inear Ordinary Differential Equations: Theory and Examples

ligraph
plied for

2orem 5.13

ample 5.25

As an example, consider Figure 5.19. Node x3 cils grag an(il thii?;kfgd’;w;
ite e 1 hite node and each w
odes are white. There is at least one w . de
Iclonnected by a predation link to one other white node. However, condl‘;if)tn
(iii) is not satisfied because the gray nc?de.ls only .c_onnected to one white
node. Now we state the criteria for qualitative stability.

Let Q = sign (J) = (qi). If matrix J satisfies the five necessary c‘onditism fo;l‘

ualitative stability and if, in addition, each predation community in the?” zg.rar;l; é
zséociated with matrix Q fails at least one of the three conditions (i)—(iii) in ¢
color test, then matrix I is qualitatively stable.

The conditions for qualitative stability can be applied to Example 5.23.

isi : i ity in this example is given
.23 Revisited). The predation community 1o npl i
1(1112 ;?;lll;tlee;ﬁ Wee ;lave aL‘eady shown that the five criteria are salt1sﬁed fosl' the
i nd iti i d (ii) are satisfied in the color test. Since
matrix Q and that conditions (i) an ' ( st Sinee
iti iii) i isfi igned digraph fails the color test. ,
dition (iii) is not satisfied, the signe _
(tzl(l): Jnlderlglin)g Jacobian matrix J corresponding to the Iziredatopprey tsg;tir:;
1 i itati Thus, if the predator-prey sys
= sign (J), s qualitatively stable. Thus, r-prey sy
;V};fs?t%e eqfililgri)um with Jacobian matrix J, then the equilibrium is locallz
asymptotically stable.

5.11 Global Stability and Liapunov Functions

An important technique in stability theory for differen‘tiai equation; is llzﬁgvvzﬁ
i ] A function with particular properties .
as the direct method of Liapunov. al g
j jon i -ucted to prove stability or asymptotic '
as a Liapunov function is construc . . e stabiey
ilibrium i i ion. The construction of Liapunov fun
f an equilibrium in a given region. : one b
gften d(ilfﬁcult for particular systems, but for Lotka-Volterra systems, there ha
some success. . . .
beelix procedure referred to as the direct method of Ll(apu;‘lOV f3112tud31;1nfgt;lﬁ
ili ilibrium is di d in this section (Hale and Kogak, P
stability of a equilibrium is discusse (Hal : e
i thod has practical importance €
LaSalle and Lefschetz, 1961). This me 1as : e
i -acti librium can be obtained. (
imates for the basin of attraction of tt}e.eqm 1 can . :
zitlalr?tériaction is a subset U in R” containing the equilibrium with the propetty
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that solutions beginning in U approach the equilibrium.) The method can be
applied to autonomous and nonautonomous systems consisting of 1 differential

equations. The method is demonstrated for the following two-dimensional
autonomous system:

dx V dy
== — = g(x, y). 5.
gr ~J(xy) and o~ 8%y) (5:22)

The objective is to find a particular function, a Liapunov function, having
certain properties in relation to system (5.22). In the following discussion, it is
assumed that the equilibrium of interest is at the origin. If the equilibrium is not

at the origin, a change of variable translates the equilibrium to the origin,
u=x—Xandv=y— 3y,

Definition 5.10. Let U be an open subset of R? containing the origin,
A real-valued C1(U) function V, V : U — R, [(x,y) €U, V(x,y) ER)] is
said to be positive definite on the set U if the following two conditions hold:

(i) V(0,0) = 0.
(i) V(x,y) > Oforall (x, y) € U with (x, y) # (0,0).

The function V is said to be negative definite it —V is positive definite,

The function V(x, y) = x? + y?is positive definite on all of R?, while the func-
tion V(x, y) = x* + y* — y% is positive definite only near the x-axis. On the
other hand, the functions V(x, y) = x + y V(x, y) = (x + y)Yand V(x, y) =
Xx” are not positive definite in any open neighborhood of the origin. Figure 5.22

shows the set of points in the x-y plane at which V(x,y) = 0 for these latter
three examples. L]

If V'is a positive definite function on the set U, then V has a minimum at the
origin. This extreme point of V is isolated so that the surface z = V(x, y),near the
origin, has the general shape of a paraboloid with vertex at the origin. The inter-
sections of this graph with the horizontal plane z = k, that is, the level sefs of v,

Vk) = {(x,y) ER: V(x,y) = k},
are closed curves for small k£ > 0.The projection of these level sets onto the X-y

plane results in concentric ovals encircling the origin. See Figure 5.23.

V(x,y) =x + y? Viv,y) = (x + y)? V(x,y) = 22

Figure 5.22 The set in the x-y plane (bold curves) such that V(x, y) = 0.
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It is important to know how solutions of the two-dimensional autonomous
system cross the level sets of a positive definite function V. Let (x(¢), y(t)) be a

solution of the differential system. Then

dv(x(n),y(®) _ ovdx oV dy
dt axdr 9y dr

The preceding expression is the inner product of the vector (f, g) with the gra-

dient vector,

D (3, 1), 805,70 TV 3) = IF ), 8D ITV G, lcost,
dt ‘
where 6 is the angle between (f, g) and the gradient of V, and || (a, b)| means the
Euclidean norm, ||(a, b)| = Va* + b The gradient vector is /the ogtw}?rd
' the | . Thus, if dV (x, y)/dt < 0, then
al vector to the level curve of V at (x, y) , /(x, y)/d
E)engngle between (f, g) and VV at (x,y) is obtuse, whlch.lmphes thgt .the
orbit through (x, y) is crossing the level curve from the outside to the 1ns1'd<‘3.
Similarly, if dV(’x y)/dt = 0, then the orbit is tangent to the lefve_l curve; if
dV(x y)’/d,t > Q, ;:he orbit is crossing the level curve from the inside to the
ide. See Figure 5.24. o ‘ , 3
Outs’lﬂfe d?afini?ion of a Liapunov function is given next. Then Liapunov’s stablht‘}j'
theorem is stated and verified. Although the definitions and theorem are state
for the equilibrium at the origin, remember that the results can be applied to any

equilibrium.
- dvixy) _ AVxy) >0
M <0 dt =0 dr

dt

Theorem 5.14

————e
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Definition 5.11. A positive definite function V in an open neighborhood
of the origin is said to be a Liapunov function for the autonomous differ-
ential system, dx/dt = f(x, y),dy/dt = g(x, y), it dV(x, y)/dt = 0 for all
(x,») EU - {(0,0)}. If dV(x, y)/dt < 0 for all (x, ¥) €U — {(0,0)}, the
function Vis called a strict Liapunov function.

: ]

(Liapunov’s Stability Theorem). Let (0,0) be an equilibrium of the autonomous
system (5.22) and let V be a positive definite C? function in a neighborhood U of
the origin.
(i) Ifav(x,y)/dt = 0 for (x,y) EU — {(0,0)}, then (0, 0) is stable.
(i) IfdV(x,y)/dt < 0 for (x, y) € U - {(0, 0)}, then (0,0) is asymptotically
stable. , ’
(i) IfdV(x,y)/dt > 0 for (x,y) €U ~ {(0,0)}, then (0, 0) is unstable.
In Case (i) the function Vis a Liapzmov Junction and in Case (11) Vis a strict

Liapunov function.

Proof Cases (i) and (i) are verified. ‘

Case (i) Let € > 0 be sufficiently small so that the neighborhood of the
origin consisting of the points || (x, Yl = € is contained in U (Il denotes
the Euclidean norm). Let 7 be the minimum value. of V on the boundary of the
neighborhood, || (x, y)| = €. Since Vis positive definite and the set || (x, y)|| = €
is closed and bounded, it follows that m > 0. Now, choose a & > 0 with
0 <6 =< e such that V(x, y) <m for |(x,y)| = 6. Such a & always exists
because V is continuous with V(0,0) = 0. If ||(xq, y)l| = 8, then the solution
with initial conditions (xo, y,) satisfies [(x, y)| = € for ¢ = 0 since dvVidt < 0
implies that V(x(f), y(r)) < V(xo, Yo) < mfort = 0.The origin is stable,

Case (ii) The function V(x(), y(t)) decreases along solutions that lie in U. Thus,
as 1—> 00, V(x(t), y(r)) approaches a limit. Suppose ¥V — [ > 0. Then it follows
from the uniform continuity of dV (x(r), y(t))/dt (solutions are bounded and fand
gare C') that dV (x(t), y(t))/dt — 0 in an annular region excluding the origin. This
is impossible, since —dV/dt is positive definite, dV/dt = 0 only at the origin, and
(x(®), y(1)) does not tend to the origin when V — [, It follows that V(x(t), y(1))
approaches 0, which implies (x(¢), ¥(1)) approaches (0, 0). The origin is asymptoti-
cally stable. 0

The difficulty in verifying stability using Liapunov’s direct method is finding

~ asuitable Liapunov function V.,

Consider the logistic differential equation,

ﬁ)ﬁh,.,<1_1),
da K )

where r, K > 0. There are two equilibria ¥ = 0, K. We know from previous
analyses that K is globally asymptotically stable for positive initial conditions,
LetU = (0, 00) = R, the positive x axis. A strict Liapunov function is given by

V(x) = (x — K)%

Since
dv (x) dx _ x) _ . (x-ky
P 2(x - K) o 2(x — K)rx (1‘ %)= ZIxT.
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i i i i itive except at x = K, V(K) = 0.
function V is a C}(U) function that is posi t K)
ESGO u—ndV/a't is positive in U except at x = K, dV(I.f.)/ a"f = 0.Thus, accor dmt%) g)
part ,(ii) of Liapunov’s Stability Theorem, the equilibrium x = K is asymp -
cally stable for all initial values in U.

Consider the Lotka-Volterra predator-prey system,

dx
X la —
priad! y)
Q=y(—b+x), a,b>0
dt

The positive equilibrium is (¥,y) = (b3 a). The 'equilibrium ishst?bl‘e but not
asymptotically stable. A Liapunov function for this system has the form

o~ (x o om(2)) + o= a-am(2).

First note that V(x,y) is continuous and differentiable f‘or Z’, y ;é>a0NaOnt;1
V (b, a) = 0.Next, we show that V(x, y) > 0forx,y >0 _arid j 9; , );/ a e
that the partial derivatives are V= 1 - b/x, V, = N a i)/’ ;16 Y a{
V,, = a/y* and V,, = 0. Thus, a critical point gf.V occurs when V, = | }ihe
v”—Y—— bandy = a. This critical point is a local minimum becau.se. we ca‘r; e;)p;()l )y: ¢
:following test: V.V, — Vf.y > 0 and V,, > 0. At the IOCE.ll r.mmmlurtx)l 1 En inimum
and (b, a) is the only local minimum for v,y > 0 soitis a g oba i
for x, y > 0.Thus, V(x, y) > 0forx, y > 0 and x # b,y # a (positive de

2 culate the derivative of V along solutions:
R%). Next, we cal

av dx dy

= (1 —%)x(afy) + <1 ~%)y(—b+x)
— b))+ D= b)=0.

Thus, according to part (i) of Liapunov’s stability theorem,.the equlilibtril;iz
(b, a), is stable in the region RA = {(¥, y)lx > 0,y > 0}; that is, globally sta o
in R%.

Goh (1977) has shown that in many Lotka-Volterra systems Wiﬂ; a ?plqliz
_ - U . n
positive equilibrium given by (¥y,. .., %), tbele fins}tls a L1a.puxslogxalrlrxllcléoﬁe
" which has a form similar to the one given 1n the previou ple.

Liapunov function has the form

i _ _ L
V(g X)) = 2 Ci{xf — %~ Xl ()"c ﬂ

i=1 i

: Is
where the constants ; are positive and are chosen dependent on the par amete
of the particular system.
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5.12 Persistence and Extinction Theory

We end this chapter by discussing the concept of persistence and extinction, an
important concept for biological systems. Basically, persistence of a system
means no state of the system approaches zero, that is, there can be no extinction
of any of the populations that make up the biological system.

Definition 5.12. Given a system of differential equations, dX/dt = F(X, ),
X(0) = X,, where X(t) = (x1(8), x2(1), ..., x,(1))T, the system is said to be
persistent if for any positive initial conditions, Xo > 0, the solution X(r),
satisfies

liminf x;(r) > 0
{— 00

fori=1,2,...,n

There are other definitions of persistence that either weaken or strengthen
the previous definition. For example, the system is said to be weakly persistent if

liItn Sup x; >0

fori =1,2,..., n;uniformly persistent if there exists § > 0 such that

lim inf x;(t) > &
1> 00

fori =1,2, ..., n; permanent if there exists a time T > 0 and a compact set K
in the interior of the positive cone, RY = {(xy,x,...,%) ER"|x; > 0, =
1,2,...,n} such that X(r) E K for ¢t > T. (Solutions enter the compact set K
and remain in K.) Persistence or extinction of a subset of the set {x;}/.; can
also be defined (e.g., some populations survive and some do not).

Weak persistence and persistence are generally not very good indications of
population survival because solutions may be initial condition dependent. For
example, in the case of persistence, there could be a set of initial conditions
{XE2, such that the corresponding solution X k() = (xX1)) satisfies

. . k
> xh >~
€ > liminfx7(r) > 0,

where €, — 0 as k — oo for some i. Even uniform persistence and permanence
may not be very good measures of survival since solutions may approach very
close to the extinction boundaries if 8 is small or the compact set K is close to
the extinction boundaries. Another more reasonable type of persistence crite-
rion is referred to as practical persistence. Practical persistence requires that
the bounds on the solutions be specified a priori (dependent on population
data). Given L; > 0 and M; > 0, solutions x(t) exhibit practical persistence if
0 < L; < liminf, oo x;(f) = lim SUD; oo Xi(1) = M;, i=1,2,...,n (Cantrell
and Cosner, 1996; Cao and Gard, 1997).

In general, practical persistence implies permanence, Persistence implies
weak persistence. If solutions are uniformly bounded, lim sup,_c0 x;(f) < M,
i =1,...,n, then uniform persistence and permanence are equivalent. If a sys-
tem has a globally stable equilibrium in R’} then it is permanent. The converse
of this statement is not true, If a system is permanent, it may not have a globally
stable equilibrium. Further discussion and examples of systems that are perma-

nent or persistent may be found in Hofbauer and Sigmund (1988, 1998) or
Freedman and Moson (1990).
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