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Table 3.4 Breeding population estimates (in thousands) for total
ducks in Minnesota from 1968 through 2004 (United
States Fish and Wildlife Service, 2004).
Year Size Year Size Year Size
1968 368.5 1981 515.2 1994 13201
1969 3453 1982 558.4 1995 912.2 ,
1970 343.8 1983 3942 1996 1062.4
L]
LINEAR DIFFERENTIAL EQUATIONS:
1972 237.6 1985 580.3 1998 739.6 T E
o s o6 s 009 7165 HEORY AND E'XAMPLES
1974 332.8 1987 614.9 2000 815.3
1975 5033 1988 7528 2001 761.3 4.1 Introduction |
hen changes such as births and deaths occur continuously, then generations
6 2002 12241 w ges suc : . _ ously, then g _
1976 7594 1989 10t overlap and a continuous-time model (differential equations) is more appropri-
1977 536.6 1990 886.8 2003 748.9 ate tl?an a discrete:time model (difference equgtions).. Ip diffe_reqtigl eguations,
the time interval is continuous and can be either finite or infinite in length
1978 511.3 1991 868.2 2004 1099.3 [t0, T) for fy < T < 00 or [fy, o), respectively, as opposed to difference equa-
tions, where time is a set of discrete values, t = 0, 1, 2.,
1979 901.4 1992 1127.3 The most well-known population growth model and one of the simplest is
due to Malthus (1798). The model for Malthusian growth is a differential equa-
1980 740.7 1993 875.9 tion. The Malthusian model assumes the rate of growth is proportional to the .
size of the population. Hence, if x(¢) is the population size, then o
dx |
o x(tq) = Xy, 4.1 [
where r > 0 is referred to as the per capita growth rate or the intrinsic growth |

rate. The solution to this differential equation is found by separating
variables,

: \(f)dy t
— =rdt, / - = / rdr, In[x(t)/xq] = r(t — ty).
X Xp y to

Finally,
x(t) = xoexp(r(t — tp))

or x(f) = xge” when #, = 0. The population grows exponentially over time.
Note also that the differential equation (4.1) is linear in x. The exponential
growth exhibited by the solution of the differential equation (4.1) is comparable
to the geometric growth exhibited by the solution to the linear difference equa-
tion, x,1; = ax,, where x, = xoa’. The constanta = ¢". If a > 1 (or r > 0), then
there is exponential growth.

In this chapter, basic notation and definitions are given for first- and higher-
order differential equations, as well as first-order systems. We concentrate on
linear differential equations. Criteria are stated for solutions to approach the
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142 Chapter 4 Linear Differential Equations: Theory and Examples

zero solution. These criteria are known as the Routh-Hurwitz criteria and are
the analogue of the Jury conditions for difference equations. Techniques for
analyzing a system of two first-order equations (in the plane) and the behavior
exhibited by these types of systems are discussed. A biological example of a
linear differertial system, known as a phalmacokmetlcs model, is presented and
analyzed. In the pharmacokinetics model, a drug is administered to an individ-
ual and the concentration of the drug in different compartments of the body is
followed over time. The final section of this chapter gives a brief introduction to
linear delay differential equations. In a delay model, the rate of change of state

dx(r)/dt depends on the state at a prior time, ¢ — 7, that is, it depends on
x(t — 7). Thus, the dynamics of x(¢) are delayed by 7 time units.

4.2 Basic Definitions and Notation

Differential equations are classified according to their order, whether they are
linear or nonlinear, and whether they are autonomous or nonautonomous.
These classifications schemes are similar to the ones defined for difference

equations:

Definition 4.1. A differential equation of order n is an equation of the form

F(x, dx/dt, d*x/di,..., d"x/di", 1) = 0.

If this differential equation does not depend explicitly on ¢, then it is said to
be autonomous; otherwise it is nonautonomous.

If an nth-order differential equation can expressed as follows:

d"y n
at m@dul O e = g0, (4

then it is referred to as linear.

Definition 4.2. The differential equation (4.2) is said to be linear if the
coefficients a;,i = 1,..., n,and g are either constant or functions of ¢ but
not functions of x or any of its derivatives. Otherwise, the differential
equation (4.2) is said to be nonlinear. The linear differential equation
(4.2) is said to be homogeneous if g(t) =0 and nonhomogeneous
otherwise.

It will always be assumed that the functions £, g, and g; are real valued.
Analogous definitions can be stated for systems. A first-order system of differ-
ential equations satisfies

dX
o = F(X(),1), 4.3)

where the vector X(1) = (x1(t), xo(t), .5 x (N, F = (fi, for- -+ f)7,and
fl = fi(xl(t)» x2(t)» e xn(t)’ t)'

Theorem 4.1
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Definition 4.3. The system of differential equations (4.3) is said to be
autonomous if the right-hand side of (4.3) does not depend explicitly on #;
otherwise it is said to be nonautonomous.

Definition 4.4. The first-order system (4.3) is said to be linear if it can be
expressed as

dv n
FARCURR O} (44)
i =1,..., n If not, then it is nonlinear. If the system is linear and g;(t) = 0,

then the system is said to be homogeneous; otherwise it is nonhomogeneous.

Definition 4.5. A solution of a differential equation or system is a scalar
function x(¢) or vector function X(r), respectively, which when substituted
into the differential equation or system makes it an identity.

Suppose, in addition to the nth-order differential equation, the solution sat-
isfies # initial conditions. That is,

dx) _ 47 x(t)
At 1 dtn—l

Then the solution satisfying the differential equation and the initial conditions
is known as the solution to an initial value problem (IVP). For a first-order
system, an initial value problem has the form

dx

I F(X(@),1), t>1t, X = X, (4.6)
The notation dx (#p)/dt means differentiation of x, then evaluation at £,

It is important to know conditions on the coefficients so that solutions to

initial value problems exist and are unique. In the case of linear differential
equations, the existence and uniqueness conditions are straightforward.

x(to) = Xo, = X1 (4.5)

(i) Let
d'x Y L 1
) e a0+ al)x =50, @)
dx (to) d""x(ty)
x(fo) = xo, dt =X, e —d-t;—_r‘ = Xp-1- (4.8)

If the coefficients a; and g, i = 0,1,...,n — 1 are continuous on some
interval containing ty, o < 1y < B, then there exists a unique solution to
the initial value problem (4.7) and (4.8) on this interval.

(ii) Let

d\, 1
= Eau(t)x] + g(1), xito) = xjo. (4.9)
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for i =1,2,...,n If the coefficients a;; and g, i,j = 1,2,...,n are
continuous on some interval a <ty < B, then there exists a unique
solution to the initial value problem (4.9) on this interval. 0

Example 4.1 Consider the initial value problem

d’x 3dx | x _ 0

ar  tdt 27
where x(1) = 0 and dx (1)/dt = 1. This differential equation is second order,
linear, nonautonomous, and homogeneous. The coefficients are continuous on
(0, o). Hence, applying Theorem 4.1, there exists a unique solution to this ini-
tial value problem. Two linearly independent solutions (see Section 4.4) to the
differential equation are x,(f) = ¢ and x,(¢) = t1n|t|. The general solution
to the differential equation is x(f) = cyx1(¢) + ¢x,(t). Applying the initial con-
ditions leads to the unique solution to the initial value problem: x(r) = ¢ Int|.
The differential equation in this example is a special type of equation known as
a Cauchy-Euler differential equation. (See Exercise 4.) -

For additional information on the theory of differential equation, consult a
textbook on ordinary differential equations listed in the references (Brauer and
Nohel, 1969; Cushing, 2004; Sdnchez, 1968; Waltman, 1986).

4.3 First-Order Linear Differential Equations

In this section, we review how to solve first-order linear differential equations.
This method involves an integrating factor.

An initia] value problem for a first-order linear differential equation has
the following form:

Ly iy = g0, x(t0) = %o

't

Assume that a; and g are continuous for all # = #,. The solution to this differen-
tial equation can be found with the use of an integrating factor. Let
I(t) = exp(j;z ay(t) dr). The function I(f) is known as an integrating factor.
There are an infinite number of integrating factors, since any constant multiple
of I(¢) is also an integrating factor. Multiplying both sides of the differential
equation by the integrating factor I(f) yields

107+ w1050 = 10s0)

The left-hand side is an exact derivative,

dlx()I(1)]
——= = J(t)g(t).
S = 1(08(0)
Integrating both sides and solving for x gives the unique solution to the initial
value problem,

Example 4.2
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t t T
x(t) = el dr) {xo + / elhy @) du)g dTJ. (4.10)

fo
Note that if r = £, then the solution satisfies the initial condition x(ty) = xo.
If a; = constant and #, = 0, then the solution simplifies to

t
x(t) = e {xo + / eg(1) (l'r}.
0
In addition, if the equation is homogeneous, g = 0, then the solution is given by
x(t) = xge .

If a; < 0, then the preceding solution represents Malthusian or exponential
growth. If @, > 0, then lim,0 x(¢) = 0.

Let
dx x 3
— ===t x(1)=2.
a e W
An integrating factor for this differential equation is I(f) = ¢™' = ¢! Then
d(xt™
Y _
dt

Integrating both sides and solving for x yields the general solution

e3t
x(t) = ct + t?. (4.11)

Applying the initial condition gives the unique solution to the initial value
problem,

e3> e3t
() =2 - < Jt + 1
x(t) ( 3 t 3 =

The solution (4.11) is the sum of two terms. The first term is the general
solution to the homogeneous differential equation; that is, x;(t) = ct is the
general solution to dx/dt = x/t. The second term is a particular solution to the
nonhomogeneous differential equation, that is, x,(¢) = te’/3 is a solution to
dx/dt — x/t = te*. The sum of these two solutions, x(f) = x;(r) + x,(t), forms
the general solution to the nonhomogeneous differential equation. These ideas
form the basis of the solution method for higher-order linear differential
equations.

4.4 Higher-Order Linear Differential Equations

The general solution to an nth-order, linear nonhomogeneous differential equa-
tion is the sum of two solutions, a general solution to the homogeneous differential
equation and a particular solution to the nonhomogeneous differential equation,

x(t) = x,(t) + x,(t).
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The general solution to an nth-order, homogeneous differential equation is the
sum of » linearly independent solutions, ¢4(t), ..., ¢,(t), that is,

xp(t) = écr‘qf)i(f)-

The linearly independent set {¢;(¢)}i=; is called a fundamental set of solutions
to (4.2). [Recall that solutions ¢y(?),...,d,(t) are linearly independent if
Siiiaipi(t) =0 implies o; =0, i=1,2,...,n] Therefore, the general
solution to the nonhomogeneous differential equation (4.2) is x(f) =
Sit1cii(t) + x,(1). Various methods can be used to find the particular solution
(e.g., variation of constants, method of undetermined coefficients).

4.4.1 Constant Coefficients

The special case of a linear homogeneous differential equation, where the coef-
ficients are constant, is discussed in more detail. For this special case, there is a
well-known method for solving homogeneous differential equations.

Suppose the coefficients of a linear homogeneous differential equation are
constant. Then the differential equation (4.2) has the following form:

d"x dn—lx
d" +a di"

dx
+ o+ a,,_rd%— + a,x = 0. (4.12)

There exist n linearly independent solutions to this differential equation that
exist for all time (—00, 00).To find these solutions, assume that x(f) = e™. Note
that A can be real or complex. Substituting x(f) = e into the homogeneous
differential equation (4.12) yields

eMN + a7l a, A+ a,) =0,

The resulting polynomial

PQA) = A"+ g A" L+ g, A +oa,

is known as the characteristic polynomial and the equation P(A) = 0 is known
as the characteristic equation of the differential equation (4.12). The roots of
P(A) are the eigenvalues. The solution form taken by ¢! depends on whether

the eigenvalues are real or complex. .
In the case of a second-order linear differential equation, n = 2, the forms

of the solution are summarized.

1. The eigenvalues A;, i = 1,2 are real and distinct. The general solution is

Ayt

x() = cieM + ce™

2. The eigenvalues A; = A, are real and equal. The general solution is

x(t) = cieM + cptel,

3. The eigenvalues Aj, = u + iv are complex conjugates. The general
solution is

x(t) = e"[cicos(vt) + cysin(vt)].

Theorem 4.2

Example 4.3
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In the case of complex conjugates, u + iv, the identity e = cos('ut) + zsm(vt)
is used to express the solutions in terms of sines and cosines.

Higher-order, linear differential equations with constant coefficients may
have a characteristic polynomial with an eigenvalue A repeated 7 times (a root
of multiplicity r). There must be r linearly independent solutions associated with
that root. It can be shown that additional solutions are found by multiplying by
powers of £. When the eigenvalue is real, then there are r linearly independent
solutions given by

eMoteM L e,

When the eigenvalue is complex, A = u + iv, and is a root of multiplicity r, the
complex conjugate u — iv is also a root of multiplicity r. There must be 27 linearly
independent solutions. Additional solutions independent from e’ cos(vt) and

e sin(vt) are found by multiplying by powers of #:
te' cos(vt), te"sin(vr), -+, """ cos(vr), 1 'e"sin(vt).

The Wronskian can be used to verify that the 7 solutions of an nth-order
linear differential equation are independent.

Definition 4.6. If xi(t),...,x,,(t) are n functions with n — 1 continuous
derivatives, then the determinant

Bl o x()
W(xg,...,x,)() = det xll:(t) X;’:(t)
S ORI (O
is called the Wronskian of xy, ..., x,,. The primes (') denote differentiation

with respect to t.

The folIowing theorem states that if the Wronskian is nonzero for some  on
the interval of existence, then the n solutions are linearly independent.

Suppose ¢y(t), ..., ,(t) are n solutions of the nth-order linear differential equa-
tion on the interval I,

dnx an 1
dt? 1(t)d n—1 et oa,- l(f) + a,,(t)x

Then the n &olurians are linearly independent iff the Wronskian
W(d,..., d)(t) # O for somet € 1. O

A proof of this result can be found in many ordinary differential equation texts.

Consider the differential equation x”(f) — 4x"(t) = 0, where x" = d%x/dt?,
and so on. The characteristic equation is given by

P-4 =0

|
|
|
5
2
|
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Example 4.4

Hence, the roots or eigenvalues are 0, 0, and 4 and the three linearly independ-
ent solutions are 1,¢, and e¥, respectively. The general solution is

x(t) = ¢, + ot + cze™
To verify that these three solutions are linearly independent, we compute the

Wronskian,

e4!

4e¥ | = 16e* # 0.

1
W(l,t,e") = det| 0
0 16e" =

t
1
0

Suppose the characteristic polynomial for a seventh-order, linear homogeneous
differential equation is

PO =M —-31+420M~-2°=0.

Then the roots are Ay 34 = 3/2 + i\/7/2 and Asg7 = 2.The general solution of
the differential equation is

x(t) = e¥[c; cos(VT/2) + casin(VTt/2) + cst cos(VTt/2) + cut sin(\V/71/2)]

-+ 62’[C5 + Cét + C7f2].

The coefficients ¢; can be uniquely determined from the initial conditions,  m

Consider the fourth-order linear differential equation,
%+6%+102—3+6%+9,¥=0.
The characteristic polynomial satisfies
M+6A°+ 102+ 60+9= A+ 1D\ +3?2=0
The eigenvalues are +i, —3, —3. Hence, the general solution satisfies
x(t) = crcos(t) + cysin(t) + cze™ + cute™.

If the initial conditions are x(0) =1, dx(0)/dt = 2, d°x (0)/dt* = 1, and
d*x(0)/dt® = 0, then the four constants cy, ¢, ¢3, and ¢, can be found by solving
the following linear system:

aqtea=1,
¢ — 3c3 + ¢y = 2,
—c1 + 9¢3 — 6c4 = 1,
~cy =~ 27¢c3 + 27¢y = 0.
The constants are¢; = 8/25, ¢, = 81/25, ¢3 = 17/25, and ¢, = 4/5. m

It is important to note that an nth-order, linear homogeneous differen-
tial equation always has a solution equal to zero, x(¢) = 0. If all of the initial
conditions are zero, then this is the unique solution to the initial value
problem. In the case that all of the coefficients of the homogeneous, linear
differential equation are constant, then we can determine whether the zero

Theorem 4.3
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solution is “stable,” that is, whether a solution to the initial value problem
will tend to zero. Stability of the zero solution depends on the eigenvalues,
the roots A; of the characteristic equation P(A) = 0. Because solutions have
the form e, it follows that solutions to initial value problems approach zero
if the A; are negative real numbers or are complex numbers having negative
real part.

The distinction in behavior between linear difference and linear differential
equations lies in the form of their solution. In difference equations, the solutions
are linear combinations of A} whereas in differential equations they are linear
combinations of e, Solutions to a linear homogeneous difference equation with
constant coefficients tend to zero if the eigenvalues A; have magnitude less than
one, [A;] < 1, whereas solutions to the linear homogeneous differential equation
with constant coefficients tend to zero if the eigenvalues A; are negative or have
negative real part, A; < 0 or u + iv, u < 0. The following theorem shows that
solutions approach zero at an exponential rate if the eigenvalues lie in the left
half of the complex plane.

If all of the roots of the characteristic polynomial P(A) are negative or have neg-
ative real part, then given any solution x(r) of the homogeneous differential equa-
tion (4.2), there exist positive constants M and b such that

lx(t)] = Me™ for t >0
and

Jim [x()] = 0.

Proof Let the roots of P(A) be denoted as A, = i + ivy, where u <0,
k=1,...,n There exists a positive constant b such that u, < —b or
up + b <Oforallk =1,..., n.Then

le)\kfebfl — e(llk“'b)f,

which approaches zero as ¢ — 00, Also, [t eMe| = |k e(utD)| where 7, is a
nonnegative integer. This latter expression approaches zero as ¢ —> 0o, Thus,
there exists a constant My > 0 such that |1 eMe?| = M, or |tk eM!| < M e™
for ¢ > 0. Any solution x(r) is the the sum of terms of the form dr(t) = treM,

n

x(t) = D cudylt),

k=1

where ¢,(t) are the fundamental set of solutions and ¢, are constants,
k=1,...,n.1f My = max|c,| and M = M[S}-1M,], then for ¢ = 0,

n i
lx(n] = 2 ladigu0)] = Mo 2, 11|
n
= MO[EM,(} e = Me™,
k=1
It follows thatlim,—,co|x(t)| = 0. 0

Theorem 4.3 shows that the rate of convergence to zero is exponential and
is determined by the root with the largest negative real part. '
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positive, which implies that if the characteristic equation is expanded and
simplified,

A al)\n~1 + a2All—2 T a, = 0,

then all of the coefficients must satisfya; > 0,i = 1,...,n . «

As a consequence of this corollary, it follows that if any coefficient is zero in
the characteristic polynomial, then at least one eigenvalue is either zero, i-s
purely imaginary, or lies in the right half of the complex plane. For example, if
a, = 0, then there is a zero eigenvalue.

Consider the differential equation,

Example 4.6

dx dx
— + ﬂzdt

+ asx = 0, das, as > 0.
ar

Because a; = 0, it follows from the corollary that at least one eigenvalue is zero,
is purely imaginary, or lies in the right half of the complex plane. For example,
when a; = 2 and a5 = 1, the roots of the characteristic polynomial

MN+ax+1=0

are approximately —0.453 and 0.227 + 1.468i. There are two complex roots
with positive real part. -

Example 4.7  Consider the linear differential equation

3 d’>x  dx
d’x +

dr * dfr  dt

+ ax = 0.

The characteristic polynomial is

PA) =2 +42% + ) +a

According to the Routh-Hurwitz criteria for the roots to have negative real
part and the solution to approach zero, the coefficients must satisfy, a, > 0,
as > 0, ayay > a3. But ay =4, ay =1, and a3 = a so that ¢ must satisfy
4>a>0, [

4.6 Converting Higher-Order Equations
to First-Order Systems

A linear differential equation of the form (4.2),

d"x d 1y dx o
0 + ay e +o 4 Gumr e + a,x = g(), (4.13)

Example 4.8
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can be expressed as an equivalent first-order system. Define n new variables,
X1,..., X, as follows:

'X:I =X,
dx
Xy = —,
2
dnhlx
Xn = dtn—l'
Then
dx dx
TS T = X,
d dt ?
de de
—_— = — = N
e qrr  ?
dx, d'x
dt = dr" = TNy T dgXy—g — o — Ay—1Xy — 4% + g(f),

where the last equation follows from the differential equation (4.13). Written in
matrix form, the first-order linear system can be expressed as

dX

— = AX + G(0),
0 Q)
where X (1) = (x1(1), x,(t), ..., x,(¢))" and
0 1 0o - 0
0 0 1 0
A= H : P :
0 0 o . 1
—ay T4y 0,0t —a4g

and G(1) = (0,0,0,..., g(t))". Matrix A is the called the companion matrix
associated with the differential equation (4.13).

The following second-order equation can be converted to an equivalent first-
order system of the form dX/dr = AX + G(1):

d*x dx .
EZ-Z* + 4‘[; + 3x = sin(s).
The matrices A and G satisfy
0 1 0
A= (5 1) ma 6o - () ]

A first-order system can sometimes be converted to a higher-order equation.
This conversion cannot be done for all systems because first-order systems are
more general than higher-order equations. We shall see where some of the
problems lie in the next example. (A first-order differential system is not equiva-
lent to a higher-order differential equation.)

A3
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Consider the case of a first-order system with constant coefficients,

X
= apx + dpy,

dr
dy
PR + any.

In matrix notation,d X /dt = AX,where A = (a;) and X = (x, y)T. Differenti-
ating dy/dt with respect to ¢,

d’y dx dy

— =a,y— + a .
ar Hdr " ar

If ay, = 0, then our technique fails and we try differentiating dx/dt with respect
to ¢ (which then requires aj, # 0). Suppose a; # 0. Then substituting
dx/dt = ayx + apy and ayx = dy/dt — ayy leads to a second-order differ-

ential equation in y,

dzy
2

dy
o (an + ﬂzz)“d—t + (apay — apay)y = 0.

Note that the coefficient of dy/dt is —Tr(A) and the coefficient of y is det(A).
The characteristic equation for the differential equation in y is

A - (a1 + ap)A + apay — apdy = 22— Tr(A)A + det(A4) = 0.

Since the coefficients a;; are constants, the solution to y can be obtained by find-
ing the roots of the characteristic equation. Once y is known, the solution to x
can be obtained from one of the original differential equations.

4.7 First-Order Linear Systems

The nonhomogeneous linear system has the form

dx
o ANOX() + G(1).

The elements of the coefficient matrix A(¢) and the elements of the vector G(¢)
are continuous on some interval containing the initial point #; so that there
exists a unique solution to an IVP (Theorem 4.1). It follows from the theory for
linear differential equations that the general solution to the nonhomogeneous
system is the sum of the general solution to the homogeneous system and a par-
ticular solution to the nonhomogeneous system,

X(t) = Xu(t) + X,(0).

The general solution to the homogeneous system consists of # linearly inde-
pendent solutions, ¢;(¢), i = 1,...,n. A fundamental matrix of solutions is
O(t) = (¢1(t), ..., d,(1)), where the columns of ®(r) are the vectors ¢y(¢).
Because the solutions are linearly independent, det®(r) # 0 for all ¢ on the
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interval of existence. (Compare with the Wronskian.) Hence, the inverse ®7(f)
exists for all r on the interval of existence. The unique solution to the IVP for the
linear nonhomogeneous system can be expressed in the form

X(1) = DD (1) Xo + D7) / ,<D“1(S)G(s) ds,

where X (fy) = X,. For a proof of this result see Brauer and Nohel (1969) or
Waltman (1986). Compare the solution X(¢) to the unique solution of the first
order equation x(¢) given in (4.10).

4.7.1 Constant Coefficients

There are many methods that can be applied to find solutions to first-order linear,
homogeneous systems with constant coefficients. This type of system will be espe-
cially important in the study of nonlinear autonomous systems of differential
equations in the next chapter. Let

dX
— = AX 1
o= Ax, (4.14)

where A = (a;j) is a constant matrix with real elements a;;. First note that the
zero solution, X = 0, is a fixed point of the differential equation. The zero solu-
tion is also referred to as an equilibrium point, a steady state, or a critical point.

In the simplest case of (4.14) when the system reduces to a scalar equation,
A = (a)isal X 1 matrix, then the differential equation is

% = ax. | (4.15)
The general solution to (4.15) is x(¢t) = ce™. If the initial condition x(0) = xo,
then x(f) = xge” (as already shown in the Introduction). If a < 0, then
lim,_co ¥(t) = 0, but if @ > 0, then the limit is infinite (£o0 depending on the
sign of xg).

When the dimension of A is greater than one, the general solution of
(4.14) can be expressed in terms of the exponential of a matrix A, The general
solution is

X(t) = eYC,

where e is an n X n matrix and C is an n X 1 vector. Matrix ®(f) = et is
known as the fundamental matrix with the property that ®(0) = I,then X n
identity matrix (the columns of @ are n linearly independent solutions of the
differential equation). The matrix exponential e? is defined as follows:

P P oo
At 20 3. 4= k
e =1+ A+ Aop+ At > A

*
=k

!’

Where the series converges for all ¢, There are many methods for computing
the matrix exponential (see, e.g., Leonard, 1996; Moler and Van Loan, 1978, 2003;
Waltman, 1986). Some of these methods are discussed in the Appendix for
Chapter 4. If the elements of A are known real values, then one may use
computer algebra systems or numerical methods to compute e, In the next
examples, the matrix exponential is computed directly from the definition of e,

¥
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Example 4.9  Suppose A is diagonal,

ax
k
aiy 0
Then A = (O 0’52) and
i (ant)* 0
a_ | K _ (et 0 )
e = (apt) 0 em)

0 % k!
The solution to the system d X /dt = AX is

1 0 Xge™
X(t) = e Xy = xge™! <O> + yoe <1) = (y:))e"”')’

where Xy = (%, 30)7. =

A=(2 Dm Ak—<0 2H)and
Example 4.10  Suppose A = o o) thenAb={, ok

Thus, the solution to the linear system d X/dt = AX is

1
Yo + 5% [e* = 1]

X(f) = eAtXO =

yoe2t * =

The Maple commands for computing the exponential of a matrix are available
in the linear algebra package. They are given below for the matrix in Example 4.10.

> with (Tinalg):
> A:=matrix(2,2,[0,1,0,2]);

0 1
a=[S 3]
> eA:=exponential(A,t);
1o 1
eA:= 1 Ze 2
O eZt

A straightforward method to compute the general solution to
dX/dt = AX,instead of computing e?, is the same method that was used for
the higher-order, constant coefficient differential equations. We need to find n
linearly independent solutions, ¢(¢), ..., ¢,(r), which make up the fundamental
matrix, ®(r). Let X = e V. Then it follows that AV = AV, where A is an
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eigenvalue of A and V is an eigenvector corresponding to A. We summarize
the form taken by the general solution in the case of a2 X 2 matrix A, The eigen-
values are the solutions to the characteristic polynomial, det(A — AI) = 0.
If A = (a;j), then the characteristic polynomial has the following form:

A = (a1 + ap)X + ayay — apay,
where the coefficients of the polynomial are the negative of the trace and the
determinant of the matrix A,
A = Tr(A)A + det(A) = 0.
The form taken by the solutions is summarized in the following three cases.
1. Eigenvalues A;, i = 1,2 of A are real and there exist two linearly inde-

pendent eigenvectors V;,i = 1, 2 corresponding to A;,i = 1,2.The general
solution to dX/dt = AX has the form

X (1) = c(VieM + c,VaeM,

2. Eigenvalues A;,i = 1,2 of A are real and equal (A; = Ay) and there exists

only one linearly independent eigenvector V;. The general solution to
dX/dt = AX has the form

X(t) = cVieM' + o[ ViteM' + pet),
where the equation (A4 — M I)P =V can be solved for P (vector P is
known as a generalized eigenvector).

3. Eigenvalues A;, i = 1,2 of A are complex conjugate pairs, A;, = a + ib,
b # 0.The general solution to dX/dt = AX has the form

X() = (2) e sin(bt) " (Z‘j) e cos(bt).

Actually, the solution involves only two independent arbitrary constants,
¢; and ¢,. The four constants o, i = 1,2, 3, 4, depend on the associated
eigenvalues and eigenvectors and can be found by substitution into the
differential equation. ‘

For more information about solutions to first-order linear systems, please con-
sult a textbook on ordinary differential equations.

4.8 Phase Plane Analysis

The solution behavior for two-dimensional linear systems is studied in the
phase plane, that is, in the x-y plane. Let X = (x, )T and A4 = (a;;) so that
dX/dt = AX can be expressed as follows:

dx _ apx +a

dt 11/ 12)s

dy

_“dl‘_ = danx + ayy. (416)

The origin, x =0 and y = 0, is an equilibrium solution of system (4.16).
Assume that det(A) # 0.Then the origin is the unique equiliQ1‘ium solution, an
isolated equilibrium. '
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Corollary 4.2

Solutions to the linear system (4.16) are characterized by the eigenvalues of
the matrix A, which in turn depend on the trace and determinant of A. The
origin will be classified as a node, saddle, spiral, or center. The origin is further
classified as stable or unstable. We begin by defining these latter terms for a
linear system. We distinguish between stable and asymptotically stable.

The origin is asymptotically stable if the eigenvalues of A are negative or have
negative real part. The origin is stable if the eigenvalues of A are nonpositive or
have nonpositive real part. The origin is unstable if the eigenvalues of A are
positive or have positive real part. Solutions approach the origin if the origin is
asymptotically stable, lim,—,«(x(?), y(t)) = (0, 0). Based on these definitions, it
is easy to determine the stability of the origin once the eigenvalues are known. In
addition, even without calculating the eigenvalues, the stability can be determined
by applying the Routh-Hurwitz criteria to the characteristic polynomial of A:

— Tr(A)A + det(A) = 0.

Asymptotic stability is determined only by the trace and determinant because
these two quantities are the coefficients of the characteristic polynormal
According to the Routh-Hurwitz criteria, the eigenvalues lie in the left half of
the complex plane iff the coefficients are positive. :

Suppose dX /dt = AX, where A is a constant 2 X 2 matrix with det(A) # 0.
The origin is asymptotically stable iff

Tr(A) <0 and det(A) > 0.

The origin is stable iff Tr(A) = 0 and det(A) > 0. The origin is unstable iff
Tr(A) > 0 ordet(A) < 0. ' <«

Now, we give specific criteria for the origin of a general linear differential
system to be classified into one of four types: node, saddle, spiral, or center.
Then we apply the previous results to classify the origin as stable or unstable.
This classification scheme is based on the fact that the origin is the only fixed
point or equilibrium solution of the linear system, det(A) # 0. Matrix A has no
zero eigenvalues. The classification scheme depends on whether the eigenvalues
are real or complex, whether the real eigenvalues are positive or négative, and
whether the complex eigenvalues have negative real part. References for the
qualitative theory of differential equations can be found in many textbooks
(see, e.g., Brauer and Nohel, 1969; Cushing, 2004; Sdnchez, 1968).

Real Eigenvalues:

In the case of real eigenvalues, A; and A,, the corresponding eigenvectors V;
and V, are directions along which solutions travel toward or away from the
origin. For example, if A, is positive, solutions will travel along V;, away from
the origin. If A, is negative, solutions will travel along V,, toward the origin.
In general, solutions travel in a direction which is a linear combination of Vi
and V5. The origin is classified as either a node or a saddle.

1. Node: Both eigenvalues have the same sign and may be distinct or equal,
A = A < 0or0 < Ay = Ay The origin can be further classified as proper
or improper (Brauer and Nohel, 1969; Sanchez, 1968). A node is called
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proper when the eigenvalues are equal and there are two linearly inde-
pendent eigenvectors; otherwise it is called improper. A proper node is also
referred to as a star point or star solution (Cushing, 2004; Gulick, 1992). The
reason for this latter name can be seen in Figure 4.1 (solutions approach the
origin in all directions). The term degenerate node is also used to refer to a
node when the two eigenvalues of matrix A are equal (Gulick, 1992). In
Figure 4.1, the improper node in the upper left corner has two distinct
eigenvalues; it is not degenerate, But the other two nodes, to the right of the
node in the upper left corner, are degenerate nodes (the eigenvalues are
equal). If there is only one independent eigenvector, the dynamics are
illustrated in the center figure and if there are two independent eigenvec-
tors, the dynamics are illustrated in the upper right corner (star solution).

2. Saddle: Eigenvalues A; and ), have opposite signs, AjA, < 0 (e.g.,
AL <0 <A

Complex Eigenvalues:

In the case of complex eigenvalues, A1, = a + ib, b # 0. Because solutions
to the linear system dX/dt = AX include factors with cos(br) and sin(br),
solutions spiral around the equilibrium. If the real part @ < 0, then the solu-
tions with e cos(bt) or e sin(br) spiral inward, toward the origin. But if the
real part a > 0, then solutions spiral outward, away from the origin. Finally,

Stable imp

(c

S

roper node Stable improper node

R )

Stable proper node

N

N
|/ N

o
£

Stable

spiral Saddle Center

Figure 4.1 Graphs of solutions for an improper and proper node, spiral, saddle, and center.
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if the real part a = 0, then solutions are closed curves, encircling the origin,
The origin is classified as a spiral (or focus) if a # (0 and a center if a = 0.

3. Spiral or Focus: Eigenvalues have nonzero real part (a # 0).

4. Center: Eigenvalues are purely imaginary (a = 0), A;, = +ib.

A node or spiral can be classified as either asymptotically stable or unstable
depending on whether the real part of the eigenvalue is negative or positive,
respectively. A saddle point is always unstable and a center is neither asymptoti-
cally stable nor unstable. A center is sometimes called neutrally stable (it is stable,
but not asymptotically stable).

1 0
The solution to d X/dt = AX can be found directly by noting dx/dt = —y and
dy/dt = x so that

0 ) ) e
Example 4.11 Jet A = < ) The eigenvalues of A are +i, so that the origin is a center.

dy dy/di — x

dx dx/dt  y

Separating variables and integrating,

2 2
y X
CA -
2 g ¢

This latter equation is a circle centered at the origin. Solutions travel in a
counterclockwise direction on circles surrounding the origin. =

Example 4.12 Let A = <(1) é) The eigenvalues of A are 41, so that the origin is a saddle.

The system dX/dt = AX can be written as dy/dx = x/y. Separating variables
and integrating,

y X

=

2 2

This latter equation is a hyperbola with center at the origin. See Figure 4.2. m

1 0
Example 4.13 Let A = ( 0 3). The eigenvalues of A are 1 and 3. The origin is an unstable

node. Solutions can be found by integrating dx/dt = x and dy/dt = 3y so that
- x(t) = xpe' and y(t) = ype?’. Solutions in the phase plane have the form

10 (1) + () .

The classification schemes can be related to the signs of the trace and deter-
minant of A and the discriminant of the characteristic polynomial. Let

7 =Tr(A) and & = det(A).

Figure 4.2 Solutions to
Example 4.12 are graphed in

the phase plane. The origin is
a saddle.

Example 4.14

Figure 4.3 Stability diagram
in the 7-8 plane.
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Recall that the eigenvalues, the roots of the characteristic polynomial
A2 = Tr(A)A + det(A) = A% — 7A + 8, satisfy
T+ V12— 48
Apg=—"T—"""
12, 5
The discriminant is denoted as y and defined as follows:
y = 7% — 46, '

The following classification scheme summarizes the dynamics according to the
sign of the discriminant, vy, that is, according to whether the eigenvalues are real
or complex conjugates. Improper and proper nodes are not distinguished.

Eigenvalues are real (y > 0):

Unstable node if 7 > 0 and 8 > 0 (A, , > 0)
Saddle pointit § < 0 (A <0 < Ay)
Stable nodeif T < 0and 8 > 0 (A, < 0).

Eigenvalues are complex conjugates a + bi (y < 0):

Unstable spiral if T > 0 (a > 0)
Neutral center if T = 0 (a = 0)
Stable spiral or stable focus if 7 < 0 (a < Q)

The classification scheme is illustrated in the 7-8 plane in Figure 4.3. Note
that asymptotic stability requires 7 < 0 and & > 0 (the trace is negative and the
determinant is positive, Corollary 4.2).

Determine the conditions on a so that the zero equilibrium of the following sys-
tem is a stable spiral:

dx dy N
- = = —X a
dt Tt Y
)
72 =48
center
S node S spiral U spiral U node

saddle

saddle
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I7.

19.

20.

21.

Show that the solution to the pharmacokinetics model is

x(t) = %(1 — e,

—at a e*bt

1 e
YO =5 a0 ba— by

18. Suppose the drug in the pharmacokinetics model is administered periodically,

d(t) =2 for t € [6t,6¢ + 0.5),t = 0,1,..., and d(f) = O elsewhere. Let a =
2/In(2) and b = In(2)/5. Let the initial conditions satisfy x(0) =0 and
y(0) = 0. The differential equation for x(¢) can be expressed in terms of the
Heaviside function, H(t) = 1 for ¢t = 0 and H(r) = 0 for ¢ < 0. For example,
on the interval t € [0,48),

dx(t) U U
DD ax(t) + 2 H(t — 6k) — 2 H(t — 6k — 0.5).
dt =0 =0

(a) Use a differential equation solver to graph the solution during the first
48 hours, t € [0,48). See the Maple program in the Appendix.

(b) How does the drug concentration change (maximum and minimum after
24 hours) if the dose is changed from every 6 hours to every 12 hours?

(c) How does the drug concentration change (maximum and minimum after
24 hours) if the dose is reduced to d(t) = 1?

Show that the solutions to the delay differential equation on [0,2] (r = 1) in
Example 4.18 are

1., 1 ‘ 1 o
¢1(f) = Ee t + —2— and d)z([’) = Z[]‘ + tel t] + '2‘6 f-
Solve the following delay differential equations on the interval [0,2] by the
method of steps.

dx(t
(a) Zﬁ ) = x(t — 1) + 2¢, with initial condition x(¢) = 0 for ¢t € [—1, 0].

dx(t
(b) % = x(t — 1) + x(r) with initial condition x(t) = 1 fort € [-1, 0].

d*x (¢t '
(©) ;g ) = 2x(t — 1) + 1 with initial conditions x(t) = 0 for t € [~1, 0] and
t

dx/dt = 0 for t = 0. This is a second-order delay differential equation,
so the derivative at zero needs to be specified.

The whooping crane data in the Appendix for Chapter 3 appears to increase
exponentially. Fit the whooping crane data to the exponential curve x(f) = xge®
using a least squares approximation. Use polyfit in MATLAB with the curve
In(x(r)) = In(xo) + ar, where x(t) is the whooping crane winter population size.
What are the estimates for xg and a? These estimates should agree with those for
the discrete model x(¢) = xgA', where A = ¢“ See Example 3.1 in Chapter 3.
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4.14 Appendix for Chapter 4

4.14.1 Exponential of a Matrix

At

The matrix exponential e
methods here.

If matrix A is an n X n diagonalizable matrix, then, in theory, it is straightforward
to compute the exponential of matrix A. Recall that a matrix A is diagonalizable iff
A has n linearly independent eigenvectors (Ortega, 1987). In addition, if all of the
eigenvalues of A are distinct, then the eigenvectors are linearly independent. Sup-
pose matrix A is diagonalizable and the eigenvalues of A are A;,i = 1,2,..., n.Then
AF can be expressed in terms of the eigenvectors of A,

A= HAKH,

can be computed in several ways. We discuss two

where A = diag(Aq, Ay, ..., A,) and the columns of H are the right eigenvectors of A,
ordered corresponding to their associated eigenvalues. Then e simplifies to
. o
et =H> Akk—|H_1 = Hdiag(eM,e™,...,eMH L, (4.18)
£=0 ' .
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Another method for computing e is due to Leonard (1996). This method does not
require A to be diagonalizable. However, it requires solving an nth-order differential
equation. This is sometimes easier than solving the linear system d X/dr = AX consist-
ing of n equations. Suppose A is an n X n matrix with characteristic equation

det(A\l — A) = X + A" ' + - + g, =0,

This polynomial equation is also a characteristic equation of an nth-order scalar dif-
ferential equation of the form

xO) + ax® (@) + -+ aux(r) = 0.

To find a formula for e it is necessary to find n linearly independent solutions to this
nth-order scalar differential equation, x,(¢), x5(f), . .., x,(¢), with initial conditions

x(0) = 1 %(0) = 0 x,(0) = 0
xi(0) =0 x3(0) =1 xy(0) =0
D) =0)  xY0) =0 a0y =1
Then
eV = xi (O] + (DA + -+« + x (DAY, —o0 <t < o0, (4.19)

Verification of equation (4.19) can be found in Leonard (1996). These latter two
methods are illustrated in the following example. ‘

Example 4.19. Suppose matrix A is given by

T =2
A= .
<—2 1 )
The eigenvalues of A are A; = —1 and A, = 3 with corresponding eigenvectors

(1,1)T and (—1,1)7, respectively. Matrix A is diagonalizable. Both of the methods
discussed previously can be applied. Matrices

_1 -1 -1 _
H—<1 1)andH ——1

™ |
N|= N

X (4.20)
5 [e" + %]

To apply the method of Leonard given by (4.19), we find the characteristic
polynomial of A: A> — 24 — 3 = 0.Then the corresponding second-order differential
equation, x"(f) — 2x'(f) — 3x(f) = 0, has a general solution x(t) = cje™ + ce®.
Applying the initial conditions to find the constants ¢; and c,, the solutions x(¢)
and x,(¢) are

1 1 1
x () = %e“’ + Zea’ and x,(t) = —Ze*’ +
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respectively. Then applying the identity (4.19) gives the solution

e = x (DI + x,(1)A
1 1
E [e—t + 631] 5[e—t — 63']
11 1
5 [e—t — e3t] E[e_’ + 631]
which agrees with (4.20).

4.14.2 Maple Program: Pharmacokinetics Model

The following Maple commands use the DEtools package to numerically approxi-

mate the solution to the pharmacokinetics model in Exercise 18.

> with(DEtools):

> a:=2*%1n(2); b:=1n(2)/5;

> xeq:=diff(x(t), t)=-a*x(t)+2*sum(Heaviside (t-6%k),k=0..7)
-2#«sum(Heaviside(t-6%k-0.5),k=0..7);

yeq:=diff(y(t), t)=asx(t)-b*y(t);

ic:=x(0)=0, y(0)=0;

DEplot([xeq,yeql, [x(t),y(t)],t=0..48,[[ic]],
stepsize=0.025,scene=[t,x]);

DEplot([xeq,yeql, [x(t),y(t)],t=0..48,[[ic]],.
stepsize=0.025,scene=[t,y]);
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