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This example shows clearly the difference between the topological ap- 8. Inducti
proach to dynamics that we will adopt in the sequel and the measure theo- C functio,
retic approach. In a topological sense, an open, dense subset is considered

' 7. Modify
“large.” These sets may or may not be large in a measure theoretic sense,
i.e., in the sense of total length. a. C
b. C
Exercises c. C
1. Decide whether each of the following functions are one-to-one, onto, 8. M_Odify
homeomorphisms, or diffeomorphisms on their domains of definition. ﬁ [a,B], ie., D
a. f(z) =253 a. [
b. f(z) = z*/3 | b. L
c. flz)=3z+5 % c. D
d. f(z) =e® ' 9. Use at
. which satisf;
e. f(z)=1/a
f. f(z)=1/z?
2. Identify which of the following subsets of R. are closed, open, or neither.
o §1.3 ELEM
a. {z|z is an integer }
b. {z|z is a rational number }
c. {zgJz = 2 for some natural number n} The basi
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d. {z|sin(1) = 0}
e. {e|esin(d) =0}
f. {z|sin(1) > 0}

3. Prove that the set of rational numbers of the form p/2" for p,n € Z is
dense in R.

The goal of the next few exercises is to construct special functions which will

be useful later when we perturb or change slightly a given function. These
functions are called “bump functions.” Define

B(s) = {Sxp(-—l/wz)
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4. Sketch the graph of B(z).
5. Prove that B'(0) = 0.

Definition ¢
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This example shows clearly the difference between the topological ap-
proach to dynamics that we will adopt in the sequel and the measure theo-
retic approach. In a topological sense, an open, dense subset is considered
“large.” These sets may or may not be large in a measure theoretic sense,
i.e., in the sense of total length.

Exercises

1. Decide whether each of the following functions are one-to-one, onto,
homeomorphisms, or diffeomorphisms on their domains of definition.

a. f(z) = a%3
b. f(z) = z*/3
c. flg)=3c+5
d. f(z) =¢€"
e. f(z)=1/x
f. f(z)=1/2"
2. Identify which of the following subsets of R are closed, open, or neither.
a. {z|z is an integer }
b. {z|z is a rational number }
c. {z|z = % for some natural number n}
d. {=|sin(%) =0}
e. {z|esin(l) =0}
f. {=|sin(1) > 0}

3. Prove that the set of rational numbers of the form p/2" for p,n € Z is
dense in R.

The goal of the next few exercises is to construct special functions which will
be useful later when we perturb or change slightly a given function. These
functions are called “bump functions.” Define

B(z)={8xp(—1/w2) ifa >0

4. Sketch the graph of B(z).
5. Prove that B'(0) =0.
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8. Inductively prove that B(®)(0) = 0 for all n. Conclude that B(z) is a
C* function.

7. Modify B(z) to construct a C* function C(z) which satisfies
a. C(zc)=0ifz < 0.
b. C(z) =1if ¢ > 1.
c. C'(z)>0if0<a<1.

8. Modify C(z) to construct a C® bump function D(z) on the interval
[a,b], i.e., D(z) satisfies

a. D(z) =1fora <z <b.
b. D(z) =0 for z < o and @ >  where @ < @ and 8 > b.
c. D'(z) # 0 on the intervals (a,a) and (b,3).

9. Use a bump function to construct a diffeomorphism f:[a,b]

which satisfies f'(a) = f'(b) =1 and f(a) = ¢, f(b) = d.

§1.3 ELEMENTARY DEFINITIONS

The basic goal of the theory of dynamical systems is to understand the
eventual or asymptotic behavior of an iterative process. If this process is a
differential equation whose independent variable is time, then the theory at-
tempts to predict the ultimate behavior of solutions of the equation in either
the distant future (f — oo) or the distant past (t — —oc). If the process is
a discrete process such as the iteration of a function, then the theory hopes
to understand the eventual behavior of the points x, f(z), f3(z),..., f™*(z)
as n becomes large. That is, dynamical systems asks the somewhat non-
mathematical sounding question: where do points go and what do they do
when they get there? In this chapter, we will attempt to answer this question
at least partially for one of the simplest classes of dynamical systems, func-
tions of a single real variable. Functions which determine dynamical systems
are also called mappings, or maps, for short. This terminology connotes the
geometric process of taking one point to another. As much of the sequel will
in fact be geometric, we will use all of these terms synonymously.

Definition 3.1. The forward orbit of @ is the set of points &, f(z), f2(),. ..
and is denoted by O*(z). If f is a homeomorphism, we may define the full
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Fig. 3.3. The phase portraits of
a. f(0) = 0 + €sin(20) and
b. f(6) = 0 + esin(49).

Theorem 3.13. Each orbit T\ is dense in S! if A is irrational.

Proof. Let § € S1. The points on the orbit of # are distinct for if TH8) =
T3*(0) we would have (n — m)X € Z, so that n = m. Any infinite set of
points on the circle must have a limit point. Thus, given any ¢ > 0, there
must be integers n and m for which [T3(8) — T{(0)] < €. Let k = n — m.
Then |TF(8) — 6] < e.

Now T preserves lengths in S1. Consequently, T maps the arc connect-
ing 8 to TF(6) to the arc connecting T§(6) and T?#%(8) which has length less

than €. In particular it follows that the points 0,T;‘(0),Tf"(0), ... partition
S! into arcs of length less than e. Since € was arbitrary, this completes the
proof.

q.e.d.
Exercises

1. Use a calculator to iterate each of the following functions (using an
arbitrary initial value) and explain these results.

. C(z) = cos(z)

b. S(z) = sin(z)

c. E(z)=e"

d. F(z) = le=

. A(z) = arctan(z)
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Fig. 3.3. The phase portraits of
a. f(0) = 0 + esin(20) and
b. f(8) = 0 + esin(49).

Theorem 3.13. Each orbit Ty is dense in S if X is irrational.

Proof. Let 8 € S1. The points on the orbit of 8 are distinct for if ) =
T{*(8) we would have (n — m)A € Z, so that n = m. Any infinite set of
points on the circle must have a limit point. Thus, given any € > 0, there
must be integers n and m for which |TJ(0) — TJ*(0)| < €. Let k = n —m.
Then |T§(9) - 0] < e.

Now T) preserves lengths in S'. Consequently, T,(‘ maps the arc connect-
ing 0 to Tf(6) to the arc connecting T{(8) and T#(9) which has length less
than €. In particular it follows that the points B,T,(‘(O),Tfk(ﬂ), ... partition

5! into arcs of length less than e. Since € was arbitrary, this completes the
proof,

q.e.d.

Exercises

1. .Use a calculator to iterate each of the following functions (using an
arbitrary initial value) and explain these results.

a. C(z) = cos(z)
b. S(z) = sin(z)
c. E(z) =e€®

d. F(z) = le®

e. A(z) = arctan(z)
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2. Using the graph of the function, identify the fixed points for each of the
maps in the previous Exercise.

3. List all periodic points for each of the following maps. Then use the
graph of f(z) to sketch the phase portrait of f(z) on the indicated interval.

a. f(:n):—%:c, —o00o <@ <00

=-3z, —oco<e<<00

T — a:z, T 0<Lz<1
Zeine, 0 <z <
= —a:a, —oo <z <00

f. f(:c)z%(a:3+:c),_ —-1<z<1
4. Identify the stable sets of each of the fixed points for the maps in the
previous Exercise.

5. For each of the following functions, list all critical points and decide
whether each is degenerate or non-degenerate.

a. f(z) =232
b. S(z) = sin(z)
c. f(z) == - 227
d. g(e) = ® + 2*
6. Describe the phase portrait of the map of the circle given by

F(6) =0+ % + esin(nf)

for0 < e<1/n.

7. Prove that a homeomorphism of R can have no periodic points with
prime period greater than 2. Give an example of a homeomorphism that has
a periodic point of period 2.

8. Prove that a homeomorphism cannot have eventually periodic points.
9. Let §:S! — S! be given by S() = 6 + w + esin(f) where w and € are
constants. Prove that S is a homeomorphism of the circle if |e] < 1.

10. Let f(0) = 20 be the map of S! discussed in Example 3.4. Prove that
periodic points of f are dense in S*.

11. Prove that eventually fixed points for the map in Exercise 10 are also
dense in S1.
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Fig. 4.5. The phase portraits of a. f(z) =z + «°
b. f(z) =2z — 2% c. f(z) =2+ %

has a weakly attracting fixed point at 0. In c., the map f(z) =z +2%is
weakly repelling from the right but weakly attracting from the left.

Most maps have only hyperbolic periodic points, as we shall see later.
However, non-hyperbolic periodic points often occur in families of maps.
When this happens, the periodic point structure often undergoes a bifurca-
tion. We will deal with bifurcation theory more extensively later, but for
now we give several examples.

Example 4.9. Consider the family of quadratic functions Qc(z) = 2? + ¢,
where ¢ is a parameter. The graphs of Q. assume three different positions
relative to the diagonal depending upon whether ¢ > 1 /4, ¢ =1/4,0r c <
1/4. See Fig. 4.6. Note that Q. has no fixed points for ¢ > 1/4. When
¢ = 1/4, Q. has a unique non-hyperbolic fixed point at = = 1/2. And when
¢ < 1/4, Q. has a pair of fixed points, one attracting and one repelling. Thus
the phase portrait of Q. changes as ¢ decreases through 1/4. This change is
an example of a bifurcation.

Example 4.10. Let F,(z) = pz(l — ) with z > 1. F, has two fixed
points: one at 0 and the other at p, = (1 — 1)/p. Note that Fo(0) = p
and FI"(p,,) =2 — p. Hence 0 is a repelling fixed point for x > 1 and Py is
attracting for 1 < p < 3. When p = 3, F;Iz(pﬂ) = —1. We sketch the graphs
of Fz for p near 3. See Fig. 4.7. Note that 2 new fixed points for Fi appear
as y increases through 3. These are new periodic points of period 2. Another
bifurcation has occurred: this time we have a change in Perg(F),).

This quadratic family actually exhibits many of the phenomena that are
crucial in the general theory. The next section is devoted entirely to this
function.

' §1.4 HYPERBOLICITY 29

Fig. 4.6. The graphs of Q.(z) = =% + ¢ for ¢ > 1/4,
c=1/4,and c < 1/4.

Exercises

1. Find all periodic points for each of the following maps and classify them
as attracting, repelling, or neither. Sketch the phase portraits.

a. f(z) =2 —?
b. f(z) = 2(z — =?)

c. f(z)=2a%- %a:

d. f(z)=2® -2
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Fig. 4.7. The graphs of FZ(z) where
Fy(z) = pa(1 — 2) for
#<3pu=3,and u> 3.

e. S(e) = 1sin()
f. S(=) = sin(z)
g. E(w) = %1

h. E(z) = ¢*

i. A(z) = arctanz

j- A(z) = Zarctanz

3. Sy
are isola

4. Sho
lated.

5. Fin
point wi

6. Disc
Find all
portrait

7. Con
of param
cases are

§1.5 AN

In th
F(e) —
througho
most imp




ONE-DIMENSIONAL DYNAMICS

Fig. 4.7. The graphs of FZ(2) where
Fy(z) = pe(l — z) for
g <3,p=3,and g > 3.

e. §(z) = 1sin()

f. S(z) = sin(x)

g E(z) =e*!

h. E(z) = €®

i. A(z) = arctanz

j- A(z) = Zarctanz

AR
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k. A(z) = —% arctanz
2. Discuss the bifurcations which occur in the following families of maps
for the indicated parameter value

a. Sy(¢) = Asinz, A=1

b. Ex(z) = Ae®, A=1/e

c. Ex(z)=Ae®, A= —¢

d. Qc(z)=2%+¢, c=-3/4

e. Fy(z)=pa(l-2), p=1

f. Ay(z) = Aarctanz, A=1

g. Ay(z) = darctanz, A= -1
3. Suppose f is a diffecomorphism. Prove that all hyperbolic periodic points
are isolated.
4. Show via an example that hyperbolic periodic points need not be iso-
lated. ‘
5. Find an example of a C! diffeomorphism with a non-hyperbolic fixed

point which is an accumulation point of other hyperbolic fixed points.

6. Discuss the dynamics of the family fy(z) = 2°® — az for —0o < a < 1.
Find all parameter values where bifurcations occur. Describe how the phase
portrait of f, changes at these points.

7. Consider the linear maps fi(z) = kz. Show that there are four open sets
of parameters for which the phase portraits of f), are similar. The exceptional
cases are k = 0, +1,

§1.5 AN EXAMPLE: THE QUADRATIC FAMILY

In this section, we will continue the discussion of the quadratic family
Fu(z) = pa(l — 2). Actually, we will return to this example repeatedly
throughout the remainder of this chapter, since it illustrates many of the
most important phenomena that occur in dynamical systems,
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on the unit inte
periodic points
4. Prove that
5. Sketch the

there is a sequence of endpoints of the Ay converging to p, or else all points
in a deleted neighborhood of p are mapped out of I by some power of F.
In the former case, we are done as the endpoints of the Ay map to 0 and
hence are in A. In the latter, we may assume that F™ maps p to 0 and all
other points in a neighborhood of p into the negative real axis. But then F™
has & maximum at p so that (F")'(p) = 0. By the chain rule, we must have
F'(F¥(p)) = 0 for some i < n. Hence F*(p) = 1/2. But then Fitl(p) ¢ I

§
.

andI:sIo F™(p) ; —00, cox:itradicting the fact that F*(p) = 0. How many |

ence we have prove 6. The followi:
Theorem 5.6. If n > 2 + /5, then A is a Cantor set. ’ for A > 0.

a. Find all

Remark. The theorem is true for 4 > 4, but the proof is more delicate. b. Prove t}

. c. P t

We have now succeeded in understanding the gross behavior of orbits of n;:)‘;:,né

F, when pu > 4. Either a. point tends to —oo under iteration of F,, or else
its entire orbit lies in A. Hence we understand the orbit of a point under F,
perfectly well as long as the point does not lie in A. In the next section, we
will complete the analysis of the dynamics of F, by analyzing the dynamics 8. Show that,
of F,, on A. ' Thirds set, the
When g > 2 4 +/5, we have shown that |Fu(z)] > 1 on IpUI;. This
implies that IFL(w)I > 1 on A. This is a condition similar to the hyperbolicity
condition of §3, except that we require |F,(z)| # 1 on a whole set, not just
at a periodic point. This motivates the definition of a hyperbolic set: Conclude that t]

7. Prove that
closed, nonempt

9. Construct a
remaining subin
about the sum ¢
10, Let I' be

The Cantor set A for the quadratic map when g > 2 + /5 is of course a L(z) = 3z maps
repelling hyperbolic set with N = 1. 11. Qeneralize

Definition 5.7. A set I' C R is a repelling (resp. attracting) hyperbolic
set for f if I' is closed, bounded and invariant under f and there exists an

N > 0 such that |(f*)'(z)| > 1 (resp. < 1) for all n > N and all z € T

. interval remainir
Exercises toI. -

1. Prove that Fy(z) = 2z(1 — ) satisfies: if 0 < = < 1, then Fi}(z) —
1/2 as n — oo.

2. Sketch the graph of F*(z) on the unit interval, where Fy(z) = 4z(1 —z).
Conclude that Fy has at least 2" periodic points of period n.

3. Sketch the graph of the tent map

Ty(=) = {2 ~ 2

§1.6 SYMBOL
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Our goal in t]

<z<l1
<z<l1 _ of the quadratic

o= O
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there is a sequence of endpoints of the Aj converging to p, or else all points
in a deleted neighborhood of p are mapped out of I by some power of F.
In the former case, we are done as the endpoints of the A, map to 0 and
hence are in A. In the latter, we may assume that F'® maps p to 0 and all
other points in a neighborhood of p into the negative real axis. But then F'*
has a maximum at p so that (F")'(p) = 0. By the chain rule, we ‘_I_I:;lst have
F'(Fi(p)) = 0 for some i < n. Hence Fi(p) = 1/2. But then F (p) g I
and so F™(p) — —oo0, contradicting the fact that F™(p) = 0.
Hence we have proved

Theorem 5.8. If 4 > 2 + /5, then A is a Cantor set.
Remark. The theorem is true for 4 > 4, but the proof is more delicate.

We have now succeeded in understanding the gross behavior of orbits of
F, when p > 4. Either a. point tends to —oo under iteration o.f E,, or else
its entire orbit lies in A. Hence we understand the orbit of a point under F,
perfectly well as long as the point does not lie in A. In the. next section, we
will complete the analysis of the dynamics of F, by analyzing the dynamics
of F, on A. .

When g > 2 + /5, we have shown that |[Fu(z)] > 1 on LU L. "I‘%ns
implies that IFL(“’)I > 1 on A. This is a condition similar to the hyperbohfnty
condition of §3, except that we require |F,(z)| # 1 on a whole .set, not just
at a periodic point. This motivates the definition of a hyperbolic set:

Definition 5.7. A set ' C R is a repelling (resp. attracting) hypferbolic
set for f if T is closed, bounded and invariant under f and there exists an
N > 0 such that |(f*)'(z)| > 1 (resp. < 1) for all n > N and all z € T,

The Cantor set A for the quadratic map when p > 2 + /5 is of course a
repelling hyperbolic set with N = 1.

Exercises

1. Prove that Fy(z) = 2z(1 — z) satisfies: if 0 < & < 1, then F}z) -
1/2 as n — oo.

2. Sketch the graph of F*(z) on the unit interval, where Fy(z) = 4a(1 — ).
Conclude that Fy has at least 2" periodic points of period n.

3. Sketch the graph of the tent map

2z

<e<1/2
TZ(w):{Z—Zm <z<1
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on the unit interval. Use the graph of T3 to conclude that T, has exactly 2"
periodic points of period n.
4. Prove that the set of all periodic points of T(z) are dense in [0, 1].
5. Sketch the graph of the baker map
(2 0<z<1/2
B(m)‘"{2:c——1 1/2<z<1"

How many periodic points of period n does B have?
6. The following exercises deal with the family of functions F(z) = 2° - )z
for A > 0.

a. Find all periodic points and classify them when 0 < A < 1.

b. Prove that, if |2| is sufficiently large, then |f*(z)| — oo.

c. Prove that if ) is sufficiently large, then the set of points which do

not tend to infinity is a Cantor set.

7. Prove that the Cantor Middle-Thirds set described in Example 5.5 is
closed, nonempty, perfect, and totally disconnected. '

8. Show that, at the n' stage of the construction of the Cantor Middle-
Thirds set, the sum of the lengths of the remaining intervals is

1 /7332y
-3(26))
3 i=0 3
Conclude that the sum of the lengths of these intervals tends to 0 as n — oo,

9. Construct a Middle-Fifths Cantor set in which the middle fifth of each
remaining subinterval of the unit interval js removed. What can be said
about the sum of the lengths of the remaining intervals in this case?

10. Let I' be the Cantor Middle-Thirds set. Prove that the linear map
L(z) = 3z maps I'N [0, %] homeomorphically onto T

11. Generalize Exercise 10 to show that the portion of T' contained in an
interval remaining at the nt stage of the construction of I" is homeomorphic

to I, -

A

§1.6 SYMBOLIC DYNAMICS

Our goal in this section is to give a model for the rich dynamical structure
of the quadratic map on the Cantor set A discussed in the previous section.




