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5.7 Periodic Solutions

Analytical results concerning periodic  solutions  for two-dimegsiongl
autonomous systems dx/dt = f(x, y) and dy/dt = g(x, y) are stated in th%s
section. The first result is known as the Poincaré-Bendixson Theorem. This
theorem states that bounded solutions whose limiting set does not contain any
equilibria must approach a periodic solution. Theré are two other important
theorems known as Bendixson’s and Dulac’s criteria. Each Of. these theorems
give a criterion such that if it is satisfied, then the system will not have any

periodic solutions.

5.7.1 Poincaré-Bendixson Theorem

Some terminology and notation are introduced h} regarq tp a phase plane analysis.
The term “trajectory” is used synonymously Wlth. orbit in the phas.e plane: The
notation I'(Xp, t) is used to denote a solution trajectory as a fungtuon ofL time £
beginning at the initial point Xq = (x(fo), y(t)) = (xo, yo)- In addlitl‘on, F‘ ('XO, 1)
denotes that part of the solution traje-ctory where t = fg, a pqsztzve or bit, and
I'"(Xy, t) denotes that part of the solution wk}e're t=tpa negatzvehor:b.zt. If solu-
tions are bounded, then their negative and positive orbits approach limiting gets as
t — —00 or as t — +00.The a-limit set, denoted a(Xo), refers to the set of points in
the plane that are approached by the negative orbit., F_QXO, 1), as | t— —0o0 [ie,
(x5, y1) € a(Xp) iff there exists a sequence of decreasing times {t;}Z1,t; — —00 as
i — 00, such that lim;_.o(x(%;), () = (xp; yp]. The w-limit set, denot'efi w(XQ),
refers to the set of points in the plane that are approached by the positive orbit,
I (Xy, t),as t —> 00, ' _

A very important result in the theory of two-d1m§n810na1 autonomous
systems is known as the Poincaré-Bendixson Theorem. This theorem states con-
ditions for existence of periodic solutions to the system (5.5). The names
Poincaré and Bendixson refer to the contributions made by the well-known
French mathematician Jules Henri Poincaré (1854-1912) and the Swedish
mathematician Ivar O. Bendixson (1861-1935).

Theorem 5.6

Theorem 5.7

Figure 5.10 Examples of
w-limit sets in the phase plane.
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(Poincaré-Bendixson Theorem). Let I'*(X,, 1) be a positive orbit of (5.5) that
remains in a closed and bounded region of the plane. Suppose the w-limit set does
not contain any equilibria. Then either

(i) TH(X,,1)is a periodic orbit (' (X, t) = w(Xy)) or
(ii) the w-limit set, w(X,), is a periodic orbit. O

For a proof of this result, consult Coddington and Levinson (1955). An
important consequence of this theorem is known as the Poincaré-Bendixson
trichotomy, which states that bounded solutions containing only a finite number
of equilibria can behave in one of only three ways (Coddington and Levinson,
1955; Smith and Waltman, 1995).

(Poincaré-Bendixson Trichotomy). Let I'* (X, t) be a positive orbit of (5.5) that
remains in a closed and bounded region B of the plane. Suppose B contains only a
[inite number of equilibria. Then the w-limit set takes one of the following three forms:

(i) ‘w(XO) is an equilibi‘ium.
(i) w(Xy) is a periodic orbit,

(if) - w(X,) contains a finite number of equilibria and a set of trajectories T'; whose
" a- and w-limit sets consist of one of these equilibria for each trajectoryT;. O

An important assumption in both of these theorems is that solutions are
bounded. In Case (i), if I'" (X, r) # w(X,) but approaches the periodic orbit,
then the periodic orbit may be a limit cycle. In Case (iii), the limiting set is
referred to as a cycle graph. The cycle graph may consist of either an equilibrium
and a homoclinic orbit (connecting an equilibrium to itself) or several equilibria
and heteroclinic orbits (connecting two different equilibria), Examples of w-limit
sets are graphed in Figure 5.10. o

An important fact is that a periodic orbit must enclose at least one equilib-
rium point. A periodic orbit changes direction as it follows a closed curve in the
x-y plane and a change in direction can only occur at an equilibrium point.
Another important fact concerning periodic orbits is that if there exists exactly
one equilibrium point inside a periodic orbit, it cannot be a saddle point. But it
can be a riode or a spiral. The direction of flow around a saddle point does not
allow periodic orbits to encircle it. The direction of flow around any closed
curve in thé plane can be classified according to the index of a closed curve.
[See, for example, Coddington and Levinson (1955) or Strogatz (2000).]
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xample 5.14
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Consider the following nonlinear system:

@:
dt

d
8x — %, Ei—) = -y + x° (5.6)

The x-nullcline is y?> = 8x and the y-nullcline is y = x%. The nullclines intersect
at two equilibria (0, 0) and (2, 4). On the x-nullcline, dy/dt satisfies

4 3
_ DA SR
AT < 1+64>'
When y < Oory > 4,thendy/dt > 0Oand when0 < y < 4,dy/dt < 0.Onthe
y-nullcline, dx/dt satisfies

dx
dr

dy
di

y?=8x

=8x — x* = x(8 — x%).

)Y:'\Z

When x < 0 or x > 2, then dx/dt < 0,and when 0 < x < 2, then dx/dt > 0.
The direction of flow along the nullclines is sketched in Figure 5.11. .
Next, we determine the behavior near the equilibria. The Jacobian matrix

At the origin,

: /s o
J(0,0) = (0 _1>.

Because one eigenvalue is positive (A; = 8) and one is negati.vc-? (A = —1),

the origin is a saddle point. Solutions move away from the origin along the

x-axis (unstable manifold) and move toward the origin along the y-axis
(stable manifold). This behavior can be seen if we solve the linear system

dz/dt = J(0,0)Z,
1 {0
Z = c168’<0> + e ’<1>.

y-nulicline

Figure 5,12 Direction field
and some solution trajectories
for the system (5.6). The
nullclines are the dashed
curves and the solutions

are the solid curves.

Theorem 5.8
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At the equilibrium (2,4),

J(2,4) = <i :f)

The characteristic equation is A2 — 7\ + 24 = 0 or Mp=7/2 =+ i\/éT7/2.
The equilibrium (2, 4) is an unstable spiral point. The direction field and some
solution trajectories are graphed in Figure 5.12 for the system (5.6). -

The Poincaré-Bendixson Theorem can be applied to the nonlinear
system in the last example if solutions are bounded. But it is easy to show
that this is not the case for system (5.6). For x(0) < 0, dx/dt < 0 so that x(7)
is decreasing. In addition, dx/dt < 8x. Thus, x(t) < x(0)e® — —oc0 as r — oo,
Because solutions are not bounded, the Poincaré-Bendixson Theorem cannot
be applied to check for periodic solutions. However, the next two results can
be applied.

P

5.7.2 Béhdixson’s and Dulac’s Criteria

Two important mathematical results give sufficient conditions that rule out the
possibility of periodic solutions, They are Bendixson’s criterion and Dulac’s
criterion. First, we define a simply connected set. A simply connected set D C R>
is a connected set having the property that every simple closed curve in D can
be continuously shrunk (within D) to a point (Rudin, 1974). For example, the
entire plane, R? is a simply connected set. Geometrically, a simply connected set
is one without any holes. ‘

(Bendixson’s Criterion). Suppose D is a simply connected open subset of R>
If the expression div(f, g) = af/ox + dg/dy is not identically zero and does
not change sign in D, then there are no periodic orbits of the autonomous system
(5.5) in D. ' '

Proof Assume that there is a periodic solution C (a simple closed curve) in
the simply connected region D. Let S denote the interior of C. When C is
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transversed counterclockwise, Green’s Theorem in the plane (mtegratmn by
parts in two dimensions) gives the following identity:

/f(«\y)dy—g(xy)dX“//(

Note that the right-hand side does not equal zero by hypothesis. The autonomous
system satisfies-

) dx dy. (5.7)

ax _ AC)) or g(x,y)dx = f(x,y)dy.

dy g(x,y)

Thus, the integral on the left side of (5.7) must be zero, which leads to a
contradiction. ' O

Bendixson’s criterion can be applied to the system in Example 5.14. In this

example, f(x, y) = 8x — y*and g(x,y) = —y + x2.Let D be any open region
in R% Then div(f, g) = 8 — 1 = 7 # 0. Bendixon’s cnteuon implies there are

no periodic solut1ons inD. -

A simple but important generalization of Bendixson’s criterion is known as
Dulac’ s criterion.

(Dulac’s Criterion). Suppose D is a simply connected open subset of R? and
B(x, y) is a real-valued C! function in D. If the expression

oBf) , 3(Bg)
ax ay

div(Bf, Bg) =

is not identically zero and does not change sign in D, then there are no periodic
solutions of the autonomous system (5.5) in D. 0

The function B is called a Dulac function. Dulac’s criterion simplifies to
Bendixson’s criterion in the special case B(x, y). = 1. There is no general
method for determining an appropriate Dulac function for a given system.
The difficulty in finding a Dulac function is similar to the difficulty in finding
an appropriate “integrating factor” when solving differential equations (Hale
and Kocak, 1991). Note that Dulac’s and Bendixson’s criteria give sufficient
but not necessary conditions for the nonexistence of periodic solutions.
If neither of these criteria are satisfied, there may or may not be periodic

solutions.

Suppose fand g are linear functions:

%=ax+by,
d
E}tizcandy.

Example 5.17
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Applying Bendixson’s criterion, df/dx + dg/dy=a+d. If a+d # 0,
then there are no periodic solutions in the entire plane. Butif a + d = 0, then
Bendixson’s criterion does not apply. The following linear system

dx
a Y
dy
a "
hasa = Tandd = ~1,s0 that Bendixson’s criterion does not apply. By separating

variables and solving for x and y, this system satisfies x* + y?> = C = constant;
the origin is a center. Every solution, not beginning at the origin, is a periodic
solution. The following linear system

dx _
a
dy _

a v

has @ = 0 = d, so again Bendixson’s criterion does not apply However, for this .

system thele do not exist any periodic solutions; the origin is a saddle point
(x* — y* = C = constant). ]

Consider the predator-prey model, where prey and predator grow logistically in
the absence of the other species,

dv

1 - - b
ar = x( ax V),
dy
— = y(1 + - dy),
g~ Y+ ex —dy)

where a,b,c,d > 0. Let B(x,y) = 1/(xy). Note that B is continuously dif-
ferentiable in the positive quadrant, D = {(x,y)|x > 0,y > 0}. Thus,
div(Bx(1 — ax — by), By(1 + cx — dy)) = —a/y — d/x <0 in D. Dulac’s
criterion implies there does not exist any periodic solutions in D. m

The Poincare-Bendixson Theorem and Dulac’s and Bendixon’s criteria apply
only in two dimensions. However, there is a generalization of Dulac’s criteria to
three dimensions in some special cases (Busenberg and van den Driessche, 1990).
This generalization involves finding a vector function g such that along solutions,
the dot product of the curl of g and the unit normal vector, on the surface of a
region in R3, is negative,

5.8 Bifurcations

If a parameter is allowed to vary, the dynamics of the differential system may
change. An equilibrium can become unstable and a periodic solution may appear
or a new stable equilibrium may appear making the previous equilibrium unstable.
The value of the parameter at which these changes occur is known as a bifurcation
value and the parameter that is varied is known as the bifurcation parameter. We
discuss several types of bifurcations: saddle node, transcritical, pitchfork, and Hopf
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bifurcations. The first three types of bifurcations occur in scalar and in systems of
differential equations. The fourth type, Hopf, does not occur in scalar differential
equations because this type of bifurcation involves a change to a periodic solution.
Scalar autonomous differential equations cannot have periodic solutions. Excellent
introductions to the theory of nonlinear dynamical systems and bifurcation
theory in differential equations include the books by Hale and Kogak (1991) and

Strogatz (2000).

5.8.1 First-Order Equations

First, we discuss bifurcations in the case of scalar differential equations. Consider
the scalar differential equation

dx

- = fxr), 5.8

= ) (538)
where 7 is the bifurcation parameter and X(r) is an equilibrium solution which
depends on r. There are three different types of bifurcations:

I. saddle node
II. pitchfork
III. transcritical

These three types of bifurcations occur in scalar difference equations also.
However, in scalar difference equations, there is additional type of bifurcation
known as a period-doubling bifurcation.

At the bifurcation value 7, it is the case that the equilibrium changes stability.
In particular, for r = 7 and x = ¥(),

LAC)) ~0. (59)
dx  |@n=GEE).9

We discuss briefly the dynamics for each of three types of bifurcations for
scalar differential equations. The bifurcation dynamics are similar to the dynamics
in the case of difference equations, discussed in Chapter 2. In a saddle node bifur-
cation, as the bifurcation parameter passes through the bifurcation point, two
equilibria disappear, so that there are no equilibria afterward. One of the two
equilibria is stable and the other one is unstable, before they disappear. This
type of bifurcation is sometimes referred to as a blue sky bifurcation (Strogatz,
2000) because equilibria appear as “out of the clear blue sky.” In a pitchfork
bifurcation, there are two stable equilibria separated by an unstable equilibrium.
A system where there are two different stable equilibria is said to have the prop-
erty of bistability. When the bifurcation point is passed, there is only one stable
equilibrium. This type of bifurcation is referred to as a supercritical pitchfork
bifurcation. There is also a subcritical pitchfork bifurcation. In a subcritical pitch-
fork bifurcation, the stability is the reverse of the supercritical bifurcation, that is,
there are two unstable equilibria separated by a stable equilibrium, until the
bifurcation point is passed. Then there is only one unstable equilibrium. The
diagram looks like a “pitchfork.” The diagram in Figure 2.10 I is a supercritical
pitchfork bifurcation. In a transcritical bifurcation, there are two equilibria,
one stable and one unstable. When the bifurcation point is passed, there is an
exchange of stability; the unstable equilibrium becomes stable and the stable one

becomes unstable.

Example 5.18
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The following three examples are canonical examples of these three types
of bifurcations.

dx

I. — =¥+ 2
o F+x
d
1L (i—?:rx—x3
dx
O — = rx + x2
it rx + x

In each case, the bifurcation value is at = 0. At r = 0, there is a change in the
stability of the equilibrium. The criterion in (5.9) is satisfied for 7 = 0 and
x(r) = 0. A bifurcation diagram illustrating bifurcations of type I, II, and III is
the same as the one for difference equations. See Chapter 2, Figure 2.10.

Consider the canonical differential equation of type I dx/dt = r + x> =
f(x, 7). The equilibria satisfy x* = —r or ¥() = £V —r. When r > 0, there
are no equilibria. When r = 0, there is one equilibrium. Finally, when r < 0,
there are two equilibria. Also, df (x, r)/dx = 2x evaluated at ¥(r) equals
+2\/~r. The positive equilibrium is unstable and the negative one is stable.
There is a saddle node bifurcation at7 = 0 . ]

These types of bifurcations also occur in higher-dimensional systems of differ-
ential equations. For example, in the two-dimensional system with equations

%= r+x2,
dy _
a >

there is a saddle node bifurcation at r = 0.

5.8.2 Ho'pf Bifurcation Theorem

A fourth type of bifurcation occurs in systems of differential equations
consisting of two or more equations. This fourth type is known as a Hopf
bifurcation. It is also referred to as a Poincaré-Andronov-Hopf bifurcation
(Hale and Kogak, 1991) to acknowledge the contributions to the theory by
French mathematician Jules Henri Poincaré (1854-1912), Russian mathe-
matician Alexander A. Andronov (1901-1952), and German mathematician
Heinz Hopf (1894-1971). We have seen in Chapter 3 that a similar type
of bifurcation occurred in a predator-prey system modeled by a system of
difference equations (known as a Neimark-Sacker bifurcation).

The Hopf Bifurcation Theorem stated here is for a system of two differential
equations. There is a Hopf Bifurcation Theorem for higher dimensions also
(see Marsden and McCracken, 1976). This Hopf Bifurcation Theorem states suffi-
cient conditions for the existence of periodic solutions. As one parameter is
varied, the dynamics of the system change from a stable spiral to a center to an
unstable spiral. The eigenvalues of the linearized system change from having
negative real part to zero real part to positive real part. Under certain conditions,
there exist periodic solutions,
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Example 5.19

Consider a system of autonomous differential equations given by

dx dy ]
i f(x,y,r) and i glx, vy, 1), (5.10)
where the functions f and g depend on the bifurcation parameter r. Suppose
there exists an equilibrium (¥(r), y(r)) of system (5.10) and the Jacobian matrix
evaluated at this equilibrium has eigenvalues a(r) + iB(r). In addition, suppose
a change in stability occurs at the value of r = r*, where a(r*) = 0.If a(r) < 0
for values of r close to r* but for » < r* and if a(r) > 0 for values of r close to
r* but for » > r¥ (also B(r*) # 0), then the equilibrium changes frorp a stgble
spiral to an unstable spiral as r passes through r*. The Hopf Bifurcation
Theorem states that there exists a periodic orbit near r = r* for any neighbor-
hood of the equilibrium in R?. The parameter r is the bifurcation parameter gnd
r* is the bifurcation value. The theorem is valid only when the bifurcation
parameter has values close to the bifurcation value. . o
Before we state the theorem, a simple example is presented which exhibits

a Hopf bifurcation.

Consider the linear system

ax _ . _
dr R
dy

— = x+ ry.
ar T

The origin is an equilibrium. The trace and determinant of the Jacob%an. matrix
evaluated at the origin are 2r and r* + 1, respectively. Since the discriminant of
the Jacobian matrix is negative, (2r)2 — 4r* — 4 = —4, the eigenvalues are
r & i.If » < 0, the origin is a stable spiral. If » = 0, the origin is a center, and if
¥ > 0,1t is an unstable spiral. The bifurcation value is at r = r* = 0. Recall the
stability diagram, where stability is graphed as a function of the trace 7 and
determinant 8, The bifurcation in this example occurred because r crossed the
8-axis where 8 > 0. A Hopf bifurcation occurs. As the bifurcation parameter
r increases through the bifurcation value * = 0, the equilibrium (0, 0) chagggs
from a stable spiral to a neutral center to an unstable spiral. There are infi-
nitely many periodic solutions at the bifurcation value r* = 0. Solut10n§ to
dx/dt = —y and dy/dt = x are of the form x*(t) + y*(t) = ¢, where ¢ is a
constant that depends on initial conditions. =

The linear example illustrates the change in stability as the bifurcation
parameter r is varied. In general, at a Hopf bifurcation, as r passes through the
bifurcation value r*, there are three possible dynamics that may occur.

(i) At the bifurcation value r* infinitely many neutrally stable concentric
closed orbits encircle the equilibrium.
(i) A stable spiral changes to a stable limit cycle for values of the parameter
close to r* (supercritical bifurcation).
(iii) A stable spiral and unstable limit cycle change to an unstable spiral for
values of the parameter close to r# (subcritical bifurcation).

Example 5.19 illustrates a change of stability of type (i). Figure 5.13 illu§trates a
supercritical and a subcritical bifurcation in x-y-r space. Stable solutions are
identified by solid curves and unstable solutions by dashed curves.

Figure 5.13 (a) Supercritical
and (b) subcritical
bifurcations in x-y-r space.
Solid curves circling or on the
r-axis are stable. Dashed
curves are unstable.

'fhe,orem 5.10

5.8 Bifurcations 203

(@) (b)

The Hopf Bifurcation Theorem is stated as given by Hale and Kocak
(1991). For a proof of this theorem see Hale and Kogak (1991) or Marsden and
McCracken (1976). First the system is transformed so that the equilibrium is at
the origin and the parameter r at r* = 0 gives purely imaginary eigenvalues,
System (5.10) is rewritten as follows:

dx

o ay(r)x + ap(r)y + filx, y, r)

dy

a an(r)x + an(r)y + gi(x, y, r). (5.11)

The linearization of system (5.11) about the origin is given by dZ/dt = J(r)Z,
where Z = (x,y)T and

/ I(r) = (ﬂn(") fl12(")> (5.12)

ay(r)  ax(r)

is the Jacobian matrix evaluated at the origin.

(Hopf Bifurcation Theorem). Ler fi and g in system (5.11) have continuous
third-order derivatives in x and y. Assume that the origin (0,0) is an equilibrium
of (5.11) and that the Jacobian matrix J(r), defined in (5.12), is valid for all suffi-
ciently small |r|. In addition, assume that the eigenvalues of matrix J(r) are
a(r) £ iB(r) with a(0) = 0 and B(0) # O such that the eigenvalues cross the
imaginary axis with nonzero speed (transversal),

do

- #0.
dr .=

Then, in any open set U containing the origin in R% and for any ry > 0, there
exists avalue 7, |7| < r, such that the system of differential equations (5.11) has a
periodic solution forr = 7 in U (with approximate period T = 21/ B(0)). |

A




nlinear Ordinary Differential Equations: Theory and Examples

ample 5.20  Consider the linear system in Example 5.19 With bifurcation parameter r.
We show that the conditions of the Hopf Bifurcation Theorem hold.

dx
dr »
dy

= = x + ry.
dt X ry

In this case, f; = 0 = g;. The Jacobian matrix is

I(r) = (’1 "rl>

with eigenvalues equal to r =+ i. Since a(r) = r and B(r) = 1, it follows that
a(0) = 0, B(0) # 0,and da/dr = 1 # 0.The conditions of the Hopf Bifurcation
Theorem hold. In fact, we know that there exists a periodic solution for » = 0 in

every neighborhood of the origin. =

A computational method can be applied to determine whether a super-
critical or subcritical bifurcation occurs. This method is given in the Appendix to

this chapter.

cample 5.21 Consider the system

P

Et_ =rx +y,
d
—d% =—x+ry—y. (5.13)

There is an equilibrium at (0, 0). The Jacobian matrix is

‘ [ 1 > _<r 1)
() = —1 7 —3y? ©00) -1 r)

The eigenvalues of J(r) are r + i.The Hopf Bifurcation Theorem can be applied.
In addition, a test for a supercritical or a subcritical bifurcation can be applied
(Appendix) to show that the bifurcation at » = 0 is supercritical (Exercise 32) I
the parameter r is sufficiently small and positive, then the system of differential
equations has a stable periodic solution in a neighborhood of the origin. Figure
5.14 illustrates the dynamics of this system for » = —1/2 and r = 1/2. Note for
r = 1/2 that there are three equilibria. -

5.9 Delay Logistic Equation

The continuous logistic equation dx/dt = rx(1 — x/K) has a discrete approxi-
mation which is given by the following difference equation: x4 = x, +
rx,(1 — x,/K). This latter equation represents a delay in the growth, since the
change in the population size does not occur until one unit later,#to ¢ + 1.In the
continuous logistic equation, the change in growth is instantaneous. As we have
seen in Chapter 2, the equilibrium ¥ = K can be destabilized in the difference
equation model as r increases. The equilibrium ¥ = K in the continuous logistic

5.9 Delay Logistic Equation 205
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Figure 5.14 Dynamics of system (5.13) in the phase plane when r = —1/2 (left figure) and r = 1/2 (right

figure). The equilibrium (0, 0) is stable in the figure on the left, but in the figure on the right solutions near the
origin converge to a stable periodic solution.

equation is asymptotically stable if », K > 0 and x(0) > 0. However, in the dis-
crete case, the equilibrium X = K is only locally asymptotically stable
if0 < r < 2.For values of r satisfying r > 2, solutions become periodic (period-
doubling) and chaotic. Delays often change the stability of an equilibrium. We
will show that putting a delay of length 7 in the density-dependent term in the
continuous logistic equation changes the range of values » for which the equilib-
rium is stable.

Consider the logistic equation with a delay of T in the density-dependent

factor,
d);ft) - rx(f)(l =1 = T)). (5.14)

The parameters r, K, and T are positive. Parameter r is the intrinsic growth rate, K
is the carrying capacity, and T'is the delay parameter. Note that equation (5.14) still
has two constant solutions or equilibria: ¥ = 0 and ¥ = K.The density-dependent

_ factor, 1 — x(t — T)/K, which regulates the rate of growth, is not instantaneous
but depends on the population at an earlier time ¢ — T'. For example, the popula-
tion size which affects food resources may not be immediately felt by the pop-
ulation but only after a period of time 7. Equation (5.14) is sometimes referred to
as the Huichinson-Wright equation because it was first studied by the ecologist
Hutchinson (1948) and the mathematician Wright (1946) (see also Kot, 2001).
Note that to compute the solution to this discrete-delay equation for ¢ > 0 it is
necessary to know the value of x(¢) on the interval [~T', 0]. The method of steps
can be applied to this delay model. To find the solution on the interval [0, 77, it is
necessary to solve the following equation:

dx () ot = T)
a lx(t)(l —x ),

where ¢y(f) = x(¢) on the interval [T, 0]. We do not solve this differential
equation by the method of steps, but determine the region of stability which
depend on r and T, where the equilibrium X is locally asymptotically stable.
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