Ty — -

We suppose x, € R™ and in our first part we consider the case when
m = 1. Some definitions like fixed points, periodic orbits are also valid for
m > 1. So we now consider one dimensional systems. Indeed we consider
only systems on intervals and do not include the important and interesting
dynamics on circles. Let us look at some examples.

Ezample. Let f(x) = 2z. Then the magnitude of the state variable z is
doubled for each iterate. If, for example, zy = 1 the we get

122—-4—-8—...592" ...

If z =—1 we get

_._1——)_._2_—,._._4——)———8——)--.——)———271——)---

If zp = 0 then z, =0, n =0,1,2,... and we get

0—-0—=0—-0—---

The general solution is =, = z92" and the behaviour of the solution can
be classified as: x, — oo for zyp > 0, z, — —oo for zy < 0 and z, = 0 for



z¢ = 0. For positive x this model is useful in modelling some growth processes
without limitations in growth.

Let us take some other examples.

Ezample. Let f(x) =2z + 3. We then get

0—-3—--2—-7—--11-25—"--

and

1-1—-1—-1—-1---

The general formula for the solution is z, = (=2)"(zo — 1) + 1 (can be
proved by induction) and |z,| — oo for g # 0, otherwise z, = 1.
Exzample. Let f(z) = (3 —x)/2. We get

0—3/2—3/4—9/8—-15/16 — -

and

1-1—-1—-1—1.--

The general formula for the solution is zn, = (=1/2)"(zo — 1) + 1 and
z, — 1 for all zg.

Ezample. Let f(z) = 2 — z. For any xo we get o — 2 — o — To SO
iterates of all z_0 are 2-periodic except for the iterates of ¢ = 1.

We have seen that some iterates do not change but remain the same for
all iterates. Such orbits are called fixed points.

Definition of fized point. 1f f(z) = z then the point z is called a fixed
point.

Thus if z¢ is a fixed point we get z, = z¢ for all n. The fixed points can
be calculated by finding the roots of f(z) — .

We have seen that there can also be periodic behaviour and we give the
definition of a periodic point and orbit.

Definition of periodic point. If for some p € {0,1,2,...} the point z is a
fixed point for fP but not for f?, where 0 < ¢ < p then z is called p-periodic
and the orbit through z is also called p-periodic.

Thus if g is p-periodic then

$0-*1'1-*"'-*$p—1-*$0-*$1-*"'-*ﬂﬂp—l-*l’o-*l'l-*"'

In the example just above all points are 2-periodic except for z =1 which
is a fixed point.

In the examples above we have seen that iterates can be fixed points or
periodic orbits or they can tend to infinity or to some fixed point. Later we
will see that they can also tend to periodic orbits or have more complicated
behaviour. In the complicated case we mostly have a case called chaos.

Let us look at one more example.

Ezample. Let f(x) = x*. Solving f(z)—z = 0 we get that the fixed points
are 0 and 1. If 0 < zo < 1 iterates very quickly tend to zero (the square
of such numbers decreases rapidly). If o > 1 iterates go to plus infinity. If
1o = —1 then z; = 1 and further iterates are the fixed point z, = 1, n = 1.
If ~1 < 2o < 0 then 0 < x; < 1 and thus iterates tend to zero. If zo < —1
then z; > 1 and iterates tend to plus infinity.



To know the behaviour of iterates we are clearly interested in knowing the
iterates of which points tend to some fixed point or a periodic orbit.

Definition of basin of attraction. Let O, be a p-periodic orbit {zg, z1, ..., Zp}.
The basin of attraction of O, is the set of points z such that the minimal dis-
tance to the set O, from the iterate n tend to zero for n — oo.

If p = 1 the orbit consists of a fixed point and the basin of attraction
consists of the points the iterates of which tend to the fixed point.

So in the example just above the basin of attraction of zero is the interval
(-1,1). In the example we also have seen that iterates of points can become
fixed points after some iterates even if they where not from the beginning.
The same can happen for periodic points.

Definition of eventually periodic point. A point z is said to be eventually
periodic if it is not p-periodic but some iterate of z is p-periodic. If p=1we
speak about eventually fixed points.

In the example where f(z) = 22 the point -1 is an eventually fixed point.
We also give a name to the points the iterates of which tend to infinity.

Definition of escaping set. The set of points z for which the absolute value
of the iterates tend to infinity is called the escaping set.

Initial values in the escaping set often lead to cathastrophic phenomena, in
the real world model.

The escaping set when f(z) = z2 is the union of the intervals (—o0,—1)
and (1, c0).

Ezercise. Find the fixed points and periodic orbits and basins of attraction
and escaping sets when

a) f() =2z +3

b) f(x) = 23

c) f(z) = —a°

d) f(z) = —21/3

In practical applications the system usually depends on some parameters.
So the function will depend on a parameter vector a = (a1, a1, ..., ax), that is
we consider functions of both state and parameter a and the equations get the
form z,, = f(2n_1,a). Let us look at one example.

Ezample. Let f(z) = ax. The general solution is z, = a"zg. = = 0 is
a fixed point for all parameters a. If a > 1 and zg # 0 then |zn| — oo, but
if 0 < a <1 then z, — 0 for n — 0o. So if we have two different a-values
ar > 1 and a. > 1 there is no difference in the behaviour of iterates , but
if 0 < ax < 1 < a,, there is clear difference. For parameter values where
the behaviour of iterates changes one says that there is a bifurcation for that
parameter value. So we can say there is is a bifurcation for ¢ = 1.

Let us now look at a practical example.

Ezample. Tt is sometimes cold in North Europe so one needs a house where
to survive. Not everywhere it is possible to find an apartment for renting so it
18 necessary to buy a small house for about 500000 SEK. To get such money it
18 necessary to get a loan. For the loan one has to pay about 10 percentage of
the remaining sum every year. The question is what is the size of the unpaid
loan every year if L crowns is paid back every year. This leads to a reccurence
equation

Tp=11x, 1 — L,

where z,, is the loan at year number n. zq is the full loan and the every year
payment is a parameter L. The system has a fixed point z = 10L and the



solution of the equation is x, = (1.1)*(zo — 10L) + 10L. Clearly if zo < L
then x, will decrease and at some time reach zero after which the model is
not more valid. If zg > 10L the loan will increase but this case is unrealistic
because of bank police. If zg = 10L the loan will be kept constant which
is also unrealistic. Anyhow observe that there is no bifurcation when L is
changing. The fixed point only has different size but the behaviour of the
system in general is equivalent. Finally if the one needing a home is a teacher
in Math this person can probably not pay more than L=60000 SEK in a year.
Calculations show that it will take 19 years before the small house is paid for.

Exercise. Show that the solution of a linear system x, = ax,—1 + b is
2o = a(zo — b/(1 — a)) + b/(1 — a) if a # 1 and conclude that b/(1 — a) is
a fixed point and |z,| — oo if |a| > 1, zo # b/(1 — a) and z, — b/(1 —a) if
la| < 1. What is happening in the case a = =17

Most often recurrence equations do not have solutions in form of expres-
sions and we need to find the solutions themselves by numerical methods.
Then theory can only give information about the qualitative behaviour of the
iterates. We give such an example from population theory en ecology. In such
examples it is also more important to know result of qualitative theory. For
example, it is more important to know whether a population can survive than
to predict the exact size, although exact solutions are useful in comparing with
practice to validate the model.

Ezample. Let f(r) = rxe™®. x gives the size of the population at gener-
ation n and 7 is a parameter called growth rate which is kept fixed when we
solve the equation. The greater r the higher will the size of the next popula-
tion be. If z is small the size is growing with a factor r for each population
but when z is greater the growth will be less because of competition. As a
result of numerical experiments we get the following behaviour for the iter-
ates. We use the intial value zo = 1. For r = 5 we get the fixed point at
about 1.6094 after 20 iterates which well coincides with the value In5 to be
calculated analytically by us later. For r = 10 we see a 2-periodic behaviour
with the 2-periodic orbit {0.9346,3.6706} after 10 iterates. For r = 13 we get
a four periodic orbit {4.7663,0.5274,4.0462,0.9199} For r = 14.5 we get an
8-periodic orbit. after 30 iterates. For r = 15 we cannot see any periodicity or
regularity in the iterates and there seems to be something called chaos. For
r = 23 we get the 3-periodic orbit {0.4375,0.042,0.9269} and for r = 24 we
get a 6-periodic orbit. For many r-values greater than 15 we can only see
chaos.

Erercise. Examine experimentally the behaviour of the iterates of f(z) =
rz/(1+ %) for r = 2,3,5,14,20,20.7 and 27 supposing Zo is positive.

Ezercise. Examine experimentally the iterates for the Impact map

x4y <0
f(x)—{ ~VT+z+p >0

for p =1,0.2,0.12,0.1 and 0.05. For practical meaning we must have p > 0.
This map was got as a simplification of a problem in vibration mechanics
(Nonlinearity 14, 301-321, 2001).
Ezercise. Examine experimentally the iterates of the Lorenz model map
_J1-b(=2)* -1<z<0
f(x)"{ —-1+bz* 0O<z<l1



where @ < 1, 1 < b < 2, ab> 1. This map is a one dimensional model for
modelling the chaos in the Lorenz system giving the famous Lorenz attractor.

Cobweb analysis

An effective graphical tool for examining the behaviour of orbits is the
cobweb technics. From there it is usually easy to see all intervals of simple
behaviour as when iterates tend to infinity or when they are attracted to a
fixed point.

In a cobweb picture we plot in the same figure the diagonal y = z and the
graph of the function. Then in the figure the iterates of the point zq are seen
from the broken line

(o0, z0) — (20, f(@0)) = (z0,71) — (z1,21) — (21, f(21)) = (21, 22) — (T2, 22) — -+~

ce ($n—17$n—1) - (fEm f(l'n—l)) = (fL'n—lny'n) - (fL'ny fL'n)

We describe some first steps in some examples.

Example. Consider f(z) = 2z—1. We look at the first iterate of 0. Because
f(0) = —1, to plot the first step of the cobweb giving the first iterate we start
at (0,0), go vertically down to the graph to (0,-1) and from there horizontally
to the left to the diagonal to (-1,-1). See fig

Y= de- |

The second iterate is -3, so to plot the second step we continue vertically
from (-1,-1) to (-1,3) on the graph and from there horizontally to (-3,-3) on

the diagonal. See fig Y= 2x-1 3 x

Cl-1)

_— < 7 (=1,3)

Continuing in this way from (-3,-3) for some iterates we convince ourselves
that iterates tend to minus infinity. See fig




The graph and the diagonal intersect at 1, so from there the cobweb will
go nowhere and it is a fixed point. Plotting the cobweb for the iterates of 2 in
the same way as the cobweb for the iterates of 0, we see that iterates tend to
plus infinity. See fig ‘

Y =dx~|

(1))

Ezample. Consider f(z) = (3 — z)/2. The diagonal and graph intersect at
1 which is a fixed point. We plot some iterates of the point x=9. The first
iterate is -3 so we start at (9,9) and go vertically down to the graph to (9,-3)
from where we go horizontally to the left to (-3,-3). The second iterate is 3, so
the cobweb continues vertically up to (-3,3) and then horizontally to the right

to (3,3). See fig. (5 9) y -

Continuing some steps we convince ourselves that iterates of points differ-
ent from 1 tend to the fixed point and so that every second iterate is to the
right and every second to the left of the fixed point. Thus the fixed point 1 is
a global attractor.

Let us consider one more example.

Ezample. Let f(z) = —x%. The diagonal and the graph intersect at 0 and
-1 which are fixed points. The point +1 is an eventually fixed point which
is mapped to -1 and the cobweb from it ends at the fixed point -1 after one
iterate. Iterates of points between -1 and 1 seem to tend to the fixed point
zero. Iterates of points greater than one or less than -1 are seen to tend to

minus infinity. See fig.
sy=x




So we have noticed that when we use the cobweb technics the fixed points
are the intersections between the diagonal and the graph of the function and
starting on the diagonal we go vertically (up or down) to the graph and from
the graph we go horizontally (to the left or to the right) to the diagonal.

Ezercise. Analyze the dynamics of iterates of the following maps by cobweb
technics.

a) f(z) = 2°

b) f(z) = —a?

©) f(z) = —a'/?

We will give examples from practical applications later when we know more
about fixed points.

Type of fixed points

To find the fixed points we have to solve the equation f(z) —z = 0. We
have seen fixed points of different types. Some of them attracts iterates, other
throw them away. Most fixed points are either attractors or repellers given in
the following definition.

Definition of attracting fized point. The fixed point ¢ is an attractor if
there is a neighbourhood of the fixed point such that iterates of all points in
this neighbourhoods tend to the fixed point. (We also call such fixed points
stable).

Definition of repelling fired point. A fixed point q is a repeller if for any
neighbourhood of the fixed points iterates of all points leave the neighbour-
hood. (These points are the most usual kind of unstable points).

If the function has a derivative near to the fixed point then the derivative
at the fixed point often gives the type of the fixed point.

Theorem. If f(q) = qand |f'(¢)| < 1 then g is an attractor and if | f/(q)| > 1
then ¢q is a repeller.

Proof is in Appendix.

The theorem does not tell about what happens if f/(q) = 1. For example,
if f(x) = 2?4+ z then zero is attracting iterates from the left in (-1,0) but
repelling iterates of all positive points. See fig.

B:xﬁx

-1

Ezample. If f(x) = 1.52(1—x) then 0 and 1/3 are fixed points. f/(0) = 1,5
implies that 0 is a repeller and f'(1/3) = 2/3 implies that 1/3 is an attractor.

Ezxample. If f(z) = 2sin(z) + = + 1 then —7/6 + 2n7 is a sequence of
repellers but —57/6 4 2n7 is a sequence of attractors, because f(—=m/6 +
2nm) = v3+1>1 and |f'(=57/6 +2nm)| = | - V3+ 1) < 1.

Ezxample. Consider f(x) = rxe™ for x > 0 and r > 0. We solve flx)=2z
for fixed points and we get z = Oorre ™ = 1. But re~! = 1 is equivalent to



z = Inr which is positive for r > 1. For r < 1 zero is the only fixed point and
it is an attractor because |f(0)] = |r] < 1. For 1 < r < e? there are two fixed
points 0 and Inr. Zero is repelling because f/(0) = r > 1 but Inr is attracting
because |f/(Inr)] = |1 —Inr| <1lfor1 <r < e2. For r > €? one finds that
both fixed points are repellers.

Ezercise. Find the fixed points and their types for

a) 2z — z%/4 —3/4

b) 2z/(1 + z?)

¢) (z/2)e*t’

d) Special tent map

) 2z x <1/2
f(x)‘{ 21—z) =>1/2

Ezercise. Find the fixed points and their type depending on parameter r
for

a) 22+ 2z +r

b) r(6x — z°)

c)rz/(1+z7),r>0,2>0,v2=>2

Often we cannot find the fixed points analytically but we can know how
many they are and their type and we can estimate their location and calculate
them numerically for concrete parameter values.

Ezample. Let f(z) = rz?e™®. Solving f(z) = x we get z = 0 or r =
e*/r = g(z). So z = 0 is always a fixed point. It is always an attractor
because f/(0) = 0. We get ¢'(z) < 0 for 0 <z < 1 and g'(z) > 0 for z > 1
so ¢ has a minimum at z = 1 and the equation r = g(z) has two solutions
for r > e and no for r < e. Thus for r > e there is only one fixed point zero.
For r > e there are two more fixed points. One z_ in (0,1) and the other
for z > 1. Calculations give f'(zx) = r(2zy — z})e™®* = 2 — x4 (we used
that e®t /z4 = r) from which follows that x_ is always repeller and z is an
attractor for e <r < €3/3 (1 < 4 < 3) and repeller for r > ¢3/3. Numerical
calculations give the fixed points about 0.26 and 2.54 for r = 5.

Erercise. Determine the number of fixed points and their types for the
systems given by the function

a) f(z) =rz®/(1+27), v 23

b) flz)=ax*/8+ 2% +¢

¢) flx) =cx —x*—2%/5

We now combine our knowledge with cobweb technics to analyze some
systems from population theory treated above.

Example. We consider again f(z) = rze™*. If r < 1 the graph of f is
below the diagonal because f(z) —x = z(re * —1) < 0 for z > 0. We see that
the cobweb we try to plot tend to the fixed point zero. This means that the
growth rate is too low and the population will go extinct.

- 3 =X




For r > 1 the fixed point In 7 exists and it is stable, that is, it is an attractor.
We plot the cobweb in two cases when the maximum of the function is below
and above the diagonal. The maximum r/e is attained at z = 1 and it is
below the diagonal if r < e and above otherwise. In both cases the cobwebs of
positive points will tend to the fixed point In7. In the case r < e the cobwebs
show that iterates of positive points less than Inr increase and tend to the
fixed point. Iterates of points between Inr and 1 (including z = 1) decrease
and tend to the fixed point. Iterates of points greater than one are after one
iterate in the interval between zero and one and after that they behave like
iterates of points from this interval. Thus we have seen that iterates of all
positive points tend to the fixed point In 7.

far

0

In the case e < r < €2 the cobweb shows that iterates will tend to the
fixed points but now the behaviour is a little bit more complicated because
iterates of the same point will tend to the fixed point from both sides and the
cobweb is winding around the fixed point. Anyhow it enough to study iterates
of points less than Inr because iterates of all other points will be there after
one iterate.

s

For r > €2 the cobwebs become more complicated. For r a little bit above
e? the iterates and cobweb stabilizes to a 2-periodic orbit giving a square as
the final cobweb intersecting the diagonal at the 2-periodic points.
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For greater r we mostly have chaos and the cobweb will fill up a great
part of the picture with dark belts. For some r however there might be peri-
odic attractors of higher periods as we saw in the experiments in the section
describing iterates.

Ezercise. Produce such cobwebs.

Ezample. Consider again f(z) = rz“e”®. Forr < e the graph of the
function is below the diagonal and the cobweb again shows that the iterates
tend to zero. .

2
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For e < r < €3/3 there is a unique point z, > z_ such that f(z) = z_.
Cobweb examination shows that iterates in (0, z_) U (x, 00) will tend to zero,
for points in (z_,z.) the iterates will tend to the fixed point z.. We show
cobwebs in one figure when the top of the graphs is below the diagonal r < e?/2
and one figure when the top is above.

a .
rx e

For r > €3/3 cobweb analysis show that iterates of points in 0,z_) U
(z¢,00) tend to zero but the dynamics in z_,z.) will be more complicated.

So in this case an important result is that the population cannot survive
if it is too small or too big. ‘

Ezercise. Produce a cobweb analysis for f(z) = rz/(1+27) and f(z) =
ra?/(1 4 z7) for some values off 7 > 0 and v > 3 with different behaviours
when z > 0.

10
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Periodic orbits

To find a p-periodic point we have to solve fP(x) —x = 0. But in this
equation may be included also periodic points of lower period m. For example,
all fixed points are always included because fP(z) — z = f(z) — z for such a
point. If, for example, p = 4 for a periodic point q then f4(q) = f2(q) = q and
q may be 2-periodic instead of 4-periodic if it is a solution to the equation. In
general if m|p (m divides p = km, where k is an integer) then a solution to
fP(z) — z = 0 might be m-periodic because then f™(z) = z implies fP(z) =
ffm(z) = z. (If g = f™ then g% = fP). On the other side if m is not a
factor in p then a solution to fP(z) — x = 0 cannot be m-periodic, because if
xo is m-periodic then only iterates zy,,, where k is integer can equal zg. We
conclude that we thus have to exclude solutions with period m dividing p from
the set of all solutions to fP(z) —z = 0.

Ezample. Consider the function f(z) = 2 + 2 — 5/4. Solving f(z) = x
we get the fixed points z = +1/5/2. We now form fiz). We get f2(z) =
(@®+a~5/4)? + 22 +2—5/4—5/4 = % + 2% — 22/2 — 3x/2 — 15/16
Thus f2(x) —x = 0 is a fourth order equation. Among the roots there also
fixed points because for fixed points f2(z) = f(f(z)) = f(z) = z. The pure
2-periodic are obtained if we divide f2(z) — z with f(z) — z (in this case
f@)—z=(z—V5/2)(z— (=V5/2)) = 22— 5/4). This is possible because if r
Is a root to a polynomial it can be factorized so that z —r is a factor according
to a known theorem in algebra. We obtain

——*——J;Q(%):;: =224+ 22+ 3/4

The roots are -1/2 and -3/2 which are the 2-periodic points. We check
f(=1/2) = =3/2 and f(-3/2) = —1/2.

Ezample. Let us consider the tent map

)2 <1/2
f(m)‘{ 2?1—95) i31/2

We seek for a three periodic orbit. The orbit of a three periodic point
cannot be wholly inside z < 1/2 because then it should be an iterate of 2z
which has only one fixed point. Likewise it cannot be wholly inside z > 1/2.
We seek for an orbit where two points zy and xy are in ¢ < 1/2 and one z,
is in z > 1/2. Then we get x; = 29, 2 = 2z and zo = 2(1 — z2) implying
2(1 — 4a0) = xo with solution zg = 2/9. The solution is indeed in the right
intervals because xy < 1/2 and x; = 4/9 < 1/2 and 25 = 8/9 > 1/2. So
{2/9,4/9,8/9} is a 3-periodic orbit.

A periodic orbit can also be an attractor or repeller and the definition can
be given in the following way.

Definition of attracting and repelling periodic orbits. A p-periodic orbit
is an attractor (repeller) if ¢ is a point on the orbit and q is an attracting
(repelling) fixed point for fP.

If f is differentiable in a neighbourhood of the orbit the type can be de-
termined by the following theorem.

Theorem . Let q be a point on a p-periodic orbit. Then the orbit is
attracting if [(f?))(¢)] < 1 and repelling if |(f?))(¢)| > 1.

Note that to calculate (f?)’(zg) we can use the cahin rule so that we instead
can calculate f'(xo)f'(z1) - f/(xp_1).

11



Ezample. Consider again the function f(z) = z? + x — 5/4 with the 2-
periodic orbit {—1/2,-3/2}. We get f'(z) = 2z + 1 giving f'(-1/2) = 0 and
f'(—3/2) = —2 which gives £'(1/2)f'(=3/2) = 0. We can check by calculating
(f2(=1/2) or (f?)(-3/2). We get (f2)(z) = 423 + 62 — 2 — 3/2 which
implies (£2)'(=1/2) = (f%)'(-=3/2) = 0. So we have a really attracting orbit.
The absolute value is even zero.

Ezample. We try to find 3-periodic orbits for the Impact map (notice that
p > 0) introduced earlier such that zo,z; <0 < 3. We get 9 = x0 +2p and
thus we should have o = —v/Zo + 2p + o + 2p + p. This equation (taking
squares when the squareroot is moved to one side) implies zg + 2p = 9p2. So
the three periodic orbit should be zo = 99?—2p, 21 = 9p*> —pand 22 = 9p% > 0.
The condition that xg, £1 < 0 implies that the orbit exists for p < 1/9. The
derivative at zg is 1-1-(1 — 1/(2/Z2) = 1 — 1/(6p) so it is an attractor for
p > 1/12 but repelling for p < 1/12.

Erercise. Find the 2-periodic orbit for f(z) = #? + z — 2 and its type.

Ezercise. Determine the constant a and b in the function f(z) = a+bcos(z)
so that {n/3,7/2} is a 2-periodic orbit. Find the type of the orbit. Plot the
graph of f2 for these values for a and b.

Exercise. Find a 2-periodic orbit and another 3-periodic orbit for the
system in the example for the tent map.

Ezercise. Prove that 2/(2™ + 1) is m-periodic for m > 2 and 2/(2™—1) is
m-periodic for m > 3 for the tent map.

Ezercise. For the Impact map introduced earlier find the two periodic
orbits and determine when they are attracting. Also find a 4-periodic orbit of
type xo, 1,72 < 0 < z3 and determine its type.

Mostly we cannot find periodic points by direct calculations but we are
forced to find them numerically. Let us consider an example when f(z) =
x? — 2.05.

Now suppose we wish to find a 6-periodic orbit. We plot the graph of
£2, f3 and f© and the diagonal y = z in the same figure.
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The graph oscillating most is the graph of 6. We try to find an intersection
with y = z. To be sure that it is not 2- or 3-periodic it must be chosen so that
f? and £ do not pass. (We do not need the graphs of the fourth or fifth iterate
because a 4- or 5-periodic point cannot have period 6 and be the solution to
f8(x) = z) We find such a point at approximately -0.231. Iterating it we get
the 6-periodic orbit through -0.231, -1.99657, 1.936, 1.699, 0.837, -1.3486. The
product of the derivatives is the same as multiplicating all these numbers and
then by 64 = 26, The absolute value is again surely greater than one and the
orbit is repelling.

Ezercise. Find a 5-periodic point to 3.652(1 — z) and determine its type.

Global behaviour

Up to now the global behaviour was examined by cobwebs and the local
behaviour by more exact methods. There are also some statements which can
be used to prove the global behaviour and we now introduce some of them to
be proved in Appendix.

Statement 1. Let f be a function on a bounded interval I with endpoints
a and b and differentiable on [a, b] and satisfying the conditions

a) f has a fixed point p = f(p)

b) |f(z)]<lforzel

o) fI)cI

Then the interval I is in the basin of attraction of p.

Corollary 1. Suppose f is differentiable everywhere and satisfies

a) f has a fixed point p = f(p)

b) |f(z)] < 1 everywhere

Then the fixed point p is a global attractor.

We give some examples of how to use the Corollary to see that there is a
fixed point which attracts iterates of all other points.

Example. Consider the function f(z) = (z + sin(z))/4. Clearly zero is
a fixed point. Calculating the derivative we get f'(z) = (1 + cos(z))/4 and
because —1 < cos(z) < 1 we get 0 < f/(z) < 1/2 from which follows that zero
is a global attractor.

Ezample. Consider the function f(z) = (Va2 + 3)/2. We seek for fixed
points solving f(z) = z. Thus a fixed point must be a solution to (22 +3)/4 =
x2. The solutions are -1 and 1. Checking we confirm that the only fixed point
is 1. Calculating the first derivative we get f'(z) = x/(2vx% + 3). Further
the second derivative is f(z) = 3/(2(x%+3)*2) > 0. Thus f’ is an increasing
function. Because f'(z) — —1/2 for x — —oco and f'(z) — 1/2 for 2 — oo
we conclude that the derivative is between -1 and 1 and the fixed point 1 is a
global attractor.

Ezample. Consider the function f(z) = (z + ¢%™®))/4. In this case fixed
points must be calculated numerically. Because f(0) = e/4 > 0 and f(r/2) =
(/2 +1)/4 < 7/2 we conclude that must be a fixed point between zero and
7/2 (f(x) — = changes sign in this interval). Numerically we find the fixed
point at 0.573. Calculating the derivative we get f'(z) = (1+ cos(z)esin(@)) /4,
Because —1 < sin(z),cos(z) < 1 we get the estimates —1 < (1 — e)/4 <
f{z) < (1+¢€)/4 <1 and thus the fixed point we found is a global attractor
(also meaning that there are no other fixed points).

13



Ezercise. Find out whether there is a fixed point which is a global attractor
for the functions below.

a) f(z) = (m+cosz(2x))/4

b) f(z) = 0.9ze™”*

¢) flz) = (Vz? + z +10)/2
d) f(z) =1/(2? +2)

e) f(x) =In(z® +2)

f) (z + sin(z )+c082(x))/8

g) ©/3 + sin(z)/2 — cos?(z)/4
We proceed to give some statements which can be used to see that the
behaviour is simple in some regions and thus helps us to locate intervals to be
analyzed more carefully for more complex dynamics.
Statement 2a. Suppose f satisfies the following conditions in an interval
I=Ip,al:
a) p is fixed point
b)p< f(z) <z foranyz el
Then the basin of attraction of p contains the interval I.
Statement 2b. Suppose f satisfies the following conditions in an interval
I =|a,p}:
a) p is fixed point
b) p> f(z) >z foranyz € ]
Then the basin of attraction of p contains the interval I.

p da

Statement 3a. Suppose f satisifies the conditions f(x) > x in the interval
I =]a,o0[. Then the iterates of any point in this interval will tend to plus
infinity.

Statement 3b. Suppose f satisifies the conditions f(x) < x in the interval
I =] — 00,a]. Then the iterates of any point in this interval will tend to minus
infinity.

3a

To locate where there might be chaos we find interesting intervals such
that the iterates of points outside behave trivially. We dinstinguish four types

14



of such intervals

1) Double repelling interval. In this case there are two fixed points a and
b with a < b such that f(z) > z for > b and f(z) <  for z < a. According
to Statements 3 the iterates of points greater than b tend to infinity and the
iterates of points less than a tend to minus infinity. Thus the interval [a,b]
should be an interesting interval.

2) Simple repelling interval. In this case there is a fixed point b and a point
a such that f(z) > z for z > b and f(z) > b for < a. According Statement
3a the iterates of points greater than b tend to infinity and the first iterate of
points less than a is greater than b and further iterates tend to infinity. Thus
all iterates outside the interesting interval [a, ] tend to plus infinity. We have
an analogous situation where all iterates tend to minus infinity if there is a
fixed point a such that f({z) < z for z < a and a point b such that flz)<a
for z > b.

/a

3) Alternate repelling interval. In this case there is a two periodic orbit
consisting of —a and a > 0 such that |f(z)] > |z| and the absolute value of
points with |z| > a tend to infinity. The sign of the iterates will alternate.
There is, of course, a more general case when the 2-periodic points are not
symmetric with respect to the origin, but we will only consider this symmetric
case here.




4) Absorbing interval. The first iterate of all points sometimes enter this
interval and after that remain in the interesting interval.

.r :

4 ]
s
o pbsording

In many cases in practice there should be an absorbing interval where the
model is realistic. This concerns, for example, models in vibration mechanics
and population dynamics.

We give some examples of how to find these interesting intervals and what
can happen inside.

Ezample. We examine the function f(z) = z + 0.66(z — 1)(z — 2)(z + 3).
Solving f(z) = = we get that the function has fixed points at 1,2 and -3. If
¢ < —3 then (z — 1)(z — 2)(z +3) < 0 and f(z) < z so iterates of such
points will tend to minus infinity. If z > 2 then (z — 1)(z — 2)(z + 3) >0
and f(x) > x so iterates of such points will tend to plus infinity. Thus the
interval [-3,2] is an interesting double repelling interval. Iterating the point
1.537 in the interval we get chaos. We also see that this chaotic attractor is
not attracting all points in the interesting interval. Often the iterates of points
in the interesting interval also tend to plus infinity.

Ezample. We examine the function f(z) = z* + z —2.2. This function has
two fixed points z+ = +/2.2. Let us look at the function g(z) = f(z) — = =
22—2.2. If £ > z, then g(z) > 0 and f(z) > z and the iterates of such points
tend to plus infinity. The function has a minumum for z = 0.5. For z < 0.5
the function is decreasing and for z — —oo the values of the function tend
to plus infinity. Thus there is a unique point less than 0.5 where f (z) = x4
and this point can be calculated as u = —1 — V22. If £ < u then f(z) > x4
and further iterates will tend to plus infinity. Thus the interval [u, z4] can be
taken as an interesting simple repelling interval. Experiments show that most
points in this interval are attracted to a chaotic attractor.

Ezample. We examine the function

) 3z/2 x<1/2
f(x)“{ 3(1-2)/2 =>1/2

If £ < 0 then f(z) < z and iterates of such point tend to minus infinity.
If z > 1 then f(z) < 0 and further iterates will again tend to minus infinity.
Thus [0, 1] can be taken as a simple repelling interesting interval. Experiments
show that most points in this interval are attracted to a chaotic attractor.

Ezample. We consider the function 4x In(z2 + 0.5). The function has the
fixed points zero and z+ = +0.5v/4e}/4 — 2 = +0.886. If z > 0 then f(z) > =z
for In(z? + 0.5) > 1 which happens exactly for = > z. Thus iterates of such
points tend to plus infinity. If z < 0 then f(z) < z for In(z? + 0.5) > 1 which
happens exactly for z < z_. Thus iterates of such points tend to minus infinity.
Consequently [z_,z,] is a double repelling interesting interval. Iterating the
point 0.2251 in the interval we get a chaotic attractor.
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Ezample. We consider the function f(z) = 5/(z% ~ 4z + 5). Calculating
extrema we get maximum 5 for x = 2 and f(z) is always positive. Thus
all iterates are in the absorbing interesting interval [0,5] after first iterate.
Iterating the point 4.5498 in the interval we get a chaotic attractor.

Ezample. We consider the function f(x) = 6sin(z)+3cos(2z). Calculating
extrema we get maximum 4.5 taken at x = 7/6+2nm and = = 57/6+ 2nn and
minimum -9 taken at z = 37/2 + 2nm. Thus all iterates are in the absorbing
interesting interval [~9, 4.5] after first iterate. Iterating points in the interval
we get a chaotic attractor.

Ezample. We consider the function f(z) = 2re? ", Calculating extrema
we get maximum 2 at £ = 1 and minimum —e=3/% at 2 = —1/2. Further
f(x) — 0 for £ — oo. Thus all iterates are in the absorbing interesting
interval [~0.47, 2] after first iterate. Iterating the point 1.2512 in the interval
we get a chaotic attractor. The fixed point -0.47 is also attracting.

Ezample. We consider the function f(z) = —4(z® — 32) /5 Because there is
asymmetry we can solve for 2-periodic orbits requiring f(z) = —z giving the 2-
periodic points uy = +/17 /2. That they are really 2-periodic can be checked
by iterating them. For |z| < |ux| = v17/2 we get 22 > 17/4 equivalent
with 4/5(z? — 3) > 1 which implies |f(z)| > |z|. Thus the absolute value
of iterates of all such points tend to infinity. The iterates alternate in sign.
We conclude that [u_,u;] = [-2.06,2.06] is an alternate repelling interesting
interval. Experiments allow us to find two different chaotic attractors using
the intial values +1.5647 in the interval.

Ezercise. For each of the following functions find an interesting interval
where there might be chaos and check whether this a the case by iterating som
points in the interesting interval. Of what kind is the interesting interval?

2) f(x) = (z — 2)?

b) f(z) = ~2%/3+z +16/3

¢) f(z)=—2%/3 +52/3 +8/3
d) f(z) =22% -3z

e) f(z) =3z — 223

f) f(z) = 103:/(3:22 ~ 4z +6)

g) f(z) = 3ze—

h) f(z) =2+ 1.3(z* = 1)(z + 2)

) f(z)
) /(@) = 20(2 - )

k) f(z) = 2.5z 1n(2z2 + 0.25)

1) f(z) — 4z In(2% + 0.5)

m) f(z) = 0.82%/(1 — 1.522 + 2%)

n) f(z) =0.77(z% — 3z)

Even if we have found an interesting interval above there need not to be
chaos inside. We will look how one can prove that there is no chaos in a
special case. In general there can be no chaos if the derivative of the function
does not change sign. In our case we have three fixed points a,b and ¢ with
a < b < cand [a, c] is a double repelling interesting interval. But the derivative
of the function is always positive and thus z < f(z) < b for a < & < b and
b < f(z) <z for b <z < ¢ and according to Statements 2 all points in the
Interesting interval are attracted to b except for endpoints,

We consider some examples.

Ezrample. Consider the function f(z) = z+0.4(z? — 1)(z — 2). Examining
the sign of (z2 — 1)(z — 2) we conclude that flz)>zforz>2and f(z) <z
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for # < —1 so [~1,2] should be a double repelling interval. However it is
not so interesting, at least, there is no chaos. Calculating the derivative we
get f/(r) = 1.222 — 1.6z + 0.6 which is always greater than zero because
4%1.2%0.6 > 1.62.Thus f is increasing everywhere. The fixed points of f are
1,1and2and 1> f(z) >z for -1 <z <land 1< f(z) <z for 1 <z <2
Thus the fixed point 1 is attracting the whole interesting interval except the
endpoints.
Ezample. Consider the function

20+3 <=2
flz) =< z/2 -2<z<?2
20 -3 x>2

The function has three fixed points: repelling -3 and 3 and attracting
gero. For z > 3 we get f(z) > = and for z < —3 we get f(z) > z, so the
interval between -3 and 3 is a double repelling interesting interval. Anyhow
for —3 <z <Owegetz < f(z) <Oandfor0 <z <3weget 0< f(z)<=z
and thus zero is attracting the whole interesting interval except endpoints.

Ezercise. Show that the following functions have a double repelling inter-
esting interval without chaos.

a) f(z) =+ 04(2? - 1)(z + 2)

b)

3r+5H < -2
flx)y=<¢ x/2 -2<r <2
3r—-5 x>2

We shall look how we can use the statements for global behaviour to ex-
amine the behaviour of iterates for f(z) = rre™® and f(z) = ro?e™. In the
case the graph is below the diagonal it follows from Statement 2a that zero
is a global attractor for positive z in both cases. If 1 < r < e we can use
Statements 2 to prove that Inr is a global attractor for f(z) = rze™. We can
always use Statement 2 to prove that zero attracts the intevals (0,z_) and
(z¢,0). for f(x) = ra?e®.

Ezercise. Examine in the same way the dynamics when f(z) = rz/(1+27)
and f(z) =rz?/(1+ ") for v > 3, and z > 0.

Ezercise. Can we use the statements to prove something for the Impact
map?
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