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Strongly continuous semigroups

The most central part of a well-posed linear system is its semigroup. This
chapter is devoted to a study of the properties of C0 semigroups, both in the
time domain and in the frequency domain. Typical time domain issues are the
generator of a semigroup, the dual semigroup, and the nonhomogeneous initial
value problem. The resolvent of the generator lives in the frequency domain.

3.1 Norm continuous semigroups

We begin by introducing the notion of the generator of a C0 (semi)group
(cf. Definition 2.2.2).

Definition 3.1.1

(i) The generator A of a C0 semigroup A is the operator

Ax := lim
h↓0

1

h
(Ah − 1)x,

defined for all those x ∈ X for which this limit exists.
(ii) The generator A of a C0 group A is the operator

Ax := lim
h→0

1

h
(Ah − 1)x,

defined for all those x ∈ X for which this limit exists.

Before we continue our study of C0 semigroups and their generators, let
us first study the smaller class of uniformly continuous semigroups, i.e., semi-
groups A which satisfy (cf. Definition 2.2.2)

lim
t↓0

‖At − 1‖ = 0. (3.1.1)

Clearly, every uniformly continuous semigroup is a C0 semigroup.
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86 Strongly continuous semigroups

We begin by presenting an example of a uniformly continuous (semi)group.
(As we shall see in Theorem 3.1.3, every uniformly continuous (semi)group is
of this type.)

Example 3.1.2 Let A ∈ B(X ), and define

eAt :=
∞∑

n=0

(At)n

n!
, t ∈ R. (3.1.2)

Then eAt is a uniformly continuous group on X, and its generator is A. This
group satisfies

∥∥eAt
∥∥ ≤ e‖A‖|t | for all t ∈ R. In particular, the growth bounds

of the semigroups t �→ eAt and t �→ e−At (where t ≥ 0) are bounded by ‖A‖
(cf. Definition 2.5.6).

Proof The series in (3.1.2) converges absolutely since

∞∑
n=0

∥∥∥ (At)n

n!

∥∥∥ ≤
∞∑

n=0

(‖A‖|t |)n

n!
= e‖A‖|t |.

This proves that ‖eAt‖ satisfies the given bounds. Clearly e0A = 1. Being a
power series, the function t �→ eAt is analytic, hence uniformly continuous for
all t . By differentiating the power series (this is permitted since eAt is analytic)
we find that the generator of eAt is A (and the limit in Definition 3.1.1 is
uniform). Thus, it only remains to verify the group property eA(s+t) = eAseAt ,
which is done as follows:

eA(s+t) =
∞∑

n=0

An(s + t)n

n!
=

∞∑
n=0

An

n!

n∑
k=0

(
n

k

)
sktn−k

=
∞∑

n=0

n∑
k=0

Aksk

k!

An−k tn−k

(n − k)!
=

∞∑
k=0

Aksk

k!

∞∑
n=k

An−k tn−k

(n − k)!

= eAseAt .
�

Theorem 3.1.3 Let A be a uniformly continuous semigroup. Then the following
claims are true:

(i) A has a bounded generator A and At = eAt for all t ≥ 0;
(ii) t �→ At is analytic and d

dt A
t = AAt = At A for all t ≥ 0;

(iii) A can be extended to an analytic group on R satisfying
d
dt A

t = AAt = At A for all t ∈ R.
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Remark 3.1.4 Actually a slightly stronger result is true: Every C0 semigroup
A satisfying

lim sup
t↓0

‖At − 1‖ < 1 (3.1.3)

has a bounded generator A and At = eAt . Alternatively, every C0 semigroup
A for which the operator

∫ h
0 As ds is invertible for some h > 0 has a bounded

generator A and At = eAt . The proof is essentially the same as the one given
below (it uses strong integrals instead of uniform integrals).

Proof of Theorem 3.1.3 (i) For sufficiently small positive h,
∥∥1 −

1/h
∫ h

0 As ds
∥∥ < 1, hence 1/h

∫ h
0 As ds is invertible, and so is

∫ h
0 As ds. By

the semigroup property, for 0 < t < h,

1

t
(At − 1)

∫ h

0
As ds = 1

t

(∫ h

0
As+t ds −

∫ h

0
As ds

)
= 1

t

(∫ t+h

t
As+t ds −

∫ h

0
As ds

)
= 1

t

(∫ t+h

h
As+t ds −

∫ t

0
As ds

)
.

Multiply by
(∫ h

0 As ds
)−1

to the right and let t ↓ 0 to get

lim
t↓0

1

t
(At − 1) = (Ah − 1)

(∫ h

0
As ds

)−1

in the uniform operator norm. This shows that A has the bounded generator
A = (Ah − 1)

(∫ h
0 As ds

)−1
. By Example 3.1.2, the group eAt has the same

generator A as A. By Theorem 3.2.1(vii) below, At = eAt for t ≥ 0.
(ii)–(iii) See Example 3.1.2 and its proof. �

3.2 The generator of a C0 semigroup

We now return to the more general class of C0 semigroups. We already intro-
duced the notion of the generator of a C0 semigroup in Definition 3.1.1. Some
basic properties of this generator are listed in the following theorem.

Theorem 3.2.1 Let At be a C0 semigroup on a Banach space X with generator
A.

(i) For all x ∈ X,

lim
h↓0

1

h

∫ t+h

t
As x ds = At x .
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(ii) For all x ∈ X and 0 ≤ s < t < ∞,
∫ t

s Avx dv ∈ D (A) and

At x − As x = A
∫ t

s
Avx dv.

(iii) For all x ∈ D (A) and t ≥ 0, At x ∈ D (A), t �→ At x is continuously
differentiable in X, and

d

dt
At x = AAt x = At Ax, t ≥ 0.

(iv) For all x ∈ D (A) and 0 ≤ s ≤ t < ∞,

At x − As x = A
∫ t

s
Avx dv =

∫ t

s
Av Ax dv.

(v) For all n = 1, 2, 3, . . . , if x ∈ D (An), then At x ∈ D (An) for all t ≥ 0,
the function t �→ At x is n times continuously differentiable in X, and for
all k = 0, 1, 2, . . . , n,( d

dt

)n
At x = AkAt An−k x, t ≥ 0.

(vi) A is a closed linear operator and ∩∞
n=1D (An) is dense in X. For each

x ∈ ∩∞
n=1D (An) the function t �→ At x belongs to C∞(R

+
; U ).

(vii) A is uniquely determined by its generator A.

Proof (i) This follows from the continuity of s �→ As x (see Lemma 2.2.13(ii)).
(ii) Let x ∈ X and h > 0. Then

1

h
(Ah − 1)

∫ t

s
Avx dv = 1

h

∫ t

s
Av+h x − Avx) dv

= 1

h

∫ t+h

t
Avx dv −

∫ s+h

s
Avx dv.

As h ↓ 0 this tends to At x − As x .
(iii) Let x ∈ D (A) and h > 0. Then

1

h
(Ah − 1)At x = At 1

h
(Ah − 1)x → At Ax as h ↓ 0.

Thus, At x ∈ D (A), and AAt x = At Ax is equal to the right-derivative of At x
at t . To see that it is also a left-derivative we compute

1

h
(At x − At−h x) − At Ax = At−h

( 1

h
(Ah x − x) − Ax

)
+ (At−h − At )Ax .

This tends to zero because of the uniform boundedness of At−h and the strong
continuity of At (see Lemma 2.2.13).
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(iv) We get (iv) by integrating (iii).
(v) This follows from (iii) by induction.
(vi) The linearity of A is trivial. To prove that A is closed we let xn ∈ D (A),

xn → x , and Axn → y in X , and claim that Ax = y. By part (iv) with s = 0,

At xn − xn =
∫ t

0
As Axn ds.

Both sides converge as n → ∞ (the integrand converges uniformly on [0, t]),
hence

At x − x =
∫ t

0
As y ds.

Divide by t , let t ↓ 0, and use part (i) to get Ax = y.
We still need to show that ∩∞

n=1D (An) is dense in X . Pick some real-valued
C∞ function η with compact support in (0, 1) and

∫ ∞
0 η(s) ds = 1. For each

x ∈ X and k = 1, 2, 3, . . . , we define

xk = k
∫ 1

0
η(ks)As x ds.

Then, for each h > 0,

1

h
(Ah − 1)xk = 1

h

∫ 1

0
η(ks)[As+h x − As x] ds

= k
∫ 1+h

0

1

h
[η(k(s − h)) − η(ks)]As x ds

→ −k2
∫ 1

0
η̇(ks)As x ds as h ↓ 0.

Thus, xk ∈ D (A) and Axk = −k2
∫ 1

0 η̇(ks)As x . We can repeat the same argu-
ment with η replaced by η̇, etc., to get xk ∈ D (An) for every n = 1, 2, 3 . . . .
This means that xk ∈ ∩∞

n=1D (An).
We claim that xk → x as k → ∞, proving the density of ∩∞

n=1D (An) in X .
To see this we make a change of integration variable to get

xk =
∫ 1

0
η(s)As/k x ds.

The function As/k x tends uniformly to x on [0, 1], hence the integral tends to∫ ∞
0 η(s)x ds = x as k → ∞.

That Ax ∈ C∞(R
+

; U ) whenever x ∈ ∩∞
n=1D (An) follows from (iv).

(vii) Suppose that there is another C0 semigroup A1 with the same generator
A. Take x ∈ D (A), t > 0, and consider the function s �→ At−sAs

1x , s ∈ [0, t].
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We can use part (iii) and the chain rule to compute its derivative in the form

d

ds
AsA

t−s
1 x = AAsA

t−s
1 x − As AA

t−s
1 x = AsA

t−s
1 Ax − AsA

t−s
1 Ax = 0.

Thus, this function is a constant. Taking s = 0 and s = t we get At x = At
1x

for all x ∈ D (A). By the density of D (A) in X , the same must be true for all
x ∈ X . �

To illustrate Definition 3.1.1, let us determine the generators of the shift
(semi)groups τ t , τ t

+, τ t
−, τ t

[0,T ), and τ t
TT

in Examples 2.3.2 and 2.5.3. The do-
mains of these generators are spaces of the following type:

Definition 3.2.2 Let J be a subinterval of R, ω ∈ R, and let U be a Banach
space.

(i) A function u belongs to W n,p
loc (J ; U ) if it is an nth order integral of a

function u(n) ∈ L p
loc(J ; U ) (i.e., u(n−1)(t2) − u(n−1)(t1) = ∫ t2

t1
u(n)(s) ds,

etc.).1 It belongs to W n,p
ω (J ; U ) if, in addition, u(k) ∈ L p

ω(J ; U ) for all
k = 0, 1, 2, . . . , n.

(ii) The space W n,p
c,loc(R; U ) consists of the functions in W n,p

loc (R; U ) whose
support is bounded to the left, and the space W n,p

ω,loc(R; U ) consists of the
functions u in W n,p

loc (R; U ) which satisfy π−u ∈ W n,p
ω (R−; U ).

(iii) The spaces W n,p
0,ω (J ; U ), W n,p

0,ω,loc(R; U ), BCn
ω(J ; U ), BCn

ω,loc(R; U ),
BCn

0,ω(J ; U ), BCn
0,ω,loc(R; U ), BUCn

ω(J ; U ), BUCn
ω,loc(R; U ),

Regn
ω(J ; U ), Regn

ω,loc(R; U ), Regn
0,ω(J ; U ), and Regn

0,ω,loc(R; U ) are
defined in an analogous way, with L p replaced by BC, BC0, BUC, Reg,
or Reg0.

Example 3.2.3 The generators of the (semi)groups τ t , τ t
+, τ t

−, τ t
[0,T ), and τ t

TT

in Examples 2.3.2 and 2.5.3 are the following:

(i) The generator of the bilateral left shift group τ t on L p
ω(R; U ) is the

differentiation operator d
ds with domain W 1,p

ω (R; U ), and the generator of
the left shift group τ t on BUCω(R; U ) is the differentiation operator d

ds
with domain BUC1

ω(R; U ). We denote these generators simply by d
ds .

(ii) The generator of the incoming left shift semigroup τ t
+ on L p

ω(R+; U ) is

the differentiation operator d
ds with domain W 1,p

ω (R
+

; U ), and the

generator of the left shift semigroup τ t
+ on BUCω(R

+
; U ) is the

differentiation operator d
ds with domain BUC1

ω(R
+

; U ). We denote these
generators by d

ds +.

1 Our definition of W n,p
loc implies that the functions in this space are locally absolutely continuous

together with their derivatives up to order n − 1. This is true independently of whether U has
the Radon–Nikodym property or not.
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(iii) The generator of the outgoing left shift semigroup τ t
− on L p

ω(R−; U ) is
the differentiation operator d

ds with domain

{u ∈ W 1,p
ω (R

−
; U ) | u(0) = 0}, and the generator of the left shift

semigroup τ t
− on {u ∈ BUCω(R

−
; U ) | u(0) = 0} is the differentiation

operator d
ds with domain {u ∈ BUC1

ω(R
−

; U ) | u(0) = u̇(0) = 0}. We
denote these generators by d

ds −.
(iv) The generator of the finite left shift semigroup τ t

[0,T ) on L p([0, T ); U ) is
the differentiation operator d

ds with domain
{u ∈ W 1,p([0, T ]; U ) | u(T ) = 0}, and the generator of the left shift
semigroup τ t

[0,T ) on {u ∈ C([0, T ]; U ) | u(T ) = 0} is the differentiation
operator d

ds with domain {u ∈ C1([0, T ]; U ) | u(T ) = u̇(T ) = 0}. We
denote these generators by d

ds [0,T )
.

(v) The generator of the circular left shift group τ t
TT

on L p(TT ; U ) is the
differentiation operator d

ds with domain W 1,p(TT ; U ) (which can be
identified with {u ∈ W 1,p([0, T ]; U ) | u(T ) = u(0)}), and the generator
of the circular left shift group τ t

TT
on C(TT ; U ) is the differentiation

operator d
ds with domain C1(TT ; U ) (which can be identified with the set

{u ∈ C1([0, T ]; U ) | u(T ) = u(0) and u̇(T ) = u̇(0)}). We denote these
generators by d

ds TT
.

Proof The proofs are very similar to each other, so let us only prove, for ex-
ample, (iii). Since the proof for the L p-case works in the BUC-case, too, we
restrict the discussion to the L p-case. For simplicity we take ω = 0, but the
same argument applies when ω is nonzero.

Suppose that u ∈ L p(R−; U ), and that 1
h (τ h

+u − u) → g in L p(R−; U ) as
h ↓ 0. If we extend u and g to L p(R; U ) by defining them to be zero on R

+
,

then this can be written as 1
h (τ hu − u) → g in L p(R; U ) as h ↓ 0.

Fix some a ∈ R, and for each t ∈ R, define

f (t) =
∫ t+a

t
u(s) ds =

∫ a

0
u(s + t) ds.

Then

1

h
(τ h f − f ) =

∫ a

0

1

h
(τ hu(s + t) − u(s + t)) ds

=
∫ t+a

t

1

h
(τ hu(s) − u(s)) ds

→
∫ t+a

t
g(s) ds as h ↓ 0.
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On the other hand

1

h
(τ h f − f ) = 1

h

∫ t+a+h

t+h
u(s) ds − 1

h

∫ t+a

t
u(s) ds

= 1

h

∫ t+a+h

t+a
u(s) ds − 1

h

∫ t+h

t
u(s) ds,

and as h ↓ 0 this tends to u(t + a) − u(t) whenever both t and t + a are
Lebesgue points of u. We conclude that for almost all a and t ,

u(t + a) = u(t) +
∫ t+a

t
g(s) ds.

By definition, this means that u ∈ W 1,p(R; U ) and that u̇ = g. Since we ex-
tended u to all of R by defining u to be zero on R

+
, we have, in addition

u(0) = 0 (if we redefine u on a set of measure zero to make it continuous
everywhere).

To prove the converse claim it suffices to observe that, if u ∈ W 1,p(R
−

; U )
and u(0) = 0, then we can extend u to a function in W 1,p(R; U ) by defining u
to be zero on R+, and that

1

h
(τ hu − u)(t) = 1

h
(u(t + h) − u(t)) = 1

h

∫ t+h

t
u̇(s) ds,

which tends to u̇ in L p(R; U ) as h ↓ 0 (see, e.g., Gripenberg et al. [1990, Lemma
7.4, p. 67]). �

Let us record the following fact for later use:

Lemma 3.2.4 For 1 ≤ p < ∞, W 1,p
ω (R; U ) ⊂ BC0,ω(R; U ), i.e., every u ∈

W 1,p
ω (R; U ) is continuous and e−ωt u(t) → 0 as t → ±∞.

Proof The continuity is obvious. The function u−ω(t) = e−ωt u(t) belongs to
L p, and so does its derivative −ωu−ω + e−ωu̇. This implies that u−ω(t) → 0
as t → ∞. �

By combining Theorem 3.2.1(vi) with Example 3.2.3 we get the major part
of the following lemma:

Lemma 3.2.5 Let 1 ≤ p < ∞, ω ∈ R, and n = 0, 1, 2, . . . . Then C∞
c (R; U )

is dense in L p
ω(R; U ), L p

loc(R; U ), W n,p(R; U ), W n,p
loc (R; U ), BCn

0(R; U ), and
Cn(R; U ).

Proof It follows from Theorem 3.2.1(vi) and Example 3.2.3 that
∩∞

k=1W k,p(R; U ) is dense in L p(R; U ) and in W n,p(R; U ). Let u belong to
this space. Then u ∈ C∞. Choose any η ∈ C∞

c (R; R) satisfying η(t) = 1 for
|t | ≤ 1, and define um(t) = η(t/m)u(t). Then um ∈ C∞

c (R; U ), and um → u in
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L p(R; U ) and in W n,p(R; U ), proving the density of C∞
c in L p and in W n,p.

The other claims are proved in a similar manner (see also Lemma 2.3.3). �

Example 3.2.6 Let At be a C0 semigroup on a Banach space X with
generator A.

(i) For each α ∈ C, the generator of the exponentially shifted semigroup
eαtAt , t ≥ 0 (see Example 2.3.5) is A + α.

(ii) For each λ > 0, the generator of the time compressed semigroup Aλt ,
t ≥ 0 (see Example 2.3.6) is λA.

(iii) For each (boundedly) invertible E ∈ B(X1; X ), the generator AE of the
similarity transformed semigroup At

E = E−1At E, t ≥ 0 (see Example
2.3.7) is AE = E−1 AE, with domain D (AE ) = E−1D (A).

We leave the easy proof to the reader.
Theorem 3.2.1 does not say anything about the spectrum and resolvent set

of the generator A. These notions and some related ones are defined as follows:

Definition 3.2.7 Let A : X ⊃ D (A) → X be closed, and let α ∈ C.

(i) α belongs to the resolvent set ρ(A) of A if α − A is injective, onto, and
has an inverse (α − A)−1 ∈ B(X ). Otherwise α belongs to the spectrum
σ (A) of A.

(ii) α belongs to the point spectrum σp(A), or equivalently, α is an
eigenvalue of A, if (α − A) is not injective. A vector x ∈ X satisfying
(α − A)x = 0 is called an eigenvector corresponding to the eigenvalue α.

(iii) α belongs to the residual spectrum σr (A) if (α − A) is injective but its
range is not dense in X .

(iv) α belongs to the continuous spectrum σc(A) if (α − A) is injective and
has dense range, but the range is not closed.

(v) The resolvent of A is the operator-valued function α �→ (α − A)−1,
defined on ρ(A).

By the closed graph theorem, σ (A) is the disjoint union of σp(A), σr (A), and
σc(A). The different parts of the spectrum need not be closed (see Examples
3.3.1 and 3.3.5), but, as the following lemma shows, the resolvent set is always
open, hence the whole spectrum is always closed.

Lemma 3.2.8 Let A be a (closed) operator X ⊃ D (A) → X, with a nonempty
resolvent set.

(i) For each α and β in the resolvent set of A,

(α − A)−1 − (β − A)−1 = (β − α)(α − A)−1(β − A)−1. (3.2.1)

In particular, (α − A)−1(β − A)−1 = (β − A)−1(α − A)−1.
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(ii) Let α ∈ ρ(A) and denote ‖(α − A)−1‖ by κ . Then every β in the circle
|β − α| < 1/κ belongs to the resolvent set of A, and

‖(β − A)−1‖ ≤ κ

1 − κ|β − α| . (3.2.2)

(iii) Let α ∈ ρ(A). Then δ‖(α − A)−1‖ ≥ 1, where δ is the distance from α to
σ (A).

The identity (3.2.1) in (i) is usually called the resolvent identity. Note that
the closedness of A is a consequence of the fact that A has a nonempty resolvent
set.

Proof of Lemma 3.2.8. (i) Multiply the left hand side by (α − A) to the left and
by (β − A) to the right to get

(α − A)
[
(α − A)−1 − (β − A)−1

]
(β − A) = β − α.

(ii) By part (i), for all β ∈ C,

(β − A) = (
1 + (β − α)(α − A)−1

)
(α − A). (3.2.3)

It follows from the contraction mapping principle that if we take |β − α| < 1/κ ,
then

(
1 + (β − α)(α − A)−1

)
is invertible and∥∥(

1 + (β − α)(α − A)−1
)−1∥∥ ≤ 1

1 − κ|β − α| .

This combined with (3.2.3) implies that β ∈ ρ(A) and that (3.2.2) holds.
(iii) This follows from (ii). �

Our next theorem lists some properties of the resolvent (λ − A)−1 of the
generator of a C0 semigroup. Among others, it shows that the resolvent set of
the generator of a semigroup contains a right half-plane.

Theorem 3.2.9 Let At be a C0 semigroup on a Banach space X with generator
A and growth bound ωA (see Definition 2.5.6).

(i) Every λ ∈ C+
ωA

belongs to the resolvent set of A, and

(λ − A)−(n+1)x = 1

n!

∫ ∞

0
sne−λsAs x ds

for all x ∈ X, λ ∈ C+
ωA

, and n = 0, 1, 2, . . . . In particular,

(λ − A)−1x =
∫ ∞

0
e−λsAs x ds

for all x ∈ X and λ ∈ C+
ωA

.
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(ii) For each ω > ωA there is a finite constant M such that∥∥(λ − A)−n
∥∥ ≤ M(�λ − ω)−n

for all n = 1, 2, 3, . . . and λ ∈ C+
ω . In particular,∥∥(λ − A)−1
∥∥ ≤ M(�λ − ω)−1

for all λ ∈ C+
ω .

(iii) For all x ∈ X, the following limits exist in the norm of X

lim
λ→+∞

λ(λ − A)−1x = x and lim
λ→+∞

A(λ − A)−1x = 0.

(iv) For all t ≥ 0 and all λ ∈ ρ(A),

(λ − A)−1At = At (λ − A)−1.

Proof (i) Define At
λ = e−λtAt and Aλ = A − λ. Then by Example 3.2.6(i), Aλ

is the generator of Aλ. We observe that Aλ has negative growth bound, i.e., for
all x ∈ X , At

λx tends exponentially to zero as t → ∞. More precisely, for each
ωA < ω < �λ there is a constant M such that for all s ≥ 0 (cf. Example 2.3.5),

‖eλsAs‖ ≤ Me−(�λ−ω)s . (3.2.4)

Apply Theorem 3.2.1(ii) with s = 0 and A and A replaced by Aλ and Aλ to get

At
λx − x = Aλ

∫ t

0
As

λx ds.

Since Aλ is closed, we can let t → ∞ to get

x = −Aλ

∫ ∞

0
As

λx ds.

On the other hand, if x ∈ D (A), then we can do the same thing starting from
the identity in Theorem 3.2.1(iv) to get

x = −
∫ ∞

0
As

λ Aλx ds.

This proves that λ belongs to the resolvent set of A and that

(λ − A)−1x =
∫ ∞

0
e−λsAs x ds, x ∈ X. (3.2.5)

To get a similar formula for iterates of (λ − A)−1 we differentiate this formula
with respect to λ. By the resolvent identity in Lemma 3.2.8(i) with h = β − λ,

lim
h→0

1

h

[
(λ + h − A)−1x − (λ − A)−1x

] = −(λ − A)−2x .
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The corresponding limit of the right hand side of (3.2.5) is

lim
h→0

∫ ∞

0

1

h

(
e(λ+h)s − eλs

)
As x ds =

∫ ∞

0

1

h

(
ehs − 1

)
eλsAs x ds.

As h → 0, 1
h

(
ehs − 1

) → s uniformly on compact subsets of R
+

, and

∣∣ 1
h (ehs − 1)

∣∣ = s
1

|hs|
∣∣∣∣∫ hs

0
ey d y

∣∣∣∣ ≤ s
1

|hs|
∫ |hs|

0
e|y| d y ≤ se|hs|.

This combined with (3.2.4) shows that we can use the Lebesgue dominated
convergence theorem to move the limit inside the integral to get

(λ − A)−2x =
∫ ∞

0
se−λsAs x ds, x ∈ X.

The same argument can be repeated. Every time we differentiate the right
hand side of (3.2.5) the integrand is multiplied by a factor −s (but we can still
use the Lebesgue dominated convergence theorem). Thus, to finish the proof
of (i) we need to show that

dn

dλn
(λ − A)−1x = (−1)nn!(λ − A)−(n+1)x . (3.2.6)

To do this we use induction over n, the chain rule, and the fact that the formula
is true for n = 1, as we have just seen. We leave this computation to the reader.

(ii) Use part (i), (3.2.4), and the fact that (cf. Lemma 4.2.10)

1

n!

∫ ∞

0
sne−(�λ−ω)s ds = (�λ − ω)−(n+1), �λ > ω, n = 0, 1, 2, . . . .

(iii) We observe that the two claims are equivalent to each other since (λ −
A)(λ − A)−1x = x . If x ∈ D (A), then we can use part (ii) to get

|λ(λ − A)−1x − x | = |A(λ − A)−1x |
= |(λ − A)−1 Ax | → 0 as λ → ∞.

AsD (A) is dense in X and lim supλ→+∞‖λ(λ − A)−1‖ < ∞ (this, too, follows
from part (ii)), it must then be true that λ(λ − A)−1x → x for all x ∈ X .

(iv) By Theorem 3.2.1(iii), for all y ∈ D (A),

At (λ − A)y = (λ − A)At y.

Substituting y = (λ − A)−1x and applying (λ − A)−1 to both sides of this iden-
tity we find that

(λ − A)−1At x = At (λ − A)−1x

for all x ∈ X . �
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In this proof we used an estimate on
∣∣ 1

h (ehs − 1)
∣∣ that will be useful later,

too, so let us separate this part of the proof into the following slightly more
general lemma:

Lemma 3.2.10 Let 1 ≤ p ≤ ∞, ω ∈ R, and n = 0, 1, 2, . . . .

(i) For all α, β ∈ C,

|eα − eβ | ≤ |α − β| max{e�α, e�β},
|eα − eβ − (α − β)eβ | ≤ 1

2
|α − β|2 max{e�α, e�β}.

(ii) The function α �→ (
t �→ eαt , t ∈ R−)

is analytic on the half-plane C+
ω in

the spaces L p
ω(R−; C), W n,p

ω (R−; C), and BCn
0,ω(R−; C) (i.e, it has a

complex derivative with respect to α in these spaces when �α > ω). Its
derivative is the function t �→ teαt , t ∈ R−.

(iii) The function α �→ (
t �→ eαt , t > 0

)
is analytic on the half-plane C−

ω in

the spaces L p
ω(R+; C), W n,p

ω (R
+

; C), and BCn
0,ω(R

+
; C). Its derivative is

the function t �→ teαt , t > 0.

Proof (i) Define f (t) = e(α−β)t eβ . Then ḟ (t) = (α − β)e(α−β)t eβ and

|eα − eβ | = | f (1) − f (0)| =
∣∣∣∣∫ 1

0
ḟ (s) ds

∣∣∣∣
≤ |α − β|e�β

∫ 1

0

∣∣e(α−β)s
∣∣ ds

≤ |α − β|e�β sup
0≤s≤1

e�(α−β)s

= |α − β|e�β max{e�(α−β), 1}
= |α − β| max{e�α, e�β)}.

The similar proof of the second inequality is left to the reader. It can be based
on the fact that f̈ (t) = (α − β)2e(α−β)t eβ , and that

eα − eβ − (α − β)eβ = f (1) − f (0) − ḟ (0) =
∫ 1

0

∫ s

0
f̈ (v) dv ds.

(ii) It follows from (i) with α replaced by (α + h)t and β replaced by αt
that the function t �→ 1

h

(
e(α+h)t − eαt

) − teαt tends to zero as t → 0 (as a com-
plex limit) uniformly for t in each bounded interval. Moreover, combining the
growth estimate that (i) gives for this function with the Lebesgue dominated
convergence theorem we find that it tends to zero in L p

ω(R−; C). A similar argu-
ment shows that all t-derivatives of this function also tend to zero in L p

ω(R−; C),
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i.e., the function itself tends to zero in W n,p
ω (R−; C). The proof of the analyticity

in BCn
0(R−; C) is similar (but slightly simpler).

(iii) This proof is completely analogous to the proof of (ii). �

3.3 The spectra of some generators

To get an example of what the spectrum of a generator can look like, let us
determine the spectra of the generators of the shift (semi)groups in Examples
2.3.2 and 3.2.3:

Example 3.3.1 The generators of the (semi)groups τ t , τ t
+, τ t

−, τ t
[0,T ) and τ t

TT

in Examples 2.3.2 and 2.5.3 (see Example 3.2.3) have the following spectra:

(i) The spectrum of the generator d
ds of the left shift bilateral group τ t on

L p
ω(R; U ) with 1 ≤ p < ∞ or on BUCω(R; U ) is equal to the vertical

line {�λ = ω}. The whole spectrum is a residual spectrum in the
L1-case, a continuous spectrum in the L p-case with 1 < p < ∞, and a
point spectrum in the BUC-case.

(ii) The spectrum of the generator d
ds + of the incoming left shift semigroup

τ t
+ on L p

ω(R+; U ) with 1 ≤ p < ∞ or on BUCω(R
+

; U ) is equal to the

closed half-plane C
−
ω . The open left half-plane C−

ω belongs to the point
spectrum, and the boundary {�λ = ω} belongs to the continuous
spectrum in the L p-case with 1 ≤ p < ∞ and to the point spectrum in
the BUC-case.

(iii) The spectrum of the generator d
ds − of the outgoing left shift semigroup τ t

−
on L p

ω(R−; U ) with 1 ≤ p < ∞ or on {u ∈ BUCω(R
−

; U ) | u(0) = 0} is
equal to the closed half-plane C

−
ω . The open half-plane C−

ω belongs to the
residual spectrum, and the boundary {�λ = ω} belongs to the residual
spectrum in the L1-case and to the continuous spectrum in the other
cases.

(iv) The spectrum of the generator d
ds [0,T )

of the finite left shift semigroup
τ t

[0,T ) on L p([0, T ); U ) with 1 ≤ p < ∞ or on
{u ∈ C([0, T ]; U ) | u(0) = 0} is empty.

(v) The spectrum of the generator d
ds TT

of the circular left shift group τ t
TT

on
L p(TT ; U ) with 1 ≤ p < ∞ or on C(TT ; U ) is a pure point spectrum
located at {2π jm/T | m = 0, ±1, ±2, . . .}.

Proof For simplicity we take ω = 0. The general case can either be reduced to
the case ω = 0 with the help of Lemma 2.5.2(ii), or it can be proved directly
by a slight modification of the argument below.
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(i) As τ t is a group, both τ t and τ−t are semigroups, and ‖τ t‖ = 1 for
all t ∈ R. It follows from Theorem 3.2.9(i) that every λ /∈ jR belongs to the
resolvent set of d

ds . It remains to show that jR belongs to the residual spectrum
in the L1-case, to the continuous spectrum in the L p-case with 1 < p < ∞,
and to the point spectrum in the BUC-case.

Set λ = jβ where β ∈ R, and let u ∈ W 1,p(R; U ) = D
(

d
ds

)
. If jβu − u̇ = f

for some u ∈ W 1,p(R; U ) and f ∈ L p(R; U ) then, by the variation of constants
formula, for all T ∈ R,

u(t) = e jβ(t−T )u(T ) −
∫ t

T
e jβ(t−s) f (s) ds.

By letting T → −∞ we get (see Lemma 3.2.4)

u(t) = − lim
T →−∞

∫ t

T
e jβ(t−s) f (s) ds.

In particular, if f = 0 then u = 0, i.e., jβ − d
ds is injective. By letting t → +∞

we find that

lim
t→∞ lim

T →−∞

∫ t

T
e− jβs f (s) ds = 0.

If p = 1, then this implies that the range of jβ − d
ds is not dense, hence jβ ∈

σr ( d
ds ). If p > 1 then it is not true for every f ∈ L p(R; U ) that the limits above

exist, so the range of jβ − d
ds is not equal to L p(R; U ), i.e., jω ∈ σ ( d

ds ). On the
other hand, if f ∈ C∞

c (R; U ) with
∫ ∞
−∞ e− jβs f (s) ds = 0, and if we define u

to be the integral above, then u ∈ C∞
c (R; U ) ⊂ W 1,p(R; U ) and jβy − u̇ = f .

The set of functions f of this type is dense in L p(R; U ) when 1 < p < ∞.
Thus jβ − d

ds has dense range if p > 1, and in this case jβ ∈ σc( d
ds ).

In the BUC-case the function e jβ(t) = e jβt is an eigenfunction, i.e., ( jβ −
d
ds )e jβ = 0; hence jβ ∈ σp( d

ds ).2

(ii) That C+ ⊂ ρ( d
ds +) follows from Theorem 3.2.9(i). If �λ < 0 then λ ∈

σp( d
ds +), because then the function u = eλt belongs to W 1,p(R

+
; U ) and λu −

u̇ = 0. The proof that the imaginary axis belongs either to the singular spectrum
in the L p-case or to the point spectrum in the BUC-case is quite similar to the
one above, and it is left to the reader (in the L p-case, let T → +∞ to get
u(t) = ∫ ∞

t e jβ(t−s) f (s) ds, and see also the footnote about the case p = 1).

2 It is easy to show that the range of jβ − d
ds is not closed in the L1-case and BUC-case either.

For example, in the L1-case the range is dense in { f ∈ L1(R; U ) | ∫
R

f (s) ds = 0}, but it is not
true for every f ∈ L1(R; U ) with

∫
R

f (s) ds = 0 that the function
u(t) = − ∫ t

−∞ e jβ(t−s) f (s) ds belongs to L1(R; U ).
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(iii) That C+ ⊂ λ ∈ ρ( d
ds −) follows from Theorem 3.2.9(i). If �λ < 0 or if

�λ ≤ 0 and p = 1, then every f ∈ R
(
λ − d

ds −
)

satisfies∫ 0

−∞
e−λs f (s) ds = 0,

hence the range is not dense in this case. We leave the proof of the claim that
σc = {λ ∈ C | �λ = 0} in the other cases to the reader (see the proof of (i)).

(iv) This follows from Theorem 3.2.9(i), since the growth bound of τ[0,T ) is
−∞.

(v) For each m ∈ Z, the derivative of the T -periodic function e2π jmt/T with
respect to t is (2π jm/T )e2π jmt/T , hence 2π jm/T is an eigenvalue of d

ds TT
with

eigenfunction e2π jmt/T .
To complete the proof of (v) we have to show that the remaining points λ

in the complex plane belong to the resolvent set of d
ds TT

. To do this we have to
solve the equation λu − u̇ = f , where, for example, f ∈ L p(TT ; U ). By the
variation of constants formula, a solution of this equation must satisfy

u(s) = eλ(s−t)u(t) −
∫ s

t
eλ(s−v) f (v) dv, s, t ∈ R.

Taking s = t + T , and requiring that u(t + T ) = u(t) (in order to ensure T -
periodicity of u) we get

(1 − eλT )u(t) = −
∫ t+T

t
eλ(t+T −v) f (v) dv.

The factor on the left hand side is invertible iff λ does not coincide with any of
the points 2π jm/T , in which case we get the following formula for the unique
T -periodic solution u of λu − u̇ = f :

u(t) = (1 − e−λT )−1
∫ t+T

t
eλ(t−v) f (v) dv

= (1 − e−λT )−1
∫ T

0
e−λs f (t + s) ds.

The right-hand side of this formula maps L p(TT ; U ) into W 1,p(TT ; U ) and
C(TT ; U ) into C1(TT ; U ), and by differentiating this formula we find that,
indeed, λu − u̇ = f . �

Example 3.3.2 The resolvents of the generators d
ds , d

ds +, d
ds −, d

ds [0,T )
, and d

ds TT

in Example 3.2.3 can be described as follows:

(i) The resolvent (λ − d
ds )−1 of the generator of the bilateral left shift group

τ t on L p
ω(R; U ) and on BUCω(R; U ) maps f into t �→ ∫ ∞

t eλ(t−s) f (s) ds,
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t ∈ R, if �λ > ω, and it maps f into t �→ − ∫ t
−∞ eλ(t−s) f (s) ds, t ∈ R, if

�λ < ω.
(ii) For each λ ∈ C+

ω the resolvent (λ − d
ds +)−1 of the generator of the

incoming left shift semigroup τ t
+ on L p

ω(R+; U ) and on BUCω(R
+

; U )
maps f into t �→ ∫ ∞

t eλ(t−s) f (s) ds, t ≥ 0.
(iii) For each λ ∈ C+

ω the resolvent (λ − d
ds −)−1 of the generator of the

outgoing left shift semigroup τ t
− on L p

ω(R−; U ) and on

{u ∈ BUCω(R
−

; U ) | u(0) = 0} maps f into t �→ ∫ 0
t eλ(t−s) f (s) ds,

t ∈ R
−

.
(iv) For each λ ∈ C the resolvent (λ − d

ds [0,T )
)−1 of the generator of the finite

left shift semigroup τ t
[0,T ) on L p([0, T ); U ) and on

{u ∈ C([0, T ]; U ) | u(T ) = 0} maps f into t �→ ∫ T
t eλ(t−s) f (s) ds,

t ∈ [0, T ).
(v) For each λ ∈ C which is not one of the points

{2π jm/T | m = 0, ±1, ±2, . . .} the resolvent (λ − d
ds TT

)−1 of the
generator of the circular left shift group τ t

TT
on L p(TT ; U ) and on

C(TT ; U ) maps f into t �→ (1 − e−λT )−1
∫ t+T

t eλ(t−s) f (s) ds.

The proof of this is essentially contained in the proof of Example 3.3.1.
The shift (semi)group examples that we have seen so far have rather ex-

ceptional spectra. They play an important role in our theory, but in typical
applications one more frequently encounters semigroups of the following type:

Example 3.3.3 Let {φn}∞n=1 be an orthonormal basis in a separable Hilbert
space X, and let {λn}∞n=1 be a sequence of complex numbers. Then the sum

At x =
∞∑

n=1

eλn t 〈x, φn〉φn, x ∈ X, t ≥ 0,

converges for each x ∈ X and t ≥ 0 and defines a C0 semigroup if and only if

ωA = sup
n≥0

�λn < ∞.

The growth bound of this semigroup is ωA, and

‖At‖ = eωAt , t ≥ 0.

It is a group if and only if

αA = inf
n≥0

�λn > −∞.

in which case

‖At‖ = eαAt , t ≤ 0.
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In particular, if �λn = ω for all n, then At is a group, and

‖At‖ = eωt , t ∈ R.

Proof Clearly, the sum converges always if we choose x = φn , in which case
Atφn = eλn tφn , and |Atφn| = e�λn t . If At is to be a semigroup, then ‖At‖ ≥
e�λn t for all n, and by Theorem 2.5.4(i), the number ωA defined above must be
finite and less than or equal to the growth bound of A. If At is to be a group,
then A−t is also a semigroup, and the same argument with t replaced by −t
shows that necessarily αA > −∞ in this case.

Let us suppose that ωA < ∞. For each N = 1, 2, 3, . . . , define

At
N x =

N∑
n=1

eλn t 〈x, φn〉φn.

Then it is easy to show that each AN is a C0 group (since φn ⊥ φk when n �= k).
For each t > 0, the sum converges as N → ∞ because the norm of the tail of
the series tends to zero (the sequence φn is orthonormal):∣∣∣∣ ∞∑

n=N+1

eλn t 〈x, φn〉φn

∣∣∣∣2

=
∞∑

n=N+1

|eλn t 〈x, φn〉φn|2

=
∞∑

n=N+1

e2�λn t |〈x, φn〉|2

≤ e2ωAt
∞∑

n=N+1

|〈x, φn〉|2

→ 0 as N → ∞.

Thus At ∈ B(X ) (as a strong limit of operators in B(X )). The norm estimate
‖At‖ ≤ eωAt follows from the fact that (see the computation above)

|At x |2 =
∣∣∣∣ ∞∑

n=1

eλn t 〈x, φn〉φn

∣∣∣∣2

≤ e2ωAt |x |2.

Moreover, for each x the convergence is uniform in t over bounded intervals
since

|At x − At
N x |2 ≤ e2ωAt

∞∑
n=N+1

|〈x, φn〉|2.

This implies that t �→ At x is continuous on R
+

for each x ∈ X . Since each AN

satisfies A0
N = 1 and A

s+t
N = As

N At
N , s, t ≥ 0, the same identities carry over to

the limit. We conclude that A is a C0 semigroup.
If αA > −∞, then we can repeat the same argument to get convergence also

for t < 0. �
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Definition 3.3.4 A (semi)group of the type described in Example 3.3.3 is called
diagonal, with eigenvectors {φn}∞n=1 and eigenvalues {λn}∞n=1.

The reason for this terminology is the following:

Example 3.3.5 The generator A of the (semi)group in Example 3.3.3 is the
operator

Ax =
∞∑

n=1

λn〈x, φn〉φn,

with domain

D (A) =
{

x ∈ X

∣∣∣∣ ∞∑
n=1

(1 + |λn|2)|〈x, φn〉|2 < ∞
}
.

The spectrum of A is the closure of the set {λn | n = 1, 2, 3, . . .}: every λn

belongs to the point spectrum and cluster points different from all the λn belong
to the continuous spectrum. The resolvent operator is given by

(α − A)−1x =
∞∑

n=1

(α − λn)−1〈x, φn〉φn.

Proof Suppose that limh↓0
1
h (Ah x − x) exists. Taking the inner product with

φn , n = 1, 2, 3, . . . , we get

lim
h↓0

1

h
〈(Ah x − x), φn〉 = lim

h↓0

1

h

∞∑
k=1

(eλk h − 1)〈x, φk〉〈φk, φn〉

= lim
h↓0

1

h
(eλn h − 1)〈x, φn〉

= λn〈x, φn〉.

Thus, for all x ∈ D (A), we have Ax = ∑∞
n=1 λn〈x, φn〉φn . The norm of this

vector is finite as is the norm of x = ∑∞
n=1〈x, φn〉φn , so we conclude that

D (A) ⊂
{

x ∈ X

∣∣∣∣ ∞∑
n=1

(1 + |λn|2)|〈x, φn〉|2 < ∞
}
.

To prove the opposite inclusion, let us suppose that

∞∑
n=1

(1 + |λn|2)|〈x, φn〉|2 < ∞.
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Then the sum y = ∑∞
n=1 λn〈x, φn〉φn converges in X , and for each h > 0 we

have ∣∣∣ 1

h
(Ah x − x) − y

∣∣∣2
=

∣∣∣∣ ∞∑
n=1

( 1

h
(eλn h − 1) − λn

)
〈x, φn〉φn

∣∣∣∣2

=
∞∑

n=1

∣∣∣ 1

h
(eλn h − 1) − λn

∣∣∣2
|〈x, φn〉|2.

Take h ≤ 1. Then, by Lemma 3.2.10, 1
h |eλn h − 1| ≤ |λn|Mn(h), where

Mn(h) = max{1, e�λn h} ≤ M = max{1, eωA},
hence ∣∣∣ 1

h
(eλn h − 1) − λn

∣∣∣2
|〈x, φn〉|2 ≤ (1 + M)2|λn|2|〈x, φn〉|2.

Moreover, for each n,
(

1
h (eλn h − 1) − λn

) → 0 as h ↓ 0. This means that we
can use the discrete Lebesgue dominated convergence theorem to conclude
1
h (Ah x − x) − y → 0 as h ↓ 0, i.e., x ∈ D (A).

Obviously every λn is an eigenvalue since φn ∈ D (A) and Aφn = λnφn . The
spectrum of A contains therefore at least the closure of {λn | n = 1, 2, 3, . . . }
(the spectrum is always closed).

If infn≥0|α − λn| > 0, then there exist two positive constants a and b such
that a(1 + |λn|) ≤ |α − λn| ≤ b(1 + |λn|), and the sum

Bx =
∞∑

n=1

(α − λn)−1〈x, φn〉φn

converges for every x ∈ X and defines an operator B ∈ B(X ) which maps X
onto D (A). It is easy to show that B is the inverse to (α − A), hence α ∈ ρ(A).
Conversely, suppose that (α − A) has an inverse (α − A)−1. Then

1 = |φn| = |(α − A)−1(α − A)φn|
= |(α − A)−1(α − λn)φn| ≤ ‖(α − A)−1‖|α − λn|.

This shows that every α ∈ ρ(A) satisfies infn≥0|α − λn| > 0.
If infn≥0|α − λn| = 0 butα �= λn for all n, thenα is not an eigenvalue because

αx − Ax = ∑∞
n=1(α − λn)〈x, φn〉φn = 0 only when 〈x, φn〉 = 0 for all n, i.e.,

x = 0. On the other hand, the range of α − A is dense because it contains
all finite linear combinations of the base vectors φn . Thus α ∈ σc(A) in this
case. �

Example 3.3.3 can be generalized to the case where A is an arbitrary normal
operator on a Hilbert space X , whose spectrum is contained in some left half-
plane. The proofs remain essentially the same, except for the fact that the sums
have to be replaced by integrals over a spectral resolution. We refer the reader
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to Rudin [1973, pp. 301–303] for a precise description of the spectral resolution
used in the following theorem (dual operators and semigroups are discussed in
Section 3.5).

Example 3.3.6 Let A be a closed and densely defined normal operator on a
Hilbert space X (i.e., A∗ A = AA∗), and let E be the corresponding spectral
resolution of A, so that

〈Ax, y〉X =
∫

σ (A)
λ〈E( dλ)x, y〉, x ∈ D (A) , y ∈ X.

Then the following claims are valid.

(i) For each n = 1, 2, 3, . . . the domain of An is given be

D
(

An
) =

{
x ∈ X

∣∣∣∣ ∫
σ (A)

(1 + |λ|2)n〈E( dλ)x, x〉
}

< ∞,

and

‖An x‖2
X =

{
x ∈ X

∣∣∣∣ ∫
σ (A)

|λ|2n〈E( dλ)x, x〉
}
.

(ii) For each α ∈ ρ(A), 0 ≤ k ≤ n ∈ {1, 2, 3, . . .}, and x, y ∈ X,

〈Ak(α − A)−n x, y〉X =
∫

σ (A)
λk(α − λ)−n〈E( dλ)x, y〉.

(iii) A generates a C0 semigroup A on X if and only if the spectrum of A is
contained in some left half-plane, i.e.,

ωA = sup
λ∈σ (A)

�λ < ∞.

In this case,

‖At‖ = eωAt , t ≥ 0,

and

〈At x, y〉 =
∫

σ (A)
eλt 〈E( dλ)x, y〉, t ≥ 0, x ∈ X , y ∈ X. (3.3.1)

(iv) A generates a C0 group A on X if and only if σ (A) is contained in some
vertical strip α ≤ �λ ≤ ω. In this case, if we define

αA = inf{�λ | λ ∈ σ (A)},
then

‖At‖ = eαAt , t ≤ 0,

and (3.3.1) holds for all t ∈ R.
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(v) A C0 semigroup A on X is normal (i.e., A∗t = At for all t ≥ 0) if and
only if its generator is normal.

Proof (i)–(ii) See Rudin (1973, Theorems 12.21, 13.24 and 13.33).
(iii) See Rudin (1973, Theorem 13.37) and the remark following that theo-

rem.
(iv) The proof of this in analogous to the proof of (iii).
(v) See Rudin (1973, Theorem 13.37).

�

Most of the examples of semigroups that we will encounter in this book are
either of the type described in Example 2.3.2, 3.3.3, or 3.3.6, or a transformation
of these examples of the types listed in Examples 2.3.10–2.3.13.

3.4 Which operators are generators?

There is a celebrated converse to Theorem 3.2.9(i) that gives a complete char-
acterization of the class of operators A that generate C0 semigroups:

Theorem 3.4.1 (Hille–Yosida) A linear operator A is the generator of a C0

semigroup A satisfying ‖At‖ ≤ Meωt if and only if the following conditions
hold:

(i) D (A) is dense in X;
(ii) every real λ > ω belongs to the resolvent set of A, and∥∥(λ − A)−n

∥∥ ≤ M

(λ − ω)n
for λ > ω and n = 1, 2, 3, . . . .

Alternatively, condition (ii) can be replaced by

(ii′) every real λ > ω belongs to the resolvent set of A, and∥∥∥ ∂n

∂λn
(λ − A)−1

∥∥∥ ≤ Mn!

(λ − ω)n+1
for λ > ω and n = 0, 1, 2, . . . .

Note that the assumption implies that A must be closed, since it has a
nonempty resolvent set.

Proof The necessity of (i) and (ii) follows from Theorems 3.2.1(vi) and 3.2.9
(i)–(ii) (the exact estimate in Theorem 3.2.9(ii) was derived from (3.2.4), which
is equivalent to ‖At‖ ≤ Meωt ). The equivalence of (ii) and (ii′) is a consequence
of (3.2.6).

Let us start the proof of the converse claim by observing that the conclusion
of Theorem 3.2.9(iii) remains valid, since the proof used only (ii) with n = 1
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and the density of D (A) in X . This means that if we define

Aα = αA(α − A)−1 = α2(α − A)−1 − α,

then each Aα ∈ B(X ), and, for each x ∈ D (A), Aαx → Ax in X as α → ∞.
Since Aα is bounded, we can define At

α = eAα t as in Example 3.1.2. We claim
that for each x ∈ X , the limit At x = limα→∞ At

αx exists, uniformly in t on any
bounded interval, and that At is a semigroup with generator A.

Define

Bα = Aα + α = α2(α − A)−1.

Then, by (ii), for all n = 1, 2, 3, . . . ,

‖Bn
α‖ ≤ Mα2n

(α − ω)n
, (3.4.1)

and by Theorem 3.2.9(iii) and Example 3.2.6(i),

At
α = e−αt eBα t = e−αt

∞∑
n=0

Bn
α tn

n!
. (3.4.2)

Therefore

‖At
α‖ ≤ e−αt

∞∑
n=0

tn

n!

Mα2n

(α − ω)n

= Me−αt e(α2t)/(α−ω) = Me(αωt)/(α−ω), t ≥ 0.

(3.4.3)

This tends to Meωt as α → ∞, and the convergence is uniform in t on
any bounded interval. Since (α − A)−1 and (β − A)−1 commute (see Lemma
3.2.8(i)), also Aα and Aβ commute, i.e., Aα Aβ = Aβ Aα , and this implies that
At

α Aβ = AβAt
α for all α, β > ω and t ∈ R. Thus, for all x ∈ X and t ∈ R,

At
αx − At

β x =
∫ t

0

d

ds

[
As

αA
t−s
β

]
dsx

=
∫ t

0
As

α(Aα − Aβ)At−s
β x ds =

∫ t

0
As

αA
t−s
β (Aα − Aβ)x ds,

and

|At
αx − At

β x |

≤ M2
∫ t

0
e(αωs)/(α−ω)e(βω(t−s))/(β−ω)|Aαx − Aβ x | ds.

(3.4.4)

Let α, β → ∞. Then the products of the exponentials tend to eωseω(t−s) =
eωt , uniformly in s and t on any bounded interval, and if x ∈ D (A), then
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|Aαx − Aβ x | → 0 since both Aαx → x and Aβ x → x . Therefore,

lim
α, β→∞

|At
αx − At

β x | = 0, x ∈ D (A) ,

uniformly in t on any bounded interval. In other words, α �→ At
αx is a Cauchy

family in C(R
+

; X ), and it has a limit in C(R
+

; X ). Since we have a uniform
bound on the norm of At

αx for t in each bounded interval (see (3.4.3)) and
D (A) is dense in X , the limit limα→∞ At

αx must exist in C(R
+

; X ) for all
x ∈ X , uniformly in t on any bounded interval. Let us denote the limit by At x .
For each t ≥ 0 we have At ∈ B(X ) (the strong limit of a family operators in
B(X ) belongs to B(X )). By construction t �→ At x is continuous, i.e., t �→ At

is strongly continuous. Moreover, At inherits the semigroup properties A0 = 1
and As+t = AsAt from At

α , and it also inherits the bound ‖At‖ ≤ Meωt . We
conclude that At is a C0 semigroup.

The only thing left to be shown is that the generator of A is A. Let x ∈ D (A).
Then by Theorem 3.2.1(iv)

At x − x = lim
α→∞(At

αx − x) = lim
α→∞

∫ t

0
As

α Aαx ds =
∫ t

0
As Ax ds

(the integrand converges uniformly on [0, t] to As Ax). Divide this by t and
let t ↓ 0. This shows that, if we (temporarily) denote the generator of A by B,
then D (A) ⊂ D (B), and Bx = Ax for all x ∈ D (A). In other words, B is an
extension of A. But this extension cannot be nontrivial, because if we take some
common point α in the resolvent sets of A and B (any α > ω will do), then

X = (α − A)D (A) = (α − B)D (A)

which implies that

D (B) = (α − B)−1 X = (α − A)−1 X = D (A) .

�

Corollary 3.4.2 A linear operator A is the generator of a C0 semigroup A

satisfying ‖At‖ ≤ eωt if and only if the following conditions hold:

(i) D (A) is dense in X;
(ii) Every real λ > ω belongs to the resolvent set of A, and∥∥(λ − A)−1

∥∥ ≤ 1

(λ − ω)
for λ > ω.

Proof This follows from Theorem 3.4.1 since ‖(α − A)−n‖ ≤ ‖(α − A)−1‖n .
�

The case ω = 0 is of special interest:
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Definition 3.4.3 By a bounded semigroup or group we mean a semigroup or
group A satisfying supt≥0‖At‖ < ∞ or supt∈R

‖At‖ < ∞, respectively. By a
contraction semigroup of group we mean a semigroup or group A satisfying
‖At‖ ≤ 1 for all t ≥ 0 or t ∈ R, respectively.

Corollary 3.4.4 Let A be a linear operator X ⊃ D (A) → X with dense do-
main and let M < ∞. Then the following conditions are equivalent:

(i) A is the generator of a (bounded) C0 semigroup A satisfying ‖At‖ ≤ M
for all t ≥ 0;

(ii) every positive real λ belongs to the resolvent set of A and∥∥(λ − A)−n
∥∥ ≤ Mλ−n for λ > 0 and n = 1, 2, 3, . . . ;

(iii) the right half-plane C+ belongs to the resolvent set of A and∥∥(λ − A)−n
∥∥ ≤ (�λ)−n for �λ > 0 and n = 1, 2, 3, . . .

Proof By Theorem 3.4.1, (i) ⇔ (ii). Obviously (iii) ⇒ (ii). To show that (i) ⇒
(iii) we split λ ∈ C into λ = α + jβ and apply Theorem 3.4.1 with λ replaced
by α, At replaced by e− jβtAt and A replaced by A − jβ. �

Corollary 3.4.5 Let A be a linear operator X ⊃ D (A) → X with dense do-
main. Then the following conditions are equivalent

(i) A is the generator of a C0 contraction semigroup;
(ii) every positive real λ belongs to the resolvent set of A and∥∥(λ − A)−1

∥∥ ≤ λ−1 for λ > 0;

(iii) the right-half plane C+ belongs to the resolvent set of A, and∥∥(λ − A)−1
∥∥ ≤ (�λ)−1 for �λ > 0.

Proof This proof is similar to the proof of Corollary 3.4.4, but we replace
Theorem 3.4.1 by Corollary 3.4.2. �

There is also another characterization of the generators of contraction semi-
groups which is based on dissipativity.

Definition 3.4.6 A linear operator A : X ⊃ D (A) → X is dissipative if for
every x ∈ D (A) there is a vector x∗ ∈ X∗ with |x∗|2 = |x |2 = 〈x∗, x〉 such
that �〈x∗, Ax〉 ≤ 0 (if X is a Hilbert space, then we take x∗ = x).3

Lemma 3.4.7 Let A : X ⊃ D (A) → X be a linear operator. Then the follow-
ing conditions are equivalent:

3 The dual space X∗ is discussed at the beginning of Section 3.5.
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(i) A is dissipative;
(ii) A − jβ I is dissipative for all β ∈ R;

(iii) |(λ − A)x | ≥ λ|x | for all x ∈ D (A) and all λ > 0;
(iv) |(λ − A)x | ≥ �λ|x | for all x ∈ D (A) and all λ ∈ C+.

Proof (i) ⇒ (ii): This follows from Definition 3.4.6 since, with the notation of
that definition, �〈x∗, jβx〉 = �(− jβ〈x∗, x〉) = �(− jβ|x |2) = 0.

(ii) ⇒ (iv): Suppose that (ii) holds. Let x ∈ D (A) and λ = α + jβ with
α > 0 and β ∈ R. Choose some x∗ ∈ X∗ with |x∗|2 = |x |2 = 〈x∗, x〉 such that
�〈x∗, Ax〉 ≤ 0 (by the Hahn–Banach theorem, this is possible). Then

|λx − Ax ||x | ≥ |〈x∗, λx − Ax〉| ≥ �〈x∗, λx − Ax〉
= �〈x∗, αx〉 − �〈x∗, (A − jβ)x〉 ≥ α|x |2,

and (iv) follows.
(iv) ⇒ (iii): This is obvious.
(iii) ⇒ (i): Let x ∈ D (A), and suppose that λ|x | ≤ |(λ − A)x | for all λ > 0.

Choose some z∗
λ ∈ X∗ with |z∗

λ| = 1 such that 〈z∗
λ, (λ − A)x〉 = |(λ − A)x |.

Then, for all λ > 0,

λ|x | ≤ |λx − Ax | = 〈z∗
λ, λx − Ax〉

= λ�〈z∗
λ, x〉 − �〈z∗

λ, Ax〉 ≤ λ|x | − �〈z∗
λ, Ax〉.

This implies that �〈z∗
λ, Ax〉 ≤ 0 and that

λ�〈z∗
λ, x〉 ≥ |λx − Ax | ≥ λ|x | − |Ax |.

For all λ > 0, let Z∗
λ be the weak∗ closure of the set {z∗

α | α ≥ λ}. Then each Z∗
λ

is a weak∗ compact subset of the unit ball in X∗, and for all z∗ ∈ Z∗
λ we have

�〈z∗, Ax〉 ≤ 0, �〈z∗, x〉 ≥ |x | − λ−1|Ax |, |z∗| ≤ 1

(the functionals z∗ �→ �〈z∗, x〉 and z∗ �→ �〈z∗, Ax〉 are continuous in the
weak∗ topology). The sets Z∗

λ obviously have the finite intersection property
and they are weak∗ compact, so their intersection ∩λ>0 Z∗

λ is nonempty (see,
e.g., Rudin [1987, Theorem 2.6, p. 37]). Choose any z∗ in this intersection.
Then

�〈z∗, Ax〉 ≤ 0, �〈z∗, x〉 ≥ |x |, |z∗| ≤ 1.

The last two inequalities imply that |z∗| = 〈z∗, x〉 = |x |. By taking y∗ = |x |z∗

in Definition 3.4.6 we find that A is dissipative. �

By using the notion of dissipativity we can add one more condition to the
list of equivalent conditions in Corollary 3.4.5.
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Theorem 3.4.8 (Lumer–Phillips) Let A be a linear operator X ⊃ D (A) →
X with dense domain. Then the following conditions are equivalent (and they
are equivalent to the conditions (ii) and (iii) in Corollary 3.4.5):

(i) A is the generator of a C0 contraction semigroup;
(iv) A is dissipative and ρ(A) ∩ C+ �= ∅.

These conditions are, in particular, true if

(v) A is closed and densely defined, and both A and A∗ are dissipative.

If X is reflexive, then (v) is equivalent to the other conditions.

Proof (i) ⇒ (iv): This follows from Corollary 3.4.5 and Lemma 3.4.7.
(iv) ⇒ (i): Suppose that (iv) holds. Then A is closed (since its resolvent set

is nonempty). Take some λ = α + jβ ∈ ρ(A) with α > 0 and β ∈ R. If A is
dissipative, then we get from Lemma 3.4.7(iv) for all x ∈ D (A), |(λ − A)x | ≥
α|x |. This implies that ‖(λ − A)−1‖ ≤ 1/α. By Lemma 3.2.8, the resolvent set
of A contains an open circle with center λ and radius α = �λ. We can repeat
this argument with α replaced by first 3/2α, then (3/2)2α, then (3/2)3α, etc.,
to show that the whole right-half plane belongs to the resolvent set, and that
‖(λ − A)−1‖ ≤ (�λ)−1 for all λ ∈ C+. By Corollary 3.4.5, A is therefore the
generator of a C0 contraction semigroup.

(v) ⇒ (iv): By Lemma 3.4.7, |(1 − A)x | ≥ |x | for all x ∈ D (A). This im-
plies that 1 − A is injective and has closed range (see Lemma 9.10.2(iii)). If
R (1 − A) �= X then, by the Hahn–Banach theorem, there is some nonzero x∗ ∈
X∗ such that 〈x∗, x − Ax = 0〉, or equivalently, 〈x∗, Ax〉 = 〈x∗, x〉 for all x ∈
D (A). This implies that x∗ ∈ D (A∗) and that A∗x∗ = x∗, i.e., (1 − A∗)x∗ = 0.
By Lemma 3.4.7 and the dissipativity of A∗, |x∗| ≤ |(1 − A∗)x∗| = 0, contra-
dicting our original choice of x∗. Thus R (1 − A) = X . By the closed graph
theorem, (1 − A)−1 ∈ B(X ), so 1 ∈ ρ(A), and we have proved that (iv) holds.

If X is reflexive, then A is a generator of a C0 contraction semigroup if
and only if A∗ is the generator of a C0 contraction semigroup (see Theorem
3.5.6(v)), so (v) follows from (iv) in this case. �

In the Hilbert space case there is still another way of characterizing a gen-
erator of a contraction semigroup.

Theorem 3.4.9 Let X be a Hilbert space, and let A be a linear operator X ⊃
D (A) → X with dense domain. Then the following conditions are equivalent:

(i) A is the generator of a C0 contraction semigroup,
(ii) there is some λ ∈ C+ ∩ ρ(A) for which the operator

Aλ = (λ + A)(λ − A)−1 is a contraction,
(iii) all λ ∈ C+ belong to ρ(A), and Aλ = (λ + A)(λ − A)−1 is a contraction,
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If Aλ is defined as in (vi) and (vii), then −1 is not an eigenvalue of Aλ, and
R (1 + Aλ) = D (A). Conversely, if X is a Hilbert space and if A is a contraction
on X such that −1 is not an eigenvalue of A, then R (1 + A) is dense in X, and,
for all λ ∈ C+, the operator Aλ with D (Aλ) = R (1 + A) defined by

Aλx = λx − 2�λ (1 + A)−1x, x ∈ R (1 + A) ,

is the generator of a C0 contraction semigroup on X (and the operator Aλ in
(vi) and (vii) corresponding to Aλ is A).

Proof (i) ⇒ (vii) ⇒ (vi) ⇒ (i): Let us denote λ = α + jβ where α > 0 and
β ∈ R. For all x ∈ D (A), if we denote B = A − jβ, then

|(λ − A)x |2 = |(α − B)x |2 = α2|x |2 − 2α�〈x, Bx〉 + |Bx |2
|(λ + A)x |2 = |(α + B)x |2 = α2|x |2 + 2α�〈x, Bx〉 + |Bx |2.

If (i) holds, then by Lemma 3.4.7 and Theorem 3.4.8, B = A − jβ is dissi-
pative, and we get |(λ + A)x | ≤ |(λ − A)x | for all λ ∈ C+ and all x ∈ D (A).
By Corollary 3.4.5, λ ∈ ρ(A), and by replacing x by (λ − A)−1x we find that
|Aλx | ≤ |x | for all x ∈ X , i.e, Aλ is a contraction. This proves that (i) ⇒ (vii).
Obviously (vii) ⇒ (vi). If (vi) holds, then for that particular value of λ, we
have |Aλx | ≤ |x | for all x ∈ X , or equivalently, |(λ + A)x | ≤ |(λ − A)x | for
all x ∈ D (A). The preceding argument then shows that B = A − jβ is dissi-
pative, hence so is A, and (i) follows from Theorem 3.4.8. This proves that (i),
(vi), and (vii) are equivalent.

Let us next show that −1 cannot be an eigenvalue of Aλ (although −1 ∈
σ (Aλ) whenever A is unbounded) and that R (1 + Aλ) = D (A). This follows
from the (easily verified) identity that

1 + Aλ = 2�λ (λ − A)−1.

Here the right-hand side is injective, hence so is the left-hand side, and the range
of the right-hand side is D (A), hence so is the range of the left-hand side.

It remains to prove the converse part. Let A be a contraction on X such
that −1 is not an eigenvalue of A. Then the operator Aλ is well-defined on
D (Aλ) = R (1 + A), and

(λ1 − Aλ)x = 2�λ (1 + A)−1x, x ∈ R (1 + A) ,

This implies that λ − Aλ is injective, R (λ − Aλ) = X , and (λ − Aλ)−1 =
2�λ (1 + A)−1. In particular, λ ∈ ρ(Aλ). Arguing as in the proof of the im-
plication (vi) ⇒ (i) we find that Aλ is dissipative since A is a contraction (note
that we have the same relationship between Aλ and A as we had between A
and Aλ, namely A = (λ + Aλ)(λ − Aλ)−1). If we knew that D (A) is dense in
X , then we could conclude from Theorem 3.4.8 that Aλ is the generator of a C0
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contraction semigroup. Thus, to complete the proof, the only thing remaining
to be verified is that R (1 + A) is dense in X . This is true if and only if −1 is
not an eigenvalue of A∗, so let us prove this statement instead. If A∗x = x for
some x ∈ X , then

〈A∗x, x〉 = 〈x, Ax〉 = 〈x, x〉 = |x |2,
hence

|x − Ax |2 = |x |2 − 2�〈x, Ax〉 + |Ax |2 = |Ax |2 − |x |2 ≤ 0,

and we see that Ax = x . This implies that x = 0, because −1 was supposed
not to be an eigenvalue of A. �

The operator Aλ in Theorem 3.4.9 is called the Cayley transform of A with
parameter α ∈ C+. We shall say much more about this transform in Chapter 11.

3.5 The dual semigroup

Many results in quadratic optimal control rely on the possibility of passing
from a system to its dual system. In this section we shall look at the dual of the
semigroup A. The dual of the full system will be discussed in Section 6.2.

In most applications of the duality theory the state space X is a Hilbert
space. In this case it is natural to identify the dual X with X itself. This has
the effect that the mapping from an operator A on X to its dual A∗ becomes
conjugate-linear instead of linear, as is the case in the standard Banach space
theory. To simplify the passage from the Banach space dual of an operator to
the Hilbert space dual we shall throughout use the conjugate-linear dual instead
of the ordinary dual of a Banach space.

As usual, we define the dual X∗ of the Banach space X to be the space of all
bounded linear functionals x∗ : X → C. We denote the value of the functional
x∗ ∈ X∗ acting on the vector x ∈ X alternatively by

x∗x = 〈x, x∗〉 = 〈x, x∗〉(X,X∗).

The norm in X∗ is the usual supremum-norm

|x∗|X∗ := sup
|x |X =1

|〈x, x∗〉|, (3.5.1)

and by the Hahn–Banach theorem, the symmetric relation

|x |X = sup
|x∗|X∗ =1

|〈x, x∗〉| (3.5.2)
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also holds. On this space we use a nonstandard linear structure, defining the
sum of two elements x∗ and y∗ in X∗ and the product of a scalar λ ∈ C and a
vector x∗ ∈ X∗ by

〈x, x∗ + y∗〉 := 〈x, x∗〉 + 〈x, y∗〉, x ∈ X,

〈x, λx∗〉 := λ〈x, x∗〉, x ∈ X, λ ∈ C.
(3.5.3)

In other words, the mapping (x, x∗) �→ 〈x, x∗〉 is anti-linear (linear in x and
conjugate-linear in x∗). All the standard results on the dual of a Banach space
and the dual operator remain valid in this conjugate-linear setting, except for
the fact that the mapping from an operator A to its dual operator A∗ becomes
conjugate-linear instead of linear, like in the standard Hilbert space case.

Let A be a closed (unbounded) operator X ⊃ D (A) → Y with dense domain.
The domain of the dual A∗ of A consists of those y∗ ∈ Y ∗ for which the linear
functional

x �→ 〈Ax, y∗〉(Y,Y ∗), x ∈ D (A) ,

can be extended to a bounded linear functional on X . This extension is unique
since D (A) is dense, and it can be written in the form

x �→ 〈Ax, y∗〉(Y,Y ∗) = 〈x, x∗〉(X,X∗), x ∈ D (A) ,

for some x∗ ∈ X . For y∗ ∈ D (A∗) we define A∗ by A∗y∗ = x∗, where x∗ ∈ X∗

is the element above. Thus,

〈Ax, y∗〉(Y,Y ∗) = 〈x, A∗y∗〉(X,X∗), x ∈ D (A) , y∗ ∈ D
(

A∗) , (3.5.4)

and this relationship serves as a definition of A∗.

Lemma 3.5.1 Let A : X ⊃ D (A) → Y be a closed linear operator with dense
domain. Then

(i) A∗ : Y ∗ ⊃ D (A∗) → U ∗ is a closed linear operator,
(ii) If A ∈ B(X ; Y ), then A∗ ∈ B(Y ∗; X∗), and ‖A‖ = ‖A∗‖,

(iii) D (A∗) weak∗-dense in Y ∗,
(iv) If Y is reflexive, then D (A∗) is dense in Y ∗.

Proof (i) It is a routine calculation to show that A∗ is linear. Let us show that
it is closed. Take some sequence y∗

n ∈ D (A∗) such that y∗
n → y∗ ∈ Y ∗ and

A∗y∗
n → x∗ in X∗ as n → ∞. Then, for each x ∈ D (A),

〈x, x∗〉 = lim
n→∞〈x, Ay∗

n 〉 = lim
n→∞〈Ax, y∗

n 〉 = 〈Ax, y∗〉.

This means that the functional 〈Ax, y∗〉 can be extended to a bounded linear
functional on X , hence y∗ ∈ D (A∗) and x∗ = A∗y∗. Thus, A∗ is closed.
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(ii) If A ∈ B(X ; Y ), then it is clear that D (A∗) = Y ∗. Moreover,

‖A∗‖B(Y ∗;X∗) = sup
|y∗|=1

|A∗y∗|X∗ = sup
|x |=1
|y∗|=1

|〈x, A∗y∗〉(X,X∗)|

= sup
|x |=1
|y∗|=1

|〈Ax, y∗〉(X,X∗)| = sup
|x |=1

|Ax |Y

= ‖A‖B(X ;Y ).

(iii) Let y ∈ Y , y �= 0. As A is closed, the set
{[

Ax
x

] ∣∣ x ∈ D (A)
}

is a closed
subspace of

[
Y
X

]
, and

[ y
0

]
certainly does not belong to this subspace. By the

Hahn–Banach theorem in
[

Y
X

]∗ = [
Y ∗
X∗

]
, there is some x∗

1 ∈ X∗ and y∗
1 ∈ Y ∗

such that 〈x, x∗
1 〉 + 〈Ax, y∗

1 〉 = 0 for all x ∈ D (A), but 〈0, x1〉 − 〈y, y∗
1 〉 �= 0.

The first equation says that y∗
1 ∈ D (A∗) (and that A∗y∗

1 = −x∗
1 ). Thus, for each

nonzero y ∈ Y , it is possible to find some y∗ ∈ D (A∗) such that 〈y, y∗〉 �= 0,
or equivalently, Y � y = 0 iff 〈y, y∗〉 = 0 for all y∗ ∈ D (A∗). This shows that
D (A∗) is weak∗-dense in Y ∗ (apply the Hahn–Banach theorem [Rudin, 1973,
Theorem 3.5, p. 59] to the weak∗-topology).

(iv) If Y is reflexive, then (iii) implies that D (A∗) is weakly dense in Y ∗,
hence dense in Y ∗ Rudin [1973, Corollary 3.12(b), p. 65]).

�

Lemma 3.5.2 Let A : X ⊃ D (A) → Y be closed, densely defined, and injec-
tive, and suppose that R (A) = Y . Then A−1 ∈ B(Y ; X ), and (A−1)∗ = (A∗)−1.
We denote this operator by A−∗.

Proof The operator A−1 is closed since A is closed, and by the closed graph
theorem, it is bounded, i.e., A−1 ∈ B(Y ; X ). By Lemma 3.5.1(ii), (A−1)∗ ∈
B(X∗; Y ∗). It remains to show that (A−1)∗ = (A∗)−1.

Take some arbitrary x ∈ D (A) and x∗ ∈ X∗. Then

〈x, x∗〉 = 〈A−1 Ax, x∗〉 = 〈Ax, (A−1)∗x∗〉.
This implies that (A−1)∗x∗ ∈ D (A∗) and that A∗(A−1)∗x∗ = x∗. Thus, (A−1)∗

is a left inverse of A∗. If we instead take some arbitrary x ∈ X and x∗ ∈ D (A∗),
then

〈x, x∗〉 = 〈AA−1x, x∗〉 = 〈A−1x, A∗x∗〉 = 〈x, (A−1)∗ A∗x∗〉.
Thus, (A−1)∗ is also a right inverse of A∗. This means that A∗ is invertible, with
(A∗)−1 = (A−1)∗. �

Lemma 3.5.3 Let A : X ⊃ D (A) → X be densely defined, and let α ∈ ρ(A)
(in particular, this means that A is closed). Then α ∈ ρ(A∗), and ((α −
A)∗)−1 = ((α − A)−1)∗ = (α − A)−∗.
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Proof By the definition of the dual operator, (α − A)∗ = α − A∗. Therefore
Lemma 3.5.3 follows from Lemma 3.5.2, applied to the operator α − A. �

Lemma 3.5.4 Let A : X ⊃ D (A) → Y be densely defined, and let B ∈
B(Y ; Z ). Then (B A)∗ = A∗ B∗ (with D ((B A)∗) = D (A∗ B∗) = {z∗ ∈ Z∗ |
B∗z ∈ D (A∗)}).
Proof Let x ∈ D (A) = D (B A) and z∗ ∈ D (A∗ B∗) = {z∗ ∈ Z∗ | B∗z ∈
D (A∗)}. Then

〈B Ax, z∗〉(Z ,Z∗) = 〈Ax, B∗z∗〉(Y,Y ∗) = 〈x, A∗ B∗z∗〉(X,X∗).

This implies that z∗ ∈ D ((B A)∗), and that (B A)∗z∗ = A∗ B∗z∗. To complete
the proof it therefore suffices to show that D ((B A)∗) ⊂ D (A∗ B∗). Let z∗ ∈
D ((B A)∗). Then, for every x ∈ D (A) = D (B A),

〈Ax, B∗z∗〉(Y,Y ∗) = 〈B Ax, z∗〉(Z ,Z∗) = 〈x, (B A)∗z∗〉(X,X∗).

This implies that B∗z∗ ∈ D (A∗), and hence z∗ ∈ D (A∗ B∗). �

Lemma 3.5.5 Let B ∈ B(X ; Y ) be invertible (with an inverse in B(Y ; X )), and
let A : Y ⊃ D (A) → Z be densely defined. Then AB is densely defined (with
D (AB) = {x ∈ X | Bx ∈ D (A)}), and (AB)∗ = B∗ A∗ (with D (B∗ A∗) =
D (A∗)).

Proof The domain of AB is the image under B−1 of D (A) which is dense
in Y , and therefore D (AB) is dense in X (if x ∈ X , and if yn ∈ D (A) and
yn → y := Bx in y, then xn := B−1 yn in D (AB), and xn → B−1 y = x in X ).
Thus AB has an adjoint (AB)∗.

Let x ∈ D (AB) = {x ∈ X | Bx ∈ D (A)} and z∗ ∈ D (A∗). Then

〈ABx, z∗〉(Z ,Z∗) = 〈Bx, A∗z∗〉(Y,Y ∗) = 〈x, B∗ A∗z∗〉(X,X∗).

This implies that z∗ ∈ D ((AB)∗), and that (AB)∗z∗ = B∗ A∗z∗. To com-
plete the proof it therefore suffices to show that D ((AB)∗) ⊂ D (A∗). Let
z∗ ∈ D ((AB)∗). Then, for every y ∈ D (A), we have B−1 y ∈ D (AB), and

〈Ay, z∗〉(Z ,Z∗) = 〈AB B−1 y, z∗〉(Z ,Z∗) = 〈B−1 y, (AB)∗z∗〉(X,X∗)

= 〈y, B−∗(AB)∗z∗〉(Y,Y ∗).

This implies that z∗ ∈ D (A∗). �

Theorem 3.5.6 Let A be a C0 semigroup on a Banach space X with generator
A.

(i) A∗t = (At )∗, t ≥ 0, is a locally bounded semigroup on X∗ (but it need not
be strongly continuous). This semigroup has the same growth bound as A.
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(ii) Let X� = {x∗ ∈ X∗ | limt↓0 A∗t x∗ = x∗}. Then X� is a closed subspace
of X∗ which is invariant under A∗, and the restriction A� of A∗ to X� is
a C0 semigroup on X�.

(iii) The generator A� of the semigroup A� in (ii) is the restriction of A∗ to
D

(
A�) = {x∗ ∈ D (A∗) | A∗x∗ ∈ X�}.

(iv) X� is the closure of D (A∗) in X∗. Thus, D (A∗) ⊂ X� and D (A∗) is
dense in X�.

(v) If X is reflexive, then X� = X∗, A� = A∗, and A∗ is a C0 semigroup on
X∗ with generator A∗.

(vi) If A ∈ B(X ), then X� = X∗, A� = A∗, and A∗ is a C0 semigroup on X∗

with generator A∗.

For an example where X� �= X∗, see Example 3.5.11 with p = 1.

Proof of Theorem 3.5.6 (i) This follows from Lemmas 3.5.1(ii) and 3.5.4.
(ii) The proof of the claim that A∗t maps X� into X� is the same as the proof

of Lemma 2.2.13(ii).
To show that X� is closed we let x∗

n ∈ X�, x∗
n → x∗ ∈ X∗. Write

‖A∗s x∗ − x∗‖ ≤ ‖A∗s x∗ − A∗s x∗
n‖ + ‖A∗s x∗

n − x∗
n‖ + ‖x∗

n − x∗‖.
Given ε > 0, we can make ‖A∗s x∗ − A∗s x∗

n‖ + ‖x∗
n − x∗‖ < ε/2 for all 0 ≤

s ≤ 1 by choosing n large enough (since ‖A∗s‖ ≤ Meωs for some M > 0 and
ω ∈ R). Next we choose t ≤ 1 so small that‖A∗s x∗

n − x∗
n‖ ≤ ε/2 for all 0 ≤ s ≤

t . Then ‖A∗s x∗ − x∗‖ ≤ ε for 0 ≤ s ≤ t . This proves that limt↓0 A∗t x∗ = x∗,
hence x∗ ∈ X�. Thus X� is closed in X∗.

Since X� is closed in X∗, it is a Banach space with the same norm, and by
definition, A� is a C0 semigroup on X�.

(iii) Let A� be the generator of A�. Choose some x ∈ D (A) and x∗ ∈
D

(
A�) ⊂ X� ⊂ X∗. Then

〈Ax, x∗〉(X,X∗) = lim
t↓0

〈1

t
(At − 1)x, x∗

〉
(X,X∗)

= lim
t↓0

〈
x,

1

t
(A∗t − 1)x∗

〉
(X,X∗)

= 〈x, A�x∗〉(X,X∗).

This implies that x∗ ∈ D (A∗) and A�x∗ = A∗x∗. In other words, if we let B
be the restriction of A∗ to D (B) = {x∗ ∈ D (A∗) | A∗x∗ ∈ X�}, then A� ⊂ B,
i.e., D

(
A�) ⊂ D (B) and A� X∗ = Bx∗ for all x∗ ∈ D

(
A�)

.
It remains to show that D (B) = D

(
A�)

. Choose some α ∈ ρ(A�) ∩ ρ(A∗)
(by Theorem 3.2.9(i) and Lemma 3.5.3, any α with �α large enough will do).
Then α − A� maps D

(
A�)

one-to-one onto X�, hence α − B maps D (B)
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onto X�, i.e.,

X� = (α − A�)D
(

A�) = (α − B)D (B) .

But α − B is a restriction of α − A∗ which is one-to-one on X∗; hence α − B
is injective on D (B), and

D (B) = (α − B)−1 X� = (α − A�)−1 X� = D (A) .

(iv) Let x∗ ∈ D (A∗). Choose α and M such that ‖As‖ ≤ Meαs for all s ≥ 0.
Then, for all x ∈ X , all t ≥ 0, and all real α > ωA, by Theorem 3.2.1(ii) and
Example 3.2.6(i),∣∣〈x, (e−αtA∗t − 1)x∗〉∣∣ = ∣∣〈(e−αtAt − 1)x, x∗〉∣∣

= ∣∣〈(α − A)(α − A)−1(e−αtAt − 1)x, x∗〉∣∣
= ∣∣〈(α − A)−1(e−αtAt − 1)x, (α − A)x∗〉∣∣
=

∣∣∣〈∫ t

0
e−αsAs x ds, (α − A)x∗

〉∣∣∣
≤ Mt‖x‖‖(α − A)x∗‖.

Taking the supremum over all x ∈ X with ‖x‖ = 1 an using (3.5.1) we get

‖(e−αtA∗t − 1)x∗‖ ≤ Mt‖(α − A)x∗‖ → 0 as t ↓ 0,

which implies that limt↓0 A∗t x∗ = x∗. This shows that D (A∗) ⊂ X�. That
D (A∗) is dense in X� follows from the fact that D

(
A�) ⊂ D (A∗) and D

(
A�)

is dense in X�.
(v)–(vi) This follows from (iv) and Lemma 3.5.1(ii)–(iv). �

Definition 3.5.7 The C0 semigroup A� in Theorem 3.5.6 is the dual of the C0

semigroup A, X� is the �-dual of X (with respect to A), and A� is the �-dual
of A.

Example 3.5.8 The dual A∗ of the diagonal (semi)group A in Example 3.3.3 is
another diagonal (semi)group where the eigenvectors {φn}∞n=1 stay the same but
the sequence of eigenvalues {λn}∞n=1 has been replaced by its complex conjugate
{λn}∞n=1. Thus

A∗t x =
∞∑

n=1

eλn t 〈x, φn〉φn, x ∈ H, t ≥ 0.

The dual generator A∗ has the same domain as A, and is it given by

Ax =
∞∑

n=1

λn〈x, φn〉φn, x ∈ D (A) .
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In particular,At = A∗t for all t ≥ 0 and A = A∗ if and only if all the eigenvalues
are real.

We leave the proof to the reader as an exercise.
Let us next look at the duals of the shift (semi)groups in Examples 2.3.2 and

2.5.3. To do this we need to determine the dual of an L p-space.

Lemma 3.5.9 Let U be a reflexive Banach space4, let 1 ≤ p < ∞, 1/p +
1/q = 1 (with 1/∞ = 0), ω ∈ R, and J ⊂ R (with positive measure).

(i) The dual of L p
ω(J ; U ) can be identified with Lq

−ω(J ; U ∗) in the sense that
every bounded linear functional f on L p

ω(J ; U ) is of the form

〈u, f 〉 =
∫

J
〈u(t), u∗(t)〉(U,U ∗) dt, u ∈ L p

ω(J ; U ),

for some u∗ ∈ Lq
−ω(J ; U ∗). The norm of the functional f is equal to the

Lq
−ω(J )-norm on u∗.

(ii) L p
ω(J ; U ) is reflexive iff 1 < p < ∞.

Proof For ω = 0 this lemma is contained in Diestel and Uhl [1977, Theorem 1,
p. 98 and Corollary 2, p. 100]. If f is a bounded linear functional on L p

ω(J ; U )
for some ω �= 0, then fω : v �→ 〈v, fω〉 = 〈eωv, f 〉 (where eω(t) = eωt ) is a
bounded linear functional on L p(J ; U ), hence this functional has a representa-
tion of the form

〈v, fω〉 =
∫

J
〈v(t), u∗

ω(t)〉 dt

for some u∗
ω ∈ Lq (J ; U ∗). Replacing v ∈ L p(J ; U ) by u = eωv ∈ Lq

ω(J ; U )
and u∗

ω by u∗ = e−ωu∗
ω ∈ Lq

−ω(J ; U ∗) we get the desired representation

〈u, f 〉 = 〈e−ωu, fω〉 =
∫

J
〈e−ωt u(t), u∗

ω(t)〉 dt

=
∫

J
〈u(t), e−ωt u∗

ω(t)〉 dt =
∫

J
〈u(t), u∗(t)〉 dt.

�

The representation in Lemma 3.5.9 is canonical in the sense that it ‘inde-
pendent of p and ω’ in the following sense:

Lemma 3.5.10 Let U be a reflexive Banach space. If f is a bounded linear
functional on L p1

ω1 (J ; U ) ∩ L p2
ω2 (J ; U ), where 1 ≤ p1 < ∞, 1 ≤ p2 < ∞, ω1 ∈

R, and ω2 ∈ R, then we get the same representing function u∗ for f if we use

4 In part (i) the reflexivity assumption on U can be weakened to the assumption that U has the
Radon–Nikodym property. See Diestel and Uhl (1977, Theorem 1, p. 98).
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any combination of pi and ω j , i , j = 1, 2 in Lemma 3.5.9. In particular, u∗ ∈
Lq1

−ω1
(J ; U ∗) ∩ Lq2

−ω2
(J ; U ∗), where 1/p1 + 1/q1 = 1 and 1/p2 + 1/q2 = 1.

Proof This follows from the fact that the integral
∫

J 〈u(t), u∗(t)〉 dt does not
depend on either p or ω (as long as it converges absolutely). �

Example 3.5.11 Let U be a reflexive Banach space, let 1 ≤ p < ∞, 1/p +
1/q = 1 (with 1/∞ = 0), and ω ∈ R.

(i) The dual of the bilateral left shift group τ t , t ∈ R, on L p
ω(R; U ) is the

right shift group τ−t , t ∈ R, which acts on Lq
−ω(R; U ∗) if 1 < p < ∞

and on BUC−ω(R; U ∗) if p = 1.
(ii) The dual of the incoming left shift semigroup τ t

+, t ≥ 0, on L p
ω(R+; U ) is

the right shift semigroup

(τ−t
+ u)(t) = (τ−tπ+u)(s) =

{
u(s − t), s > t,

0, otherwise,

which acts on Lq
−ω(R+; U ∗) if 1 < p < ∞ and on

{u∗ ∈ BUC−ω(R
+

; U ∗) | u∗(0) = 0} if p = 1.
(iii) The dual of the outgoing left shift semigroup τ t

−, t ≥ 0, on L p
ω(R−; U ) is

the right shift semigroup

(τ−t
− u)(s) = (π−τ−t u)(s) =

{
u(s − t), s ≤ 0,

0, otherwise,

which acts on Lq
−ω(R−; U ∗) if 1 < p < ∞ and on BUC−ω(R

−
; U ∗) if

p = 1.
(iv) The dual of the finite left shift semigroup τ t

[0,T ), t ≥ 0, on L p
ω((0, T ); U ) is

the right shift semigroup

(τ−t
[0,T )u)(s) = (π[0,T )τ

−tπ[0,T )u)(s) =
{

u(s − t), t ≤ s < T,

0, otherwise,

which acts on Lq ((0, T ); U ∗) if 1 < p < ∞ and on
{u∗ ∈ C([0, T ]; U ∗) | u∗(0) = 0} if p = 1.

(v) The dual of the circular left shift group τ t
TT

, t ≥ 0, on L p
ω(TT ; U ) is the

circular right shift group

(τ−t
TT

u)(s) = (τ−t u)(s) = u(s − t),

which acts on Lq (TT ; U ∗) if 1 < p < ∞ and on C(TT ; U ∗) if p = 1.
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Proof (i) By Lemma 3.5.9, the dual of L p
ω(R; U ) is Lq

−ω(R; U ∗). Let u ∈
L p

ω(R; U ) and u∗ ∈ Lq
−ω(R; U ∗) and t ∈ R. Then

〈τ t u, u∗〉 =
∫ ∞

−∞
〈τ t u(s), u∗(s)〉 ds =

∫ ∞

−∞
〈u(s + t), u∗(s)〉 ds

=
∫ ∞

−∞
〈u(s), u∗(s − t)〉 ds =

∫ ∞

−∞
〈u(s), τ−t u∗(s)〉 ds

= 〈u, τ−t u∗〉.
This shows that τ ∗t = τ−t . The rest of (i) follows from Theorem 3.5.6, Defini-
tion 3.5.7, and Examples 2.3.2 and 2.5.3.

(ii)–(iv) This follows from (i) and Examples 2.3.2 and 2.5.3. �

The new right shift semigroups that we obtained in Example 3.5.11 are sim-
ilar to the left shift semigroups that we have encountered earlier. The similarity
transform is the reflection operator R(in one case combined with a shift), which
we define as follows.

Definition 3.5.12 Let 1 ≤ p ≤ ∞, and let U be a Banach space.

(i) For each function u ∈ L p
loc(R; U ) we define the reflection Ru of u by

( Ru)(s) = u(−s), s ∈ R. (3.5.5)

(ii) For each function u ∈ Regloc(R; U ) we define the reflection Ru of u by

( Ru)(s) = lim
t↓−s

u(t), s ∈ R. (3.5.6)

Observe that these two cases are consistent in the sense that in part (ii) we
have ( Ru)(s) = u(−s) for all but countably s.

Lemma 3.5.13 Let J ⊂ R, t ∈ R, ω ∈ R, and 1 ≤ p ≤ ∞.

(i) Rmaps L p|Regω(R; U ) onto L p|Reg−ω(R; U ), and
(a) R−1 = R,
(b) Rτ t = τ−t R,
(c) RπJ = π RJ R,5 and
(d) R∗ = R(in L p

ω(J ; U ) with reflexive U and 1 ≤ p < ∞).
(ii) π∗

J = πJ (in L p
ω(J ; U ) with reflexive U and 1 ≤ p < ∞).

(iii) The dual of the time compression operator γλ (see Example 2.3.6) is the
inverse time compression operator γ1/λ (in L p

ω(J ; U ) with reflexive U
and 1 ≤ p < ∞).

5 In the Reg-well-posed case we require χJ to be right-continuous and define RJ to be the set
whose characteristic function is χ RJ
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(iv) The right shift (semi)groups in Example 3.5.11 are similar to the
corresponding left shifts (semi)groups in Examples 2.3.2 and 2.5.3 as
follows:
(a) τ� = Rτ R;
(b) τ�

+ = Rτ− R;
(c) τ�

− = Rτ+ R;
(d) τ�

[0,T ) = τ−T Rτ[0,T ) Rτ T ;
(e) τ�

TT
= RτTT R.

We leave the easy proof to the reader.

3.6 The rigged spaces induced by the generator

In our subsequent theory of L p|Reg-well-posed linear systems we shall need
a scale of spaces Xn , n = 0, ±1, ±2, . . . , which are constructed from X by
means of the semigroup generator A. In particular, the spaces X1 and X−1 will
be of fundamental importance. To construct these spaces we need not even
assume that A generates a C0 semigroup on X ; it is enough if A has a nonempty
resolvent set and dense domain.

We begin with the case n ≥ 0, and define

X0 = X, Xn = D
(

An
)

for n = 1, 2, 3, . . . .

Choose an arbitrary number α from the resolvent set of A. Then (α − A)−n

maps X one-to-one onto D (An) (this can be proved by induction over n), and
we can define a norm in Xn by

|x |n = |x |Xn = ∣∣(α − A)n x
∣∣

X .

With this norm each Xn becomes a Banach space, Xn+1 ⊂ Xn with a dense
injection, and (A − α)n is an isometric (i.e., norm-preserving) isometry (i.e.,
bounded linear operator with a bounded inverse) from Xn onto X . If X is a
Hilbert space, then so are all the spaces Xn .

If we replace α by some other β ∈ ρ(A), then (β − A)−n has the same range
as (α − A)−n , so if we use β instead of α in the definition of Xn then we still
get the same space, but with a different norm. However, the two norms are
equivalent since (α − A)n(β − A)−n is an isomorphism (not isometric) on X :
for n = 1 this follows from the resolvent formula in Lemma 3.2.8(i) which
gives

(α − A)(β − A)−1 = 1 + (α − β)(β − A)−1,
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and by iterating this formula we get the general case. Most of the time the value
of α ∈ ρ(A) which determines the exact norm in Xn is not important.

If A generates a C0 semigroup A, then the restriction A|Xn of A to Xn

is a C0 semigroup on Xn . It follows from Theorem 3.2.1(iii) and Example
3.2.6(i) that A|Xn = (α − A)−nA(α − A)n , i.e., A|Xn and A are (isometrically)
isometric. Thus, all the important properties of these semigroups are identical.
In particular, they all have the same growth bound ωA, and the generator of An

is the restriction A|Xn+1 of A to Xn+1. In the sequel we occasionally write (for
simplicity) A instead of A|Xn and A instead of A|Xn+1 (but we still use the more
complicated notions in those cases where the distinction is important).

It is also possible to go in the opposite direction to get spaces Xn with
negative index n. This time we first define a sequence of weaker norms in X ,
namely

|x |−n = ∣∣(α − A)−n x
∣∣

X
for n = 1, 2, 3, . . . ,

and let X−n be the completion of X with respect to the norm |·|−n . Then (α − A)n

has a unique extension to an isometric operator which maps X onto X−n . We
denote this operator by (α − A)n

|X and it inverse by (α − A)−n
|X−n

, or sometimes
simply by (α − A)n respectively (α − A)−n if no confusion is likely to arise. In
the case n = 1 we often write (α − A|X )−1 instead of (α − A)−1

|X−1
. Thus, for all

n, l = 0, ±1, ±2, . . . ,

(α − A)l
|Xn+l

is an isometry of Xn+l onto Xn.

If A generates a C0 semigroup A on X , then we can use the formula

A|X−n = (α − A)n
|XA(α − A)−n

|X−n

to extend (rather than restrict) A to a semigroup on each of the spaces X−n .
In this way we get a full scale of spaces Xn+1 ⊂ Xn for n = 0, ±1, ±2, . . . ,
and a corresponding scale of isometric semigroups A|X−n . In places where no
confusion is likely to arise we abbreviate A|X−n to A. The generator of A|X−n is
A|X−n+1 . As in the case of the semigroup itself we sometimes abbreviate A|X−n+1

to A.
Above we have defined the norm in X1 by using the fact that (α − A)−1 maps

X one-to-one onto X1 whenever α ∈ ρ(A). Another commonly used norm in
X1 is the graph norm

‖x‖X1 = (|x |2X + |Ax |2X
)1/2

. (3.6.1)

This is the restriction of the norm ‖[ x
y
]‖ = (|x |2X + |y|2X

)1/2
in

[
X
X

]
to the

graph G (A) = {[
Ax
x

] ∣∣ x ∈ X
}
. This graph is closed since A is closed, so it is

a Banach space in itself (or a Hilbert space if X is a Hilbert space). The map
which takes

[
Ax
x

] ∈ G (A) into x is injective, so we may let x ∈ D (A) inherit
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the norm of
[

Ax
x

] ∈ G (A), and this is the norm ‖·‖X1 in (3.6.1). This norm is
majorized by the earlier introduced norm |·|X1 since

|Ax |X = |(A − α + α)x |X ≤ ‖x‖X1 + |α||x |X ,

and

|x |X = |(α − A)−1(α − A)x |X ≤ ‖(α − A)−1‖|x |X1 ,

so by the open mapping theorem, the two norms |·|X1 and ‖·‖X1 are equivalent.
A similar norm can be used in Xn = D (An) for n = 2, 3, . . . , namely

‖x‖Xn = (|x |2X + |An x |2X
)1/2

. (3.6.2)

To prove that this is a norm in Xn we can argue as above: the operator An is closed
since it is the restriction of (An)|X := A|X−n+1 A|X−n+2 · · · A|X ∈ B(X ; X−n) to its
natural domain D (An) = {x ∈ X | (An)|X x ∈ X}, and the above norm is the
graph norm of An on D (An). To show that it is equivalent to the norm |·|Xn

we may argue as follows. Take some α ∈ ρ(A). Then, for each x ∈ D (An) we
have (from the binomial formula)

(α − A)n x =
n∑

k=0

(
n

k

)
αk An−k x,

or equivalently,

An x = (α − A)n x −
n∑

k=1

(
n

k

)
αk An−k x

=
(

1 −
n∑

k=1

(
n

k

)
αk An−k(α − A)−n

)
(α − A)n x .

Thus, |An x |X ≤ M |x |Xn , where M is the norm of the operator 1 −∑n
k=1

(n
k

)
αk An−k(α − A)−n ∈ B(X ), and, of course,

|x |X = |(α − A)−n(α − A)n x |X ≤ ‖(α − A)−n‖|x |Xn .

This shows that the norm ‖·‖Xn is majorized by the norm |·|Xn , so by the open
mapping theorem, the two norms |·|Xn and ‖·‖Xn are equivalent.

Let us illustrate these constructions by looking at Example 3.3.5. In this
example we have

|x |2Xn
=

∞∑
k=1

|α − λk |2n|〈x, φk〉|2H ,

where α ∈ ρ(A), and each Xn is a Hilbert space with the orthogonal basis
{φn}∞n=1 (it becomes orthonormal if we divide φk by |α − λk |). For n ≥ 1 we
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can alternatively use the equivalent norm

|x |2Xn
=

∞∑
k=1

(1 + |λk |)2n|〈x, φk〉|2H ;

cf. Example 3.3.5.

Remark 3.6.1 This remark explains how the spaces Xn interact with duality.
Since Xn+1 ⊂ Xn for all n = 0, ±1, ±2, . . . , with dense embeddings, the duals
of these embedding maps are injective (see Lemma 9.10.2(ii)), so they define
embeddings (Xn)∗ ⊂ (Xn+1)∗ (which need not be dense). Since (α − A)n is an
isometry of Xn+l onto Xl , it follows that (α − A∗)n is an isometry of (Xl)∗ onto
(Xn+l)∗ for all n, l = 0, ±1, ±2, . . . . If X is reflexive, then the embeddings
(Xn)∗ ⊂ (Xn+1)∗ are dense, and these spaces are the same that we would get
by repeating the argument leading to the definition of the spaces Xn , with X
replaced by X∗, A replaced by A∗, and using a different subindex (i.e., −n
instead of n). When we discuss the causal and anti-causal dual systems �d and
�† it is convenient to denote the domain of A∗ by X∗

1 , and accordingly, in the
sequel we use the notation

X∗
−n := (X∗)−n := (Xn)∗, n = 0, ±1, ±2, . . . .

In particular,

〈An x, x∗〉(Xl ,X∗
−l ) = 〈x, A∗n x∗〉(Xn+l ,X∗

−(n+l)), x ∈ Xn+l x∗ ∈ X∗
−l ,

where by A∗n we mean A∗n := (A∗)n = (An)∗.

In the Hilbert space case one often uses a slightly different construction,
which resembles the one described in Remark 3.6.1. Assume that W ⊂ X are
two Hilbert spaces, with a continuous and dense embedding. Then (x, y) �→
〈x, y〉X is a bounded sesquilinear form on W , and therefore (see, e.g., Kato
(1980, pp. 256–257)) there is a unique operator E ∈ B(W ) which is positive
and self-adjoint (with respect to the inner product of W ) such that

〈x, y〉X = 〈Ex, y〉W = 〈x, Ey〉W = 〈
√

Ex,
√

E y〉W , x, y ∈ W,

where
√

E is the positive self-adjoint square root of E (cf. Lemma A.2.2). For
all x ∈ W ,

|Ex |2X = 〈E
√

Ex, E
√

Ex〉W ≤ ‖E‖2
B(W )|

√
Ex |2W = ‖E‖2

B(W )|x |2X ,

and this implies that E can be extended to a unique operator in B(X ), which
we still denote by the same symbol E . This operator is still self-adjoint in X
since 〈x, Ey〉X = 〈Ex, Ey〉W = 〈Ex, y〉X for all x , y ∈ W , and W is dense in
X . The space X may be regarded as the completion of W with respect to the
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norm |x |X = |√Ex |W , and this means that the extended version of
√

E is an
isometric isomorphism of W onto X .

Let V be the completion of X with respect to the norm |x |V = |√Ex |X . By
repeating the same argument that we gave above with W replaced by X and X
replaced by V we find that E can be extended to a self-adjoint operator in V
(which we still denote by the same letter), that

√
E is an isometric isomorphism

of V onto X , and that E is an isometric isomorphism of V onto W . Moreover,

〈x, y〉V = 〈Ex, y〉X = 〈x, Ey〉X = 〈
√

Ex,
√

E y〉X , x, y ∈ X,

〈x, y〉V = 〈Ex, y〉X = 〈Ex, Ey〉W , x, y ∈ W.

The space V can be interpreted as the dual of W with X as pivot space as
follows. Every x ∈ V induces a bounded linear functional on W through the
formula

〈x, y〉(V,W ) = 〈Ex, y〉W ,

and every bounded linear functional on W is of this type since E maps W
one-to-one onto V . This is a norm-preserving mapping of the dual of W onto
V , since the norm of the above functional is |Ex |W = |x |V . That X is a pivot
space means that for all x ∈ X and y ∈ W ,

〈x, y〉(V,W ) = 〈x, y〉X ,

which is true since both sides are equal to 〈Ex, y〉W .
If we apply this procedure (in the Hilbert space case) to the space X1 ⊂ X

described at the beginning of this section, then we get V = X∗
−1 and the extended

version of E is given by E = (α − A)−1(α − A∗
|X )−1 if we use the norm |x |1 =

|(α − A)x |X in X1. If we instead use the graph norm |x |21 = |x |2X + |Ax |2X in
X1, then the extended version of E is given by E = (1 + A∗

|X A)−1.
In this book we shall usually identify X with its dual, and identify the dual of

W with V as described above. However, occasionally it is important to compute
the dual of an operator with respect to the inner product in W or in V instead of
computing it with respect to the inner produce in X . Here the following result
is helpful.

Proposition 3.6.2 Let U, Y , and W ⊂ X ⊂ V be Hilbert spaces, where the
embeddings are continuous and dense, let E ∈ B(V ) be injective, selfadjoint
(with respect to the inner product in V ), and suppose that

√
E maps V iso-

metrically onto X and that
√

E |X maps X isometrically onto W (the operator
E and the space V can be constructed starting from W and X as explained
above). We identify U and Y with their duals.

(i) Let B ∈ B(U ; W ), let B ′ ∈ B(W ; U ) be the adjoint of B with respect to
the inner product in W , and let B∗ ∈ B(X ; U ) be the adjoint of B with
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respect to the inner product in X (note that B ∈ B(U ; X )). Then
B∗ = B ′E|X . In particular, this formula can be used to extend B∗ to
B ′E ∈ B(V ; U ), which is the adjoint of B when we identify the dual of
W with V .

(ii) Let B ∈ B(U ; X ), let B∗ ∈ B(X ; U ) be the adjoint of B with respect to
the inner product in X, and let B ′′ ∈ B(V ; U ) be the adjoint of B with
respect to the inner product in V (note that B ∈ B(U ; V )). Then
B ′′ = B∗E.

(iii) Let B ∈ B(U ; V ), let B∗ ∈ B(W ; U ) be the adjoint of B when we
identify the dual of V with W (with X as pivot space), and let
B ′′ ∈ B(V ; U ) be the adjoint of B with respect to the inner product in
V . Then B ′′ = B∗E.

(iv) Let C ∈ B(V ; Y ), let C ′′ ∈ B(Y ; V ) be the adjoint of C with respect to
the inner product in V , and let C∗ ∈ B(Y ; X ) be the adjoint of C with
respect to the inner product in X (note that C ∈ B(X ; Y ). Then
C∗ = EC ′′. In particular, C∗ ∈ B(Y ; W ).

(v) Let C ∈ B(X ; Y ), let C∗ ∈ B(Y ; X ) be the adjoint of C with respect to
the inner product in X, and let C ′ ∈ B(Y ; W ) be the adjoint of C with
respect to the inner product in W (note that C ∈ B(W ; Y ). Then
C ′ = EC∗.

(vi) Let C ∈ B(W ; Y ), let C ′ ∈ B(Y ; W ) be the adjoint of C with respect to
the inner product in W , and let C∗ ∈ B(Y ; V ) be the adjoint of C when
we identify the dual of W with V (with X as pivot space). Then
C ′ = EC∗.

(vii) Let A ∈ B(V ), and suppose that X is invariant under A. Let A′′ ∈ B(W )
be the adjoint of A with respect to the inner product of V , and let A∗

|X be
the adjoint of A|X with respect to the inner produce of X. Then
E A′′ = A∗

|X E. In particular, W is invariant under A∗
|X .

(viii) Let A ∈ B(X ), and suppose that W is invariant under A. Let A∗ be the
adjoint of A with respect to the inner product of X, and let A′

|W be the
adjoint of A|W with respect to the inner produce of W . Then
A′

|W E|X = E A∗. In particular, E X is invariant under A′
|W .

(ix) Let A ∈ B(W ), let A′ ∈ B(W ) be the adjoint of A with respect to the
inner product in W , and let A∗ ∈ B(V ) be the adjoint of A when we
identify the dual of W with V . Then A′E = E A∗.

Proof (i) For all x ∈ X and u ∈ U ,

〈u, B∗x〉U = 〈Bu, x〉X = 〈Bu, Ex〉W = 〈u, B ′Ex〉U .

Thus, B∗ = B ′E|X . If we instead let B∗ stand for the adjoint of B when we
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identify the dual of W by V , then for all u ∈ U and x ∈ V ,

〈B∗x, u〉U = 〈x, Bu〉(V,W ) = 〈Ex, Bu〉W = 〈B ′Ex, u〉U .

Thus, B∗ = B ′E .
(ii) Apply (i) with W replaced by X and X replaced by V .
(iii) For all x ∈ V and u ∈ U ,

〈u, B ′′x〉U = 〈Bu, x〉V = 〈E Bu, Ex〉W = 〈Bu, Ex〉(V,W ) = 〈u, B∗Ex〉U .

Thus B ′′ = B∗E .
(iv) For all x ∈ X and y ∈ Y ,

〈x, C∗y〉X = 〈Cx, y〉Y = 〈x, C ′′y〉V = 〈x, EC ′′y〉X .

Thus C∗ = EC ′′.
(v) Apply (iv) with V replaced by X and X replaced by W .
(vi) For all x ∈ W and y ∈ Y ,

〈C ′y, x〉W = 〈y, Cx〉Y = 〈C∗y, x〉(V,W ) = 〈EC∗y, x〉W .

Thus, C ′ = EC∗.
(vii) For all x ∈ X and y ∈ V ,

〈x, E A′′y〉V = 〈AEx, y〉V = 〈A|X Ex, Ey〉X = 〈x, E A∗
|X Ey〉X

= 〈x, A∗
|X Ey〉V .

Thus, E A′′ = A∗
|X E on V . This implies that W is invariant under A∗

|X .
(viii) Apply (vii) with V replaced by X and X replaced by W .
(ix) For all x ∈ V and y ∈ W ,

〈A′Ex, y〉W = 〈Ex, Ay〉W = 〈x, Ay〉(V,W ) = 〈A∗x, y〉(V,W )

= 〈E A∗x, y〉W .

Thus A′E = E A∗. �

3.7 Approximations of the semigroup

The approximation Aα to A that we used in the proof of the Hille–Yosida
Theorem 3.4.1 will be quite useful in the sequel, too. For later use, let us record
some of the properties of this and some related approximations:

Theorem 3.7.1 Let A be the generator of a C0 semigroup on X. Define the
space X1 = D (A) as in Section 3.6. For all α ∈ ρ(A) (in particular, for
all α ∈ C+

ωA
), define

Jα = α(α − A)−1, Aα = αA(α − A)−1,
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and for all h > 0 and x ∈ X, define

J h x = 1

h

∫ t

0
As x ds, Ah = 1

h
(Ah − 1)x .

Then the following claims are true:

(i) For all α ∈ ρ(A) and h > 0, Jα ∈ B(X ; X1), J h ∈ B(X ; X1), Aα ∈ B(X ),
Ah ∈ B(X ), and

Jα = α(α − A)−1 = 1 + A(α − A)−1,

Aα = AJα = α(Jα − 1) = α2(α − A)−1 − α,

Ah = AJ h = 1

h
(Ah − 1)x = 1

h
A

∫ t

0
As x ds,

Moreover, for α ∈ C+
ωA

,

Jαx = α

∫ ∞

0
e−αsAs x ds, x ∈ X.

(ii) For all α, β ∈ ρ(A) and h, k, t > 0, the operators Jα , Jβ , J h, J k , Aα ,
Aβ , Ah, Ak, and At commute with each other.

(iii) Jα and J h approximate the identity and Aα and Ah approximate A in the
sense that the following limits exist:

lim
α→+∞ Jαx = lim

h↓0
J h x = x in X for all x ∈ X,

lim
α→+∞ Aαx = lim

h↓0
Ah x = Ax in X for all x ∈ X1,

lim
α→+∞ α−1 Jαx = lim

α→+∞(α − A)−1x = 0 in X1 for all x ∈ X,

lim
h↓0

h J h x = lim
h↓0

∫ t

0
As x dx = 0 in X1 for all x ∈ X,

lim
α→+∞ α−1 Aαx = lim

h↓0
h Ah x = 0 in X for all x ∈ X .

(iv) A is uniformly continuous (hence analytic) iff Jα has a bounded inverse
for some α ∈ ρ(A), or equivalently, iff J h has a bounded inverse for
some h > 0.

Proof (i) Obviously, Jα ∈ B(X ; X1), Aα ∈ B(X ), and Ah ∈ B(X ). By Theorem
3.2.1(ii), J h ∈ B(X ; X1). The algebraic properties in (i) are easy to verify (see
also Theorem 3.2.1(ii)). The integral formula for Jα is found in Theorem 3.2.9(i).

(ii) This is true since As commutes with At and with (α − A)−1. See also
Theorems 3.2.1 and 3.2.9.
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(iii) That limα→+∞ Jαx = limh↓0 J h x = x in X for all x ∈ X follows from
Theorems 3.2.1(i) and 3.2.9(iii) and that limα→+∞ Aαx = limh↓0 Ah x = Ax in
X for all x ∈ X1 follows from (i), Definition 3.1.1, and Theorem 3.2.9(iii). By
Theorem 3.2.9(iii), for all β ∈ ρ(A), limα→+∞(β − A)(α − A)−1x = 0 in X
for all x ∈ X , and this implies that limα→+∞ α−1 Jαx = 0 in X1 for all x ∈ X .
To prove that limh↓0 h J h x = 0 in X1 for all x ∈ X it suffices to observe that,
for all β ∈ ρ(A),

(β − A)h J h x = (β − A)
∫ h

0
As x ds = β

∫ h

0
As x + x − Ah x,

and here the right-hand side tends to zero in X for every x ∈ X . That
limα→+∞ α−1 Aαx = limh↓0 h Ah x = 0 in X for all x ∈ X follows from (i) and
the fact that limα→+∞ Jαx = limh↓0 J h x = x in X for all x ∈ X .

(iv) Obviously A ∈ B(X ) iff Jα has a bounded inverse. That J h has a bounded
inverse for some h > 0 iff A ∈ B(X ) follows from Example 3.1.2 and Remark
3.1.4. By Theorem 3.1.3, the boundedness of A is equivalent to the uniform
continuity of A. �

Definition 3.7.2 The operators Jα and Aα in Theorem 3.7.1 are called the
Yosida (or Abel) approximations of the identity 1 and of A, respectively (with
parameter α). The operators J h and Ah in Theorem 3.7.1 are called the Cesàro
approximations (or order one) of the identity 1 and of A, respectively (with
parameter h).

Theorem 3.7.3 Let A be the generator of a C0 semigroup A on X, and let
Aα = αA(α − A)−1 be the Yosida approximation of A. Then for each x ∈ X
and t ≥ 0, limα→+∞ eAα t x = At x , and the convergence is uniform in t on any
bounded interval.

The proof of this theorem is contained in the proof of Theorem 3.4.1.
The same result is true if we replace the Yosida approximation by the Cesàro

approximation:

Theorem 3.7.4 Let A be the generator of a C0 semigroup A on X, and let
Ah = 1

h (Ah − 1) be the Cesàro approximation of A. Then for each x ∈ X and

t ≥ 0, limh↓0 eAh t x = At x , and the convergence is uniform in t on any bounded
interval.

Proof The proof follows the same lines as the proof of Theorem 3.4.1 with Aα

replaced by Ah , At
α replaced by At

h = eAh t , and Bα replaced by Bh = Ah + 1
h =

1
h Ah . We can choose M and ω so that ‖At‖ ≤ Meωt for all t ≥ 0. Then (3.4.1)
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is replaced by

‖(Bh)n‖ =
∥∥∥( 1

h
Ah

)n∥∥∥ ≤ Meωhn

hn
,

and (3.4.3) is replaced by

‖At
h‖ ≤ e−t/h

∞∑
n=0

tn

n!

Meωhn

hn

= Me−t/he(t/h)eωh = Met/h(eωh−1), t ≥ 0.

This tends to Meωt as h ↓ 0, uniformly in t on any bounded interval. The new
version of estimate (3.4.4) is (for all h, k > 0),

|At
h x − At

k x | ≤ M2
∫ t

0
es/h(eωh−1)e(t−s)/k(eωk−1)|Ah x − Ak x | ds,

and the remainder of the proof of Theorem 3.4.1 stays the same. �

Theorem 3.7.5 Let A be the generator of a C0 semigroup A on X. Then, for
all t ≥ 0,

At x = lim
n→∞

(
1 − t

n
A
)−n

x, x ∈ X,

and the convergence is uniform in t on each bounded interval.

Proof By Theorem 3.2.9(i), for all x ∈ X and (n − 1)/t > ωA,(
1 − t

n
A
)−(n+1)

x =
(n

t

)n+1(n

t
− A

)−(n+1)
x

=
(n

t

)n+1 1

n!

∫ ∞

0
sne−ns/tAs x ds

= nn+1

n!

∫ ∞

0

(
ve−v

)n
Atvx dv.

As nn+1

n!

∫ ∞
0 (ve−v)n dv = 1, this implies that∣∣∣(1 − t

n
A
)−(n+1)

x − At x
∣∣∣

=
∣∣∣nn+1

n!

∫ ∞

0

(
ve−v

)n
(Atvx − At x) dv

∣∣∣
≤ nn+1

n!

∫ ∞

0
vne−nv

∣∣Atvx − At x
∣∣ dv.

For each T > 0, the function v �→ Av is uniformly continuous on [0, T ]. Thus,
for every ε > 0 it is possible to find a δ > 0 such that |Atvx − At x | ≤ ε for
all t ∈ [0, T ] and 1 − δ ≤ v ≤ 1 + δ. We split the integral above into three
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parts I1, I2, and I3, over the intervals [0, 1 − δ), [1 − δ, 1 + δ), and [1 + δ, ∞),
respectively. Then∣∣∣(1 − t

n
A
)−(n+1)

x − At x
∣∣∣ = I1 + I2 + I3.

The function v �→ ve−v is increasing on [0, 1], so we can estimate for all t ∈
[0, T ] (choose M > 0 and ω > 0 so that ‖At‖ ≤ Meωt ≤ MeωT )

I1 ≤ nn+1((1 − δ)e−(1−δ))n

n!

∫ 1−δ

0

∣∣Atvx − At x
∣∣ dv

≤ 2MeωT nn+1((1 − δ)e−(1−δ))n

n!
,

I2 ≤ ε
nn+1

n!

∫ 1+δ

1−δ

(
ve−v

)n
dv < ε,

I3 = nn+1

n!

∫ ∞

1+δ

(
ve−v

)n∣∣Atvx − At x
∣∣ dv

≤ 2M
nn+1

n!

∫ ∞

1+δ

(
ve−v

)n
eωT v dv

= 2M
nn+1

n!

∫ ∞

1+δ

(
ve−(1−(1+ωT )/n)v

)n
e−v dv.

We recall Stirling’s formula

lim
n→∞

nn+ 1
2

n! en
=

√
2π. (3.7.1)

which together with the fact that (1 − δ)e1−δ < 1/e implies that I1 → 0 as
n → ∞. The function v �→ ve−(1−(1+ωT )/n)v is decreasing for v ≥ (1 − (1 +
ωT )/n)−1, so for n large enough, we can estimate I3 by

I3 ≤ 2M
nn+1

n!

(
(1 + δ)e−(1−(1+ωT )/n)(1+δ)

)n
∫ ∞

1+δ

e−v dv

≤ 2M
nn+1

n!

(
(1 + δ)e−(1−(1+ωT )/n)(1+δ)

)n
.

Since

lim
n→∞(1 + δ)e−(1−(1+ωT )/n)(1+δ) = (1 + δ)e−(1+δ) < 1/e,

we can use Stirling’s formula (3.7.1) once more to conclude that I3 tends to
zero as n → ∞. Thus,

lim
n→∞

(
1 − t

n
A
)−(n+1)

x = At x,
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uniformly in t ∈ [0, T ]. As furthermore

lim
n→∞

(
1 − t

n
A
)−1

x = x

uniformly in t ∈ [0, T ] (see Theorem 3.7.1(iii)), this implies that

lim
n→∞

(
1 − t

n
A
)−n

x = At x,

uniformly in t on any bounded interval. �

3.8 The nonhomogeneous Cauchy problem

It is time to study of the relationship between the differential equation

ẋ(t) = Ax(t) + f (t), t ≥ s,

x(s) = xs,
(3.8.1)

and the variation of constants formula

x(t) = At−s xs +
∫ t

s
At−v f (v) dv. (3.8.2)

It is possible to do this in several different settings, but we choose a setting that
is relevant for the full system

[
A B

C D

]
. Here the spaces Xn and the extended

semigroups A|Xn and generators A|Xn+1 (with n ≤ 0) introduced in Section 3.6
become important.

Definition 3.8.1 Let s ∈ R, xs ∈ X , n = 0, ±1, ±2, . . . , and f ∈
L1

loc([s, ∞); Xn−1). A function x is a strong solution of (3.8.1) in Xn

(on the interval [s, ∞)) if x ∈ C([s, ∞); Xn) ∩ W 1,1
loc ([s, ∞); Xn−1), x(s) = xs ,

and ẋ(t) = A|Xn x(t) + f (t) in Xn−1 for almost all t ≥ s. By a strong solution
of (3.8.1) (without any reference to a space Xn) we mean a strong solution of
(3.8.1) in X (= X0).

Below we shall primarily look for sufficient conditions which imply that
we have a strong solution (in X ). This means that we must take xs ∈ X and
f ∈ L1

loc([s, ∞); X−1), and that (3.8.1) should be interpreted as an equation in
X−1 (valid for almost all t ≥ s). Thus, it should really be written in the form
(recall that A|X maps X = X0 into X−1)

ẋ(t) = A|X x(t) + f (t), t ≥ s,

x(s) = xs .
(3.8.3)
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The integration in (3.8.2) should be carried out in X−1, so that this identity
should really be written in the form

x(t) = At−s xs +
∫ t

s
A

t−v
|X−1

f (v) dv. (3.8.4)

In order for (3.8.1) and (3.8.2) (or more precisely, (3.8.3) and (3.8.4)) to be
equivalent we need some sort of smoothness assumptions on f : it should be
either smooth in time or smooth in the state space (see parts (iv) and (v) below).

Theorem 3.8.2 Let s ∈ R, xs ∈ X, and f ∈ L1
loc([s, ∞); X−1).

(i) The function x given by (3.8.4) is a strong solution of (3.8.1) in X−1

(hence in Xn for every n ≤ −1).
(ii) Equation (3.8.1) has at most one strong solution x in X, namely the

function x given by (3.8.4).
(iii) The function x given by (3.8.4) is a strong solution of (3.8.1) in Xn for

some n ≥ 0 if and only if x ∈ C([s, ∞); Xn) and
f ∈ L1

loc([s, ∞); Xn−1). (In particular, this implies that xs ∈ Xn.)
(iv) If f ∈ L1

loc([s, ∞); X ) then the function x given by (3.8.2) is a strong
solution of (3.8.1) in X.

(v) If f ∈ W 1,1
loc ([s, ∞); X−1) then the function x given by (3.8.4) is a strong

solution of (3.8.1) in X, x ∈ C1([s, ∞); X−1), and z = ẋ is a strong
solution of the equation

ż(t) = Az(t) + ḟ (t), t ≥ s,

z(s) = Axs + f (s)
(3.8.5)

in X−1. In particular, ẋ(t) = A|X x(t) + f (t) in X−1 for all t ≥ s (and
not just almost all t ≥ s).

(vi) If f = π[α,β) f1, where s ≤ α < β ≤ ∞ and f1 ∈ W 1,1
loc ([s, ∞); X−1)

then the function x given by (3.8.4) is a strong solution of (3.8.1) in X.
(vii) If f is any finite linear combination of functions of the type presented in

(iv)–(vi), then the function x given by (3.8.4) is a strong solution of
(3.8.1) in X.

Proof (i) Define x by (3.8.4). The term t �→ At−s xs belongs to C([s, ∞); X ) ∩
C1([s, ∞); X−1) ∩ C2([s, ∞); X−2) and it is a strong solution of (3.8.1) with
f = 0 in X . Subtracting this term from x we reduce the problem to the case
where xs = 0. (The same reduction is valid in the proofs of (ii)–(vii), too.)

That x ∈ C([s, ∞); X ) follows from Proposition 2.3.1 with X replaced by
X−1, C = 0, and D = 0.

Suppose for the moment that f ∈ C([s, ∞); X−1). Since A|X−1 ∈
B(X−1; X−2), we can then easily justify the following computation for t ≥ 0
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(the double integrals are computed in X−1, and the other integrals in X−2 or
X−1; see Theorem 3.2.1(ii) for the last step)∫ t

s
A|X−1 x(v) dv = A|X−1

∫ t

s

∫ v

s
A

v−w
|X−1

f (w) dw dv

= A|X−1

∫ t

s

∫ t

w

A
v−w
|X−1

f (w) dv dw

= A|X−1

∫ t

s

∫ t−w

0
Av

|X−1
f (w) dv dw

=
∫ t

s
A|X−1

∫ t−w

0
Av

|X−1
f (w) dv dw

=
∫ t

s
(At−w

|X−1
− 1) f (w) dw.

As the set of continuous functions is dense in L1, the same identity must then
be true for all f ∈ L1

loc([s, ∞); X−1). Rewriting this in terms of the function x
in (3.8.4) (with xs = 0) we get

x(t) =
∫ t

s
(A|X−1 x(v) + f (v)) dv.

Thus, x ∈ W 1,1
loc ([s, ∞); X−2) and ẋ(t) = A|X−1 x(t) + f (t) in X−2 for almost

all t ≥ s. Clearly x(s) = 0. This implies that x is a strong solution of (3.8.1) in
X−1 with xs = 0.

(ii) If z is an arbitrary function in C1([s, ∞); X ), then it is easy to show (using
Theorem 3.2.1(ii)) that, for each t > s, the function v �→ At−vz(v) is continu-
ously differentiable in X−1, with derivative At−v(ż(v) − A|X z(v)). Integrating
this identity (in Xn−1) we get

z(t) = At−vz(s) +
∫ t

s
At−v(ż(v) − A|X z(v)) dv.

Since C1([s, ∞); X ) is dense in W 1,1
loc ([s, ∞); X−1) ∩ C([s, ∞); X ), and since

both sides of the above identity depend continuously in X−1 on z in the norm
of W 1,1

loc ([s, ∞); X−1) ∩ C([s, ∞); X ), the same identity must hold for every
z ∈ W 1,1

loc ([s, ∞); X−1) ∩ C([s, ∞); X ). In particular, it is true whenever z is a
strong solution of (3.8.1) in Xn , in which case we furthermore have ż(v) −
A|X z(v) = f (v) for almost all v ≥ s. This means that z is given by (3.8.4).

(iii) The necessity of the condition x ∈ C([s, ∞); Xn) is part of the definition
of a strong solution in Xn . The necessity of the condition f ∈ L1

loc([s, ∞); Xn−1)
follows from the fact that f = ẋ − A|Xn x , where ẋ ∈ L1

loc([s, ∞); Xn−1) and
A|Xn x ∈ C([s, ∞); Xn−1).

Conversely, suppose that x ∈ C([s, ∞); Xn) and that f ∈
L1

loc([s, ∞); Xn−1). By (i), we have ẋ = A|X x + f = A|Xn x + f in X−2; in
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particular, the derivative ẋ is computed in X−2. However, the right-hand side of
this identity belongs to L1

loc([s, ∞); Xn−1), so its integral (which is x) belongs
to W 1,1

loc ([s, ∞); Xn−1), and the same identity is true a.e. in Xn−1. Thus, x is a
strong solution in Xn .

(iv)–(vii) In the remainder of the proof we take xs = 0, without loss of
generality (see the proof of (i)).

(iv) The proof of (iv) identical to the proof of (i), with X−1 replaced by X .
(v) Since A|X−1 ∈ C1(R

+
;B(X−1; X−2)) and f ∈ C([s, ∞); X−1), we can

differentiate under the integral sign to get (as an identity in X−2)

ẋ(t) = f (t) + A|X−1

∫ t

s
A

t−v
|X−1

f (v) dv, t ≥ s.

Integrate by parts (or alternatively, write f (v) = f (s) + ∫ v

s ḟ (w) dw and use
Fubini’s theorem) to show that we can write this (still as an identity in X−2)

ẋ(t) = A
t−s
|X−1

f (s) +
∫ t

s
A

t−v
|X−1

ḟ (v) dv, t ≥ s.

By (i), the right-hand side of this expression is the strong solution of (3.8.5)
in X−1, so from the definition of a strong solution we conclude that ẋ ∈
C([s, ∞); X−1) ∩ W 1,1

loc ([s, ∞); X−2). The continuity of ẋ in X−1 implies that,
although we originally computed the derivative ẋ of x as a limit in the norm of
X−2, this limit actually exists in the norm of X−1 (i.e., x is differentiable in the
stronger norm of X−1), and that x ∈ C1([s, ∞); X−1) ∩ W 2,1

loc ([s, ∞); X−2).
We proceed to show that x ∈ C([s, ∞); X ) and that ẋ(t) = A|X x(t) + f (t)

in X−1 for all t ≥ s. We know from (i) that ẋ(t) = A|X−1 x(t) + f (t) in X−2 for
almost all t ≥ s, and, since both sides are continuous in X−2, we must actually
have equality for all t ≥ s. Choose some α in the resolvent set of A|X−1 (or
equivalently, from the resolvent set of A) and subtract αx(t) from both sides of
this identity to get (as an identity in X−2)

αx(t) − ẋ(t) = (α − A|X−1 )x(t) − f (t),

that is

x(t) = (α − A|X−1 )−1
(

f (t) + αx(t) − ẋ(t)
)
.

As (α − A|X−1 )−1 ∈ B(X−1; X ), and x , ẋ and f belong to C([s, ∞); X−1), the
latter equation shows that x ∈ C([s, ∞); X ), and that ẋ(t) = A|X x(t) + f (t) in
X−1 for all t ≥ s. Thus, x is a strong solution of (3.8.1) in X .

(vi) Since π[α,β) f1 = π[α,∞) f1 − π[β,∞) f1, we can without loss of generality
suppose that β = ∞ (cf. (vii)).
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Clearly, the restriction of x to [s, α) is the zero function, so in or-
der to prove the theorem it suffices to show that π[α,∞)x ∈ C([α, ∞); X ) ∩
W 1,1

loc ([α; ∞); X−1) and that x(α) = 0, because this implies that x ∈
C([α, ∞); X ) ∩ W 1,1

loc ([α; ∞); X−1). But this follows from (v) with s replaced
by α (and xα = 0).6

(vii) This follows from the linearity of (3.8.1) and (3.8.4). �

Sometimes we need more smoothness of a solution than we get from Theo-
rem 3.8.2.

Theorem 3.8.3 Let s ∈ R, xs ∈ X, f ∈ W 2,1
loc ([s, ∞); X−1), and A|X xs +

f (s) ∈ X. Then the strong solution x of (3.8.1) satisfies x ∈ C2([s, ∞); X−1) ∩
C1([s, ∞); X ), ẋ = z is the strong solution of (3.8.5) in X, and ẍ = y is the
strong solution of

ẏ(t) = Ay(t) + f̈ (t), t ≥ s,

y(s) = Aẋ(s) + ḟ (s)
(3.8.6)

in X−1. In particular, ẋ = A|X x + f ∈ C1([s, ∞); X−1) ∩ C([s, ∞); X ) and
the identities ẋ(t) = A|X−1 x(t) + f (t) and ẍ(t) = A|X−1 ẋ(t) + ḟ (t) are hold
X−1 for all t ≥ s.

Proof By Theorem 3.8.2(v), x ∈ C([s, ∞); X ) ∩ C1([s, ∞); X−1), and, of
course,

ẋ(t) = A|X x(t) + f (t), t ≥ s.

Arguing as in the proof of Theorem 3.8.2(v) (using the density of C2 in
W 2,1) we can use the extra differentiability assumption on u to show that
x ∈ C2([s, ∞); X−2), and that

ẍ(t) = A|X−1 ẋ(t) + ḟ (t), t ≥ s.

Let z = ẋ . Then z(s) = A|X xs + f (s) ∈ X , and z is the strong solution of the
equation (3.8.5) in X−1. However, by Theorem 3.8.2(v), this solution is ac-
tually a strong solution in X , i.e., z ∈ C([s, ∞); X ), and it has some addi-
tional smoothness, namely z ∈ C1([s, ∞); X−1). Since z = ẋ , this means that
x ∈ C2([s, ∞); X−1) ∩ C1([s, ∞); X ), as claimed. �

Above we have only looked at the local smoothness of a strong solution of
(3.8.1) (or more generally, of the function x defined by the variation of constants
formula (3.8.2)). There are also some corresponding global growth bounds on
the solution and its derivatives.

6 Although x is continuous, there will be a jump discontinuity in ẋ at the cutoff point. Thus, we
will not in general have x ∈ C1([s, ∞); X−1) in this case, but we will still have
x ∈ Reg1

loc([s, ∞); X−1) and ẋ − f ∈ C([s, ∞); X−1).
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Theorem 3.8.4 Let A be the generator of a C0 semigroup A with growth bound
ωA. Let ω > ωA, and let 1 ≤ p < ∞. Under the following additional assump-
tions on the function f in Theorems 3.8.2 and 3.8.3 we get the following ad-
ditional conclusions about the strong solution x of (3.8.1) (and all the listed
derivatives exist in the given sense):

(i) If f ∈ L p
ω([s, ∞); X ), then

x ∈ BC0,ω([s, ∞); X ) ∩ L p
ω([s, ∞); X ),

ẋ ∈ L p
ω([s, ∞); X−1).

(ii) If f ∈ W 1,p([s, ∞); X−1), then

x ∈ BC0,ω([s, ∞); X ) ∩ L p
ω([s, ∞); X ),

ẋ ∈ BC0,ω([s, ∞); X−1) ∩ L p
ω([s, ∞); X−1),

ẍ ∈ L p
ω([s, ∞); X−2).

(iii) If f ∈ W 2,p([s, ∞); X−1), then

x ∈ BC0,ω([s, ∞); X ) ∩ L p
ω([s, ∞); X ),

ẋ ∈ BC0,ω([s, ∞); X ) ∩ L p
ω([s, ∞); X ),

ẍ ∈ BC0,ω([s, ∞); X−1) ∩ L p
ω([s, ∞); X−1),

...
x ∈ L p

ω([s, ∞); X−2).

Proof (i) Let � be the L p-well-posed linear system on (X, X, X ) described in
Proposition 2.3.1 with B = 1, C = 1, and D = 0. Then, according to Theorem
3.8.2(iv), the strong solution x of (3.8.1) can be interpreted as the state trajectory
of this system, and furthermore, its output y satisfies y(t) = x(t) for all t ≥ s. By
Theorem 2.5.4, x ∈ BC0,ω([s, ∞); X ) and x = y ∈ L p

ω([s, ∞); X ). This implies
that ẋ = A|X x + f ∈ L p

ω([s, ∞); X−1).
(ii) We again consider the same system as above, but this time on

(X−1, X−1, X−1). As above we first conclude that x ∈ BC0,ω([s, ∞); X−1) ∩
L p

ω([s, ∞); X−1). We can also apply the same argument with x replaced by
ẋ (recall that, by Theorem 3.8.2(v), ẋ is the strong solution of (3.8.5) in
X−1) to get ẋ ∈ BC0,ω([s, ∞); X−1) ∩ L p

ω([s, ∞); X−1) and ẍ = A|X−1 ẋ + ḟ ∈
L p

ω([s, ∞); X−2). Finally, we choose some α ∈ ρ(A) = ρ(A|X ) and write the
equation ẋ = A|X x + f in the form (α − A|X )−1(αx − ẋ + f ) to conclude that
ẋ ∈ BC0,ω([s, ∞); X ) ∩ L p

ω([s, ∞); X ).
(iii) Apply (ii) both to the function x itself and to the function ẋ . �

Another instance where we need a global growth bound on the solution, this
time on R−, is when we want to study the existence and uniqueness of strong
solutions of the equation ẋ(t) = Ax(t) + f (t) on all of R.
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Definition 3.8.5 Let n = 0, ±1, ±2, . . . , and f ∈ L1
loc(R; Xn−1). A function x

is a strong solution of the equation

ẋ(t) = Ax(t) + f (t), t ∈ R, (3.8.7)

in Xn (on all of R) if x ∈ C(R; Xn) ∩ W 1,1
loc (R; Xn−1), and ẋ(t) = A|Xn x(t) +

f (t) in Xn−1 for almost all t ∈ R. By a strong solution of (3.8.7) (without any
reference to a space Xn) we mean a strong solution of (3.8.7) in X (= X0).

Without any further conditions we cannot expect a strong solution of (3.8.7)
to be unique. For example, if A generates a C0 group on X , then for every
x0 ∈ X , the function x(t) = At x0, t ∈ R, is a strong solution of (3.8.7). We can
rule out this case by, e.g., imposing a growth restriction on x at −∞.

Lemma 3.8.6 Let ω ∈ R, and suppose that the semigroup A generated by A is
ω-bounded (see Definition 2.5.6). Then, for each f ∈ L1

loc(R; X−1), the equation
(3.8.7) can have at most one strong solution x satisfying limt→−∞ e−ωt x(t) = 0.

If such a solution exists, then we refer to it as the strong solution of (3.8.7)
which vanishes at −∞.

Proof The difference of two strong solutions of (3.8.7) is a strong solution
of the equation ẋ(t) = Ax(t) on R, so it suffices to show that the only strong
solution of (3.8.7) which satisfies limt→−∞ e−ωt x(t) = 0 is the zero solution.
Since it is a strong solution on R, it is also a strong solution on [s, ∞) with
initial state x(s) for every s ∈ R, hence by Theorem 3.8.2(iv), x(t) = At−s x(s)
for every t ≥ s. By the ω-boundedness of A, there is a constant M such that
|x(t)| ≤ Meω(t−s)|x(s)|, or equivalently, e−ωt |x(t)| ≤ Me−ωs)|x(s)|. Let s →
−∞ to conclude that x(t) = 0 for all t ∈ R. �

Theorem 3.8.7 Let A be the generator of a C0 semigroup A with growth bound
ωA. Let ω > ωA, and let 1 ≤ p < ∞. In all the cases (i)–(iii) listed below the
equation (3.8.7) has a unique strong solution x satisfying limt→−∞ e−ωt x(t) =
0, namely the function

x(t) =
∫ t

−∞
At−v f (v) dv, (3.8.8)

and this solution has the additional properties listed below.

(i) f ∈ L p
ω,loc(R; X ). In this case

x ∈ BC0,ω,loc(R; X ) ∩ L p
ω,loc(R; X ),

ẋ ∈ L p
ω,loc(R; X−1).
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(ii) f ∈ W 1,p
ω,loc(R; X−1). In this case

x ∈ BC0,ω,loc(R; X ) ∩ L p
ω,loc(R; X ),

ẋ ∈ BC0,ω,loc(R; X−1) ∩ L p
ω,loc(R; X−1),

ẍ ∈ L p
ω,loc(R; X−2).

(iii) f ∈ W 2,p
ω,loc(R; X−1). In this case

x ∈ BC0,ω,loc(R; X ) ∩ L p
ω,loc(R; X ),

ẋ ∈ BC0,ω,loc(R; X ) ∩ L p
ω,loc(R; X ),

ẍ ∈ BC0,ω,loc(R; X−1) ∩ L p
ω,loc(R; X−1),

...
x ∈ L p

ω,loc(R; X−2).

Proof (i) (This proof is very similar to the proof of Theorem 3.8.4.) Let � be
the L p-well-posed linear system on (X, X, X ) described in Proposition 2.3.1
with B = 1, C = 1, and D = 0. It follows from Theorems 2.5.7 and 3.8.2(iv)
and Example 2.5.10 that the function x defined by (3.8.8) is a strong solu-
tion (3.8.7) satisfying limt→−∞ e−ωt x(t) = 0, hence the strong solution satis-
fying this growth bound. Moreover, by Theorem 2.5.7 and Example 2.5.10,
x ∈ BC0,ω,loc(R; X ) and x = y ∈ L p

ω,loc(R; X ). Since ẋ = A|X x + f , this im-
plies that ẋ ∈ L p

ω,loc(R; X−1).
(ii)–(iii) The proofs of (ii)–(iii) are analogous to the proofs of parts (ii)–(iii)

of Theorem 3.8.4, and we leave them to the reader. �

Remark 3.8.8 Theorem 3.8.4 remains valid if we replace L p
ω by L∞

0,ω or Reg0,ω

throughout. Theorem 3.8.7 remains valid if we delete the subindex ‘loc’, or if
we replace L p

ω,loc by L∞
0,ω,loc or Reg0,ω,loc throughout, or if we do both of these

operations at the same time. The proofs remain the same.

3.9 Symbolic calculus and fractional powers

In this section we shall develop a basic symbolic calculus for the generators of C0

semigroups.7 We shall here consider only two classes of mappings of generators.
The first class it the one where the generator A is mapped conformally into f (A)
where f is a complex-valued function which is analytic at the spectrum of A
(including the point at infinity if A is unbounded). The other class of mapping
is the one which gives us the fractional powers of γ − A where γ ∈ C+

ωA
. In

7 With some trivial modifications this functional calculus can be applied to any closed operator
with a nonempty resolvent set.
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Section 3.10 we shall use a similar calculus to construct the semigroup generated
by A in a special (analytic) case.

Let us begin with the simplest case where A is bounded. Let � be a piece-
wise continuously differentiable Jordan curve which encircles σ (A) counter-
clockwise, i.e., the index of σ (A) with respect to � is one. If f is analytic on �

and inside �, then we define f (A) by

f (A) = 1

2π j

∮
�

(λ − A)−1 f (λ) dλ. (3.9.1)

This integral converges in the operator norm topology, e.g., as a Riemann in-
tegral (but it can, of course, also be interpreted in the strong sense, where we
apply each side to a vector x ∈ X ). This definition of f (A) given is standard,
and it is found in most books on functional analysis (see, e.g., Rudin (1973,
p. 243)).

Let us check that the definition (3.9.1) of f (A) coincides with the standard
definition in the case where f (z) = ∑n

k=0 ak zk is a polynomial. In this case we
expect to have f (A) = ∑n

k=0 ak Ak . By the linearity of the integral in (3.9.1),
to prove this it suffices to verify the special case where f (z) = zn for some
n = 0, 1, 2, . . . . In this case we get

1

2π j

∮
�

λn(λ − A)−1 dλ = 1

2π j

∮
�

(λ − A + A)n(λ − A)−1 dλ

=
n∑

k=0

(
n

k

)
Ak 1

2π j

∮
�

(λ − A)n−k−1 dλ

= An,

where the last step uses Lemma 3.9.2. Thus (3.9.1) is consistent with the stan-
dard definition of f (A) in terms of powers of A when f is a polynomial.

If A is unbounded, then (3.9.1) must be slightly modified. In the following
discussion, we denote the compactified complex plane C ∪ {∞} by C, and
we let σ (A) be the (extended) spectrum of A in C, i.e., σ (A) = σ (A) if A is
bounded, and σ (A) = σ (A) ∪ {∞} if A is unbounded.

Let A be the generator of a C0 semigroup A with growth bound ωA. Then we
know from Theorem 3.2.9(ii) that σ (A) ⊂ C

−
ωA

∪ {∞} (where we can remove
the point at infinity of A is bounded). Let f be a complex-valued function which
is analytic on C

−
ωA

∪ {∞} ( f need not be analytic at infinity if A is bounded).
We denote the set of points λ ∈ C in which f is not analytic by σ ( f ) (this
includes the point at infinity if f is not analytic there).

If A and f satisfies the conditions listed in the preceding paragraph, then
it is possible to choose a piecewise continuously differentiable Jordan curve
� in the complex plane which separates σ (A) from σ ( f ), with σ (A) ‘to the
left’ of � and σ ( f ) ‘to the right’ of �. If A is bounded, then we can choose
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� to be a curve encircling σ (A) counter-clockwise with σ ( f ) on the outside,
and if f is analytic at infinity, then we can choose � to be a curve encircling
σ ( f ) clockwise with σ (A) on the outside. If both of these conditions hold, then
both choices are possible. Unfortunately, they do not produce exactly the same
result, so before we try this approach we have to modify (3.9.1) slightly.

Before proceeding further, let us recall two different versions of the Cauchy
formula for the derivatives of a function.

Lemma 3.9.1 Let U be a Banach space, and let � be a positively oriented
piecewise continuously differentiable Jordan curve in C (i.e., the index of the
inside is one).

(i) If f is a U-valued function which is analytic on � and inside �, then, for
every λ0 inside �,

1

2π j

∮
�

f (λ)

(λ − λ0)n+1
dλ =

{
0, n < 0,

1/(n!) f (n)(λ0), n ≥ 0.

(ii) If instead f is analytic on � and outside � (including the point at
infinity), then for every λ0 inside �,

1

2π j

∮
�

(λ − λ0)n−1 f (λ) dλ =
{

0, n < 0,

1/(n!) dn

dzn f (λ0 + 1/z)|z=0, n ≥ 0.

Proof (i) In the scalar case this is the standard Cauchy formula for the derivative
found in all textbooks (if n ∈ Z− then the integrand is analytic inside �, so the
result is zero). The operator-valued case can be reduced to the scalar-values
case: if f is B(X ; Y )-valued, then we choose arbitrary x ∈ X and y∗ ∈ Y ∗ and
apply the scalar case to y∗ f x .

(ii) We make a change of integration variable from λ to ζ = 1/(λ − λ0),
(λ − λ0)−1 dλ = −z−1 dz. If �′ is the image of � under the mapping λ �→
1/(λ − λ0), then �′ is negatively oriented (the outside of � is mapped onto the
inside of �′), and it encircles the origin. Part (i) gives (if we take the negative
orientation of �′ into account)

1

2π j

∮
�

f (λ)

(λ − λ0)−n+1
dλ = − 1

2π j

∮
�′

f (λ0 + 1/z)

zn+1
dz

=
{

0, n < 0,

1/(n!) dn

dzn f (λ0 + 1/z)|z=0, n ≥ 0.

�
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Lemma 3.9.2 Let A ∈ B(X ), and let � be a positively oriented piecewise con-
tinuously differentiable Jordan curve which encircles ρ(A). Then,

1

2π j

∮
�

(λ − A)−k dλ =
{

1, k = 1,

0, k ∈ Z, k �= 1.

Proof If k ∈ Z−, then the integrand is analytic inside �, and the result is zero.
If k ∈ Z+, then the integrand is analytic outside �, including the point at in-
finity, and the result follows from Lemma 3.9.1(ii) with n = 1 and f (λ) =
(λ − A)−k . �

By Lemma 3.9.2, if A is bounded and if f is analytic at infinity, then (3.9.1)
is equivalent to

f (A) = f (∞) + 1

2π j

∮
�

(λ − A)−1( f (λ) − f (∞)) dλ. (3.9.2)

The function inside the integral has a second order zero at infinity, so if we
replace � by a curve encircling both σ (A) and σ ( f ), then it follows from
Lemma 3.9.1(ii) (with n = 1 and f (λ) replaced by (λ − A)−1( f (λ) − f (∞))
that the resulting integral is zero. Thus, in (3.9.3) we may replace the positively
oriented curve � which encircles σ (A) with σ ( f ) on the outside by a negatively
oriented curve which encircles σ ( f ) with σ (A) on the outside. If we do so, then∮
�

(λ − A)−1 dλ = 0, and (3.9.2) can alternatively be written in the form

f (A) = f (∞) + 1

2π j

∮
�

(λ − A)−1 f (λ) dλ. (3.9.3)

Here it does not matter if A is bounded or unbounded, as long as � and the inside
of � belong to ρ(A), and f is analytic on � and the outside of �, including the
point at infinity.

From (3.9.3) we immediately conclude the following:

Lemma 3.9.3 Let A be the generator of a C0 semigroup A with growth rate
ωA, let f be analytic on C

−
ωA

∪ {∞}, and define f (A) as explained above. Then
f (A) − f (∞) ∈ B(X ; X1).

Proof This follows from (3.9.3): for an arbitrary α ∈ ρ(A) we have

f (A) − f (∞) = (α − A)−1 1

2π j

∮
�

(α − A)(λ − A)−1 f (λ) dλ

= (α − A)−1 1

2π j

∮
�

[
(α − λ)(λ − A)−1 − 1

]
f (λ) dλ,

where the integral defines an operator in B(X ). �

As we already mentioned above, the definition of f (A) given in (3.9.1) in
the case where A is bounded is standard, but the definition of f (A) in (3.9.3)
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with unbounded A is less common. However, (3.9.3) can be reduced to (3.9.1)
by, e.g., a linear fractional transformation. For example, we can take some
α ∈ C+

αA
∩ C+, and define ϕ(λ) = 1/(α − λ). The inverse transformation is

z �→ ϕ−1(z) = α − 1/z. Note that α ∈ ρ(A), that α is mapped into ∞, and that
∞ is mapped into zero. Let �′ be the image of � under this mapping. If � is
negatively oriented, then the orientation of �′ is positive and it encircles the
origin (assuming that α lies inside �). By changing the integration variable in
(3.9.3) we get (note that dλ = z−2 dz and that 1/(2π j)

∮
�′ z−1 f (α − 1/z) dz =

f (∞))

f (A) = f (∞) + 1

2π j

∮
�′

(α − 1/z − A)−1z−2 f (α − 1/z) dz

= 1

2π j

∮
�′

[
1 + (αz − 1 − z A)−1

]
z−1 f (α − 1/z) dz

= 1

2π j

∮
�′

(α − A)
(
αz − 1 − z A

)−1
f (α − 1/z) dz.

Let Bα = (α − A)−1 (thus, formally Bα = ϕ(A)). Then Bα ∈ B(X ), and a short
algebraic computation shows that

(z − Bα)−1 = (α − A)
(
αz − 1 − z A

)−1
.

Substituting this into the expression for f (A) given above we get

f (A) = 1

2π j

∮
�′

(z − Bα)−1 f (α − 1/z) dz, Bα = (α − A)−1. (3.9.4)

Here �′ is a positively oriented piecewise continuously differentiable Jordan
curve which encircles σ (Bα), and the function z �→ f (α − 1/z) is analytic on
�′ and inside �′. Since we have obtained this from (3.9.3) (which does not
depend on α) through a change of integration variable, the right-hand side of
(3.9.4) does not depend on α, and it can be used as an alternative definition of
f (A).

If f is a rational function whose poles are located in C+
ωA

and which is
analytic at infinity, then there is still another way of defining f (A). Each such
function can be written as a constant plus a linear combination of terms of the
type (αi − λ)−ki , where each αi ∈ C+

ωA
and ki > 0. It is then natural to define

f (A) to be the corresponding linear combination of (αi − A)−ki . Let us check
that this definition is consistent with the one given earlier. To do this it suffices
to show that, for all α ∈ C+

ωA
and all k = 1, 2, 3 . . . ,

(α − A)−k = 1

2π j

∮
�

(λ − A)−1(α − λ)−k dλ, (3.9.5)

where � is a negatively oriented piecewise continuously differentiable Jordan
curve which encircles α with σ (A) on the outside. We begin with the case k = 1.
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Then Lemmas 3.2.8 and 3.9.1 give

1

2π j

∮
�

(λ − A)−1(α − λ)−1 dλ − (α − A)−1

= 1

2π j

∮
�

[(λ − A)−1 − (α − A)−1](α − λ)−1 dλ

= 1

2π j

∮
�

(λ − A)−1(α − A)−1 dλ

= (α − A)−1 1

2π j

∮
�

(λ − A)−1 dλ = 0.

The case k ≥ 2 follows from the case k = 1 if we differentiate the special case
k = 1 of (3.9.5) k − 1 times with respect to α.

We shall next look at the related problem of how to define fractional powers
of (γ − A), where A is the generator of a C0 semigroup A and γ > ωA. This can
be done in several different ways, see Pazy [1983]. Usually one starts with the
negative fractional powers of (γ − A), and then inverts these to get the positive
fractional powers. One method, explained, e.g. in Pazy [1983], is to imitate
(3.9.1) with f (λ) = (γ − λ)−α , and to let � be a path from ∞e− jε to ∞e jε ,
where 0 < ε < π/2, passing between σ (A) and the interval [γ, ∞).8 Here we
shall used a different approach and instead extend the formula for (γ − A)−n

given in Theorem 3.2.9(i) to fractional values of n.

Definition 3.9.4 Let A be the generator of a C0 semigroup A with growth
bound ωA. For each γ ∈ C+

ωA
and α ≥ 0 we define (γ − A)−α by

(γ − A)0 = 1,

(γ − A)−αx = 1

�(α)

∫ ∞

0
tα−1e−γ tAt x dt, α > 0, x ∈ X.

Lemma 3.9.5 The operators (γ − A)−α introduced in Definition 3.9.4 are
bounded linear operators on X, and α �→ (γ − A)−α is a semigroup, i.e.,

(γ − A)−(α+β) = (γ − A)−α(γ − A)−β

for all α, β > 0. Moreover, (γ − A)−α is injective for all α ≥ 0.

Proof By assumption, the growth bound of A is less than γ , hence the integral
used in the definition of (γ − A)−α converges absolutely, and it defines an
operator in B(X ).

To simplify the notation in our verification of the semigroup property we
take γ = 0 (i.e., we denote (A − γ ) by A and e−γ tAt by At ). We take x ∈ X

8 This method is quite general, and it can be used even in some cases where A is not a generator
of a C0 semigroup.
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and make two changes of integration variable as follows:

(−A)−α(−A)−β x = 1

�(α)�(β)

∫ ∞

0

∫ ∞

0
sα−1tβ−1As+t x ds dt

= 1

�(α)�(β)

∫ ∞

0

∫ ∞

0
sα−1(v − s)β−1Avx dv ds

= 1

�(α)�(β)

∫ ∞

0

(∫ v

0
sα−1(v − s)β−1 ds

)
Avx dv

= 1

�(α)�(β)

∫ 1

0
sα−1(1 − s)β−1 ds

∫ ∞

0
vα+β−1Avx dv

= (−A)−(α+β)x ;

here the last equality follows from Definition 3.9.4 and the fact that the Beta
function satisfies (for all α, β > 0)

B(α, β) =
∫ 1

0
sα−1(1 − s)β−1 ds = �(α + β)

�(α)�(β)
.

To show that (γ − A)−α is injective we can use the semigroup property in
the following way. We choose β so that α + β = n is an integer. The operator
(γ − A)−n = (γ − A)−β(γ − A)−α in injective since γ ∈ ρ(A) (recall that we
take γ > γA), hence (γ − A)−α in injective. �

The semigroup α �→ (γ − A)−α is actually a C0 semigroup (i.e., it is strongly
continuous). See Pazy [1983, Corollary 6.5, p. 72].

Since (γ − A)−α is injective, it has an inverse defined on its range:

Definition 3.9.6 Let A be the generator of a C0 semigroup A with growth bound
ωA. For each γ ∈ C+

ωA
and α ≥ 0 we define (γ − A)α to be the inverse of the

operator (γ − A)−α defined in Definition 3.9.4, with domain D ((γ − A)α) =
R

(
(γ − A)−α

)
.

Lemma 3.9.7 With the notation of Definitions 3.9.4 and 3.9.6, let γ ∈ C+
ωA

and
δ ∈ C+

ωA
. Then the fractional powers of (γ − A) and (δ − A) have the following

properties:

(i) (γ − A)α ∈ B(X ) if α ≤ 0, and (γ − A)α is closed if α > 0;
(ii) (δ − A)α(γ − A)β = (γ − A)β(δ − A)α if α ≤ 0 and β ≤ 0;

(iii) D ((γ − A)α) ⊂ D
(
(γ − A)β

)
if α ≥ β;

(iv) D ((γ − A)α) is dense in X for all α > 0 (and equal to X for all α ≤ 0);
(v) D ((γ − A)α) = D ((δ − A)α) and (δ − A)α(γ − A)−α ∈ B(X ) if α ≥ 0;

Proof (i) The case α ≤ 0 is contained in Lemma 3.9.5, and the inverse of a
bounded (hence closed) operator is closed.

(ii) Use Fubini’s theorem in Definition 3.9.4.
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(iii) This is trivial if β ≤ 0 or α = β. Otherwise, by Lemma 3.9.5,

(γ − A)−α = (γ − A)−β(γ − A)−(α−β),

hence R
(
(γ − A)−α

) ⊂ R
(
(γ − A)−β

)
, or equivalently, D ((γ − A)α) ⊂

D
(
(γ − A)β

)
.

(iv) This follows from (iii), since D ((γ − A)α) contains D ((γ − A)n) for
some positive integer n, and by Theorem 3.2.1(vi), D ((γ − A)n) = D (An) is
dense in X .

(v) The boundedness of the operator (δ − A)α(γ − A)−α follows from
the closed graph theorem as soon as we have shown that D ((γ − A)α) =
D ((δ − A)α), or equivalently, that R

(
(γ − A)−α

) = R
(
(δ − A)−α

)
. This is

true for integer values of α, so by Theorem 3.9.5, it suffices to consider the case
where 0 < α < 1. Moreover, by (iii), it suffices to show that

R
(
(γ − A)−α − (δ − A)−α

) ⊂ X1.

By Definition 3.9.4, for all x ∈ X ,

(γ − A)−αx − (δ − A)−αx = 1

�(α)

∫ ∞

0
tα−1[1 − e−(δ−γ )t ]e−γ tAt x dt.

Therefore, for x ∈ X1 we have [(γ − A)−α − (δ − A)−α]x ∈ X1 and (integrate
by parts)

[(γ − A)−α − (δ − A)−α]x = 1

�(α)
(γ − A)−1

∫ ∞

0
ḣ(t)e−γ tAt x dt,

where h(t) = −tα−1[1 − e−(δ−γ )t ]. Without loss of generality, suppose that
δ > γ . Then ḣ ∈ L1([0, 1]) ∩ L∞([1, ∞) and t �→ e−γ t‖At‖ ∈ L∞([0, 1]) ∩
L1([1, ∞), so the integral converges absolutely for all x ∈ X . This implies that
R

(
(γ − A)−α − (δ − A)−α

) ⊂ X1, as claimed. �

With the fractional powers of (γ − A) to our disposal, we can construct a
continuous scale of Banach spaces Xα , α ∈ R, in the same way as we con-
structed the spaces Xn with integral indices n in Section 3.6. For α > 0 we let
Xα be the range of (γ − A)−α (i.e., the image of X under (γ − A)−α), with
norm

|x |α = |x |Xα
= ∣∣(γ − A)αx

∣∣
X .

For α < 0 we let Xα be the completion of X with the weaker norm

|x |−α = ∣∣(γ − A)−αx
∣∣

X
, α > 0.
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All the earlier conclusions listed in Section 3.6 remain valid. In particular, for
all γ ∈ C+, all α, β, δ ∈ R, and all t ≥ 0,

(γ − A)β|Xα+β
is an isometry of Xα+β onto Xα,

(γ − A)α+β

|Xδ
= (γ − A)α|Xδ−β

(γ − A)β|Xδ
,

(γ − A)α|Xδ
, At

|Xδ
= At

|Xδ−α
(γ − A)α|Xδ

.

Different choices of γ give identical spaces with equivalent norms, and (γ −
A)α commutes with (δ − A)β for all α, β ∈ R, and all γ , δ ∈ C+

ωA
,

The spaces Xα can be interpreted as interpolation spaces between the spaces
Xn with integral indices; see Lunardi [1995, Chapters 1,2]. The following
lemma is related to this fact:

Lemma 3.9.8 Define the fractional space Xα as above. Then, there is a constant
C > 0 such that for all 0 < α < 1, all x ∈ X1 = D (A), and all ρ > 0,

|x |Xα
≤ C

(
ρα|x |X + ρα−1|x |X1

)
,

|x |Xα
≤ 2C |x |1−α

X |x |αX1
.

(3.9.6)

The proof of this lemma is based on the the following representation of
(γ − A)−α , valid for 0 < α < 1:

Lemma 3.9.9 For 0 < α < 1 the operator (γ − A)−α defined in Definition
3.9.4 has the representation

(γ − A)−α = sin πα

π

∫ ∞

0
s−α

(
s + γ − A

)−1
ds,

where the integral converges absolutely in operator norm.

Proof The absolute convergence in operator norm follows from the Hille–
Yosida Theorem 3.4.1 and the assumption that γ ∈ C+

ωA
. By using Theorem

3.2.9(i), Fubini’s theorem, a change of integration variable s = v/t , and the
fact that the Gamma-function

�(α) =
∫ ∞

0
tα−1e−t dt (3.9.7)

satisfies (for 0 < α < 1) the reflection formula �(α)�(1 − α) = sin πα
π

, we get
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for all x ∈ X ,

sin πα

π

∫ ∞

0
s−α

(
s + γ − A

)−1
x ds

= 1

�(α)�(1 − α)

∫ ∞

0
s−α

∫ ∞

0
e−(s+γ )tAt x dt ds

= 1

�(α)�(1 − α)

∫ ∞

0

(∫ ∞

0
s−αe−st ds

)
e−γ tAt x dt

= 1

�(α)�(1 − α)

(∫ ∞

0
v−αev dv

) ∫ ∞

0
tα−1e−γ tAt x dt

= 1

�(α)

∫ ∞

0
tα−1e−γ tAt x dt

= (γ − A)−αx .

�

Proof of Lemma 3.9.8. Let α ∈ (0, 1), ρ > 0, x ∈ X1, and recall that |x |Xα
=

|(γ − A)αx |X and that |x |X1 is (equivalent to) |(γ − A)x |X . Since 0 < α <

1, we have 0 < 1 − α < 1, hence by Lemma 3.9.9, Theorem 3.4.1, and the
assumption that γ ∈ C+

ωA
(observe that sin π (1 − α) = sin πα and sin πα ≤

πα)

|x |Xα
= |(γ − A)−(1−α)(γ − A)x |X

≤ sin π (1 − α)

π

∫ ∞

0
sα−1

∣∣((s + γ ) − A
)−1

(γ − A)x
∣∣ ds

≤ sin πα

π

∫ ρ

0
sα−1

∥∥(
s + γ − A

)−1
(γ − A)

∥∥|x |X ds

+ sin π (1 − α)

π

∫ ∞

ρ

sα−1
∥∥(

s + γ − A
)−1∥∥|x |X1 ds

≤ |x |Xα

∫ ρ

0
sα−1

∥∥1 − s
(
s + γ − A

)−1∥∥ ds

+ |x |X1 (1 − α)
∫ ∞

ρ

sα−1
∥∥(

s + γ − A
)−1∥∥ ds

≤ (1 + C)|x |Xα

∫ ρ

0
sα−1 ds + C |x |X1 (1 − α)

∫ ∞

ρ

sα−2 ds

= (1 + C)|x |Xρα + C |x |X1ρ
α−1.

This proves the first inequality (with C + 1 instead of C) in (3.9.6). To get
the second inequality in (3.9.6) for nonzero x we simply take ρ = |x |X1/

|x |X . �
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3.10 Analytic semigroups and sectorial operators

Semigroups obtained from the Cauchy problem for partial differential equa-
tions of parabolic type have some extra smoothness properties. They are of the
following type.

Definition 3.10.1 Let X be a Banach space, let 0 < δ ≤ π/2, and let �δ be the
open sector �δ = {t ∈ C | t �= 0, |arg t | < δ} (see Figure 3.1). The family of
operators At ∈ B(X ), t ∈ �δ , is an analytic semigroup (with uniformly bounded
growth bound ω) in � if the following conditions holds:

(i) t �→ At is analytic in �δ;
(ii) A0 = 1 and AsAt = As+t for all s, t ∈ �δ;

(iii) There exist constants M ≥ 1 and ω ∈ R such that

‖At‖ ≤ Meωt , t ∈ �δ.

(iv) For all x ∈ X , lim t→0
t∈�δ

At x = x .

A semigroup A is analytic if it is analytic in some sector � of the type described
above.

We warn the reader that the sector �δ in Definition 3.10.1 need not be
maximal: If A is analytic on some sector �δ , then it can often be extended to
an analytic semigroup on a larger sector �δ′ with δ′ > δ. If we take the union
of all the sectors �δ where At is analytic (with a uniformly bounded growth
bound), then the constants M and ω in (iii) typically deteriorate as we approach
the sector boundary.

Ft

d
Rt

Figure 3.1 The sector �δ
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(γ, 0)

Rλ
q

Fλ

Figure 3.2 The sector �θ,γ

As we shall see in a moment, the generators of the analytic semigroups in
Definition 3.10.1 are sectorial operators, which are defined as follows.

Definition 3.10.2 For each γ ∈ R and π/2 < θ < π , let �θ,γ be the open
sector (see Figure 3.2)

�θ,γ = {λ ∈ C | λ �= γ, |arg(λ − γ )| < θ}.
A (closed) densely defined linear operator X ⊃ D (A) → X is sectorial on �θ,γ

(with a uniform bound) if the resolvent set of A contains �θ,γ , and if

‖(λ − A)−1‖ ≤ C

|λ − γ | , λ ∈ �θ,γ , (3.10.1)

for some C ≥ 1. The operator A is sectorial if it is sectorial on some sector
�θ,γ (with π/2 < θ < π).

Again we warn the reader that the constant θ in Definition 3.10.2 is not
maximal: it can always be replaced by a larger constant θ ′:

Lemma 3.10.3 If A is sectorial on some sector �θ,γ with π/2 < θ < π then it
is also sectorial on some bigger sector �θ ′,γ with θ ′ > θ . More precisely, this
is true for every θ ′ satisfying θ < θ ′ < π and sin(θ ′ − θ ) < 1/C, where C is
the constant in (3.10.1).

Proof Without loss of generality we can take γ = 0 (i.e., we replace A − γ I
by A).

By Lemma 3.2.8(ii), the rays {λ �= 0 | arg λ = ±θ} bounding the sector �θ,0

belong to the resolvent set of A, and (by continuity) (3.10.1) holds for these λ,
too. Let 0 < k < 1. By (3.10.1) and Lemma 3.2.8(ii), if we take λ close enough
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to α ∈ �θ,0 so that |λ − α| ≤ k|α|
C , then λ ∈ ρ(A) and∥∥(λ − A)−1

∥∥ ≤ C

(1 − k)|α| .

Choose θ ′ to satisfy θ < θ ′ < π and sin(θ ′ − θ ) = k/C . By letting α vary over
the rays {λ �= 0 | arg λ = ±θ} and taking λ − α orthogonal to λ (and �λ < �α)
we reach all λ in �θ ′,0\�θ,0. Moreover, with this choice of λ and α, we have
|λ| < |α|, hence ∥∥(λ − A)−1

∥∥ ≤ C

(1 − k)λ
.

Thus, A is sectorial on �θ ′,0 with C in (3.10.1) replaced by C/(1 − k). �

Lemma 3.10.3 (and its proof) implies that the constant C in (3.10.1) must
satisfy C ≥ 1, because if C < 1, then the proof of Lemma 3.10.3 shows that
(λ − A)−1 is a bounded entire function vanishing at infinity, hence identically
zero. The optimal constant for A = γ is C = 1. A similar argument shows that
(3.10.1) holds with θ = π if and only if A = γ .

It is sometimes possible to increase the sector �θ,γ in which A is sectorial
in a different way: we keep θ fixed, but replace γ by γ ′ < γ . This is possible
under the following assumptions:

Lemma 3.10.4 Let A be a closed linear operator on X, and let γ ∈ R and
π/2 < θ < π . Then the following conditions are equivalent:

(i) A is sectorial on �θ,γ and γ ∈ ρ(A);
(ii) A is sectorial on some sector �θ,γ ′ with γ ′ < γ .

Proof (i) ⇒ (ii): It follows from Lemma 3.10.3 and the assumption γ ∈ ρ(A)
that the distance from σ (A) to the boundary of the sector �θ, γ is strictly
positive, hence ρ(A) ⊃ �θ,γ ′ for some γ ′ < γ . The norm of the resolvent (λ −
A)−1 is uniformly bounded for all λ ∈ �θ,γ ′ satisfying |λ − γ | ≤ |γ − γ ′|, and
for |λ − γ | > |γ − γ ′| we can estimate

‖(λ − A)−1‖ ≤ C

|λ − γ | = C

|λ − γ ′|
|λ − γ ′|
|λ − γ | <

2C

|λ − γ ′| .

(ii) ⇒ (i): This proof is similar to the one above (but slightly simpler). �

Our next result is a preliminary version of Theorem 3.10.6, and we refer the
reader to that theorem for a more powerful result.

Theorem 3.10.5 Let A : X → X be a (densely defined) sectorial operator on
the sector �θ,γ . Then A is the generator of a C0 semigroup A satisfying ‖At‖ ≤
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Meγ t for some M ≥ 1 which is continuous in the uniform operator norm on
(0, ∞). This semigroup has the representation

At = 1

2π j

∫
�

eλt (λ − A)−1 dλ, (3.10.2)

where � is a smooth curve in �θ,γ running from ∞e− jϑ to ∞e jϑ , where
π/2 < ϑ < θ . For each t > 0 the integral converges in the uniform operator
topology.

Proof Throughout this proof we take, without loss of generality, γ = 0. (If
γ �= 0, then we replace A − γ by A and e−γ tAt by At ; see Examples 2.3.5 and
3.2.6.)

The absolute convergence in operator norm of the integral in (3.10.2) is a
consequence of (3.10.1) and the fact that |ee jθ r | = e�e jθ r = er cos θ for all r ∈ R

(observe that cos θ < 0 for π/2 < |θ | < π ). The continuity in the uniform
operator topology on (0, ∞) follows from a straightforward estimate (and the
Lebesgue dominated convergence theorem). Since the integrand is analytic, we
can deform the path of integration without changing the value of the integral to
�t = �1 ∪ �2 ∪ �3 (see Figure 3.3), where

�1 = {re− jϑ | ∞ > r ≥ 1/t},
�2 = {t−1e jθ | −ϑ ≤ θ ≤ ϑ},
�3 = {re jϑ | 1/t ≤ r < ∞},

Rλ

Fλ

q

Γ3

Γ2

Γ1

Figure 3.3 The path in the proof of Theorem 3.10.5



154 Strongly continuous semigroups

Then, by (3.10.1)∥∥∥ 1

2π j

∫
�1

eλt (λ − A)−1 dλ

∥∥∥ ≤ 1

2π

∫
�1

∥∥eλt (λ − A)−1
∥∥ dλ

≤ C

2π

∫ ∞

1/t
er t cos ϑr−1 dr

= C

2π

∫ ∞

1
es cos ϑs−1 ds

= M1.

The same estimate is valid for the integral over �3. On �2 we estimate∥∥∥ 1

2π j

∫
�2

eλt (λ − A)−1 dλ

∥∥∥ ≤ 1

2π

∫
�2

∥∥eλt (λ − A)−1
∥∥ dλ

≤ C

2π

∫ ϑ

−ϑ

ecos θ dθ

= M2.

Together these estimates prove that ‖At‖ ≤ M with M = 2M1 + M2.
Next we claim that for all α > 0,

(α − A)−1 =
∫ ∞

0
e−αtAt dt. (3.10.3)

To prove this we choose the curve � as we did above, but replace �2 by
�2 = {εe− jθ | ϑ ≤ θ ≤ ϑ}, where 0 < ε < α is fixed, and adjust �1 and �3

accordingly. We repeat the calculations presented above for this choice of �,
and find that

1

2π

∫
�

‖eλt (λ − A)−1‖ dλ ≤ M(|log t | + eεt )

for some finite M (the logarithm comes from �1 and �3, and the exponent from
�2). Thus, with this choice of �, if we multiply (3.10.2) by e−αt and integrates
over (0, ∞), then the resulting double integral also converges absolutely. By
Fubini’s theorem, we may change the order of integration to get∫ ∞

0
e−αtAt dt = 1

2π j

∫
�

(α − λ)−1(λ − A)−1 dλ.

By (3.10.1), this integral is the limit as n → ∞ of the integral over �̃n , where
�̃n is the closed curve that we get by restricting the variable r in the definition
of �1 and �3 to the interval ε ≤ r ≤ n, and joining the points nee−iϕ

and neeiϕ

with the arc �4 = {ne− jθ | ϑ ≥ θ ≥ −ϑ}. However, by the residue theorem,
this integral is equal to (α − A)−1. This proves (3.10.3).

Equation (3.10.3) together with the bound ‖At‖ ≤ M enables us to repeat
the argument that we used in the proof of Theorem 3.2.9(i)–(ii) (starting with
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formula (3.2.5)) to show that∥∥(α − A)−n
∥∥ ≤ Mα−n

for all n = 1, 2, 3, . . . and α > 0. According to Theorem 3.4.1, this implies
that A generates a C0 semigroup A1. Thus, to complete the proof it suffices to
show that At

1 = At for all t > 0. However, by (3.10.3) and Theorem 3.2.9(i),
for every x∗ ∈ X∗, x ∈ X , and α > 0,∫ ∞

0
e−αt x∗(At x − At

1x) dt = 0.

Thus, since the Laplace transform of a (scalar continuous) function determines
the function uniquely (see Section 3.12), we must have x∗At x = At

1x for all
x∗ ∈ X∗, x ∈ X , and t ≥ 0. Thus, At

1 = At for all t > 0. In particular, A is
strongly continuous. �

As the following theorem shows, the class of semigroups generated by sec-
torial operators can be characterized in several different ways.

Theorem 3.10.6 Let A be a closed operator on the Banach space X, and let
γ ∈ R. Then the following conditions are equivalent:

(i) A is the generator of an analytic semigroup At with uniformly bounded
growth bound γ on a sector �δ = {t ∈ C | |arg t | < δ} (with δ > 0; see
Definition 3.10.1);

(ii) Every λ ∈ C+
γ belongs to the resolvent set of A, and there is a constant C

such that

‖(λ − A)−1‖ ≤ C

|λ − γ | , �λ > γ ;

(iii) A is sectorial on some sector �θ,γ (with π/2 < θ < π; see Definition
3.10.2);

(iv) A is the generator of a semigroup A which is differentiable on (0, ∞),
and there exist finite constants M0 and M1 such that

‖At‖ ≤ M0eγ t , ‖(A − γ )At‖ ≤ M1eγ t

t
, t > 0.

Proof Throughout this proof we take, without loss of generality, γ = 0. (If
γ �= 0, then we replace A − γ by A and e−γ tAt by At ; see Examples 2.3.5 and
3.2.6.)

(i) ⇒ (ii): Let 0 < ϕ < δ. Let Aϕ be the generator of the semigroup t �→
Ae jϕ t . Then, by Theorem 3.2.9(i), every (real) α > 0 belongs to the resolvent
set of Aϕ , and

(α − Aϕ)−1x =
∫ ∞

0
e−αsAe jϕs x ds.
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By the estimate that we have on A in (i), we can make a change of integration
variable from s to t = e jϕs, s = e− jϕ t to get

(α − Aϕ)−1x = e− jϕ
∫ ∞

0
e−αe− jϕ tAt x ds

= e− jϕ(αe− jϕ − A)−1

= (α − e jϕ A)−1,

where the second equality follows from Theorem 3.2.9(i). Thus, Aϕ = e jϕ A.
The estimate in (ii) then follows from (i) and Theorem 3.2.9(ii).

(ii) ⇒ (iii): See Lemma 3.10.3.
(iii) ⇒ (iv): We know from Theorem 3.10.5 that A generates a C0 semigroup

A, which has the integral representation (3.10.2). Thus, for all h > 0,

1

h

(
At − 1

) = 1

2π j

∫
�

h−1(eλh − 1)eλt (λ − A)−1 dλ.

The same type of estimates that we developed in the proof of Theorem 3.10.5
(where we split � into �1 ∪ �2 ∪ �3) together with Lemma 3.2.10 and the
Lebesgue dominated convergence theorem show that this has a limit as h ↓ 0.
Thus, At is differentiable (in operator norm), and

AAt = d

dt
(At ) = 1

2π j

∫
�

λeλt (λ − A)−1 dλ. (3.10.4)

As in the proof of Theorem 3.10.5 we again split � into �1 ∪ �2 ∪ �3 and
estimate. We leave it to the reader to check that the final estimate that we get in
this way is of the type

‖AAt‖ ≤ M/t,

with the same constant M = 2M1 + M2 that we get in the proof of Theorem
3.10.5.

(iv) ⇒ (i): We first claim that, for each t > 0, At maps X into
⋂∞

n=1 D (An),
and prove this as follows. By the differentiability assumption on At , for each
x ∈ X , the function x(t) = At x is differentiable for t > 0. By the semigroup
property,

ẋ(t) = lim
h↓0

1

h
(At+h − At )x, = lim

h↓0

1

h
(Ah − 1)At x,

hence x(t) = At x ∈ D (A), and d
dt (At ) = AAt . The same argument shows that
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At maps D
(

Ak
)

into D
(

Ak+1
)

for all n = 0, 1, 2, . . . (because AkAt x =
At Ak x for all x ∈ D

(
Ak

)
; see Theorem 3.2.1(iii)). By the semigroup property,

At = (At/n)n , and this together with our earlier observation that At/n maps
D

(
Ak

)
into D

(
Ak+1

)
implies that At maps X into D (An) for each t > 0 and

n = 1, 2, 3, . . . . Thus, At maps X into
⋂∞

n=1 D (An). This together with Theo-
rem 3.2.1(vi) implies that x(t) = At x is infinitely many times differentiable on
(0, ∞), and that

x (n)(t) = (At )(n) = AnAt x, t > 0.

Since A commutes with At on
⋂∞

n=1 D (An), and since At = (At/n)n , this im-
plies that

(At )(n) = AnAt = (AAt/n)n, t > 0. (3.10.5)

Observe that the operators AnAt are closed with D
(

AnAt
) = X , hence, by the

closed graph theorem, they are bounded.
So far we have only used the differentiability of At and not the norm estimate

in (iv). This norm estimate, combined with (3.10.5) and the fact that en > nn/n!
(this is one of the terms in the power series expansion of en) gives∥∥∥ (At )(n)

n!

∥∥∥ =
∥∥∥ AnAt

n!

∥∥∥ ≤
( M1e

t

)n
, t > 0, n = 1, 2, 3, . . . . (3.10.6)

For each t > 0 we can define a formal power series

Ã
z =

∞∑
n=0

(At )(n)

n!
(z − t)n. (3.10.7)

The estimate (3.10.6) shows that this power series converges in operator norm
for |z − t | < t/(M1e). Being the limit of a power series, the function Ã

z is
analytic in the circle |z − t | < t/(M1e).

We claim Ã
z = Az for real z satisfying −t/(1 + M1e) < z − t < t/(M1e).

This is obvious for z = t . To see that it is true for other values of z we fix x ∈ X
and use a Taylor expansion of order N − 1 with Lagrangian remainder term for
Az , i.e.,

Az x =
N−1∑
n=0

(At )(n)x

n!
(z − t)n + (Aξ )(N )x

N !
(z − t)N ,

where z < ξ < t or t < ξ < z, depending on whether z < t or z > t . By
(3.10.6), the remainder term can be estimated by (M1e)N |z − t |N (min{t, z})−N ,
which tends to zero in the given interval. Thus, Ã

z = Az for real z satisfy-
ing −t/(1 + M1e) < z − t < t/(M1e). Letting t > 0 vary we conclude that Ã

t

is an analytic extension of At to the sector �δ , where 0 < δ ≤ π/2 satisfies
sin δ = 1/(M1e) (we choose z perpendicular to z − t , and assume, without loss
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of generality, that M1e ≥ 1). The analyticity of Ã implies that Ã inherits the
semigroup property Ã

s+t = Ã
s
Ã

t from A (two analytic functions which co-
incide on the real axis coincide everywhere). In each smaller subsector �ϕ

with ϕ < δ we can choose z and t (with z still perpendicular to z − t) so that
(|z − t |M1e)/t ≤ k < 1 (uniformly in z and t), and this implies that

‖Ãz‖ ≤ ‖At‖ +
∞∑

n=1

‖(At )(n)‖
n!

|z − t |n ≤ M0 + k/(1 − k).

Thus, the extended semigroup is uniformly bounded in each proper subsector
�ϕ of �δ . If we rename ϕ to δ, then we have shown that Ã satisfies conditions
(i)–(iii) in Definition 3.10.1.

The only thing that remains to be proved is the strong continuity, i.e., con-
dition (iv) in Definition 3.10.1. Because of the density of D (A) in X and the
uniform bound that we have on ‖Ãz‖ for all z ∈ �δ , it suffices to show that, for
all x ∈ D (A),

lim
t→0
t∈�δ

At x = x . (3.10.8)

By using (3.10.6) and (3.10.7) we can estimate, for all x ∈ D (A),

|Ãz x − x | ≤ |At x − x | + |Ãz x − At x |

≤ |At x − x | +
∞∑

n=1

|AnAt x |
n!

|z − t |n

≤ |At x − x | + |z − t |
∞∑

n=1

‖An−1At‖|Ax |
n(n − 1)!

|z − t |n−1

≤ |At x − x | + |z − t ||Ax |
∞∑

n=1

( |z − t |M1e

t

)n−1

≤ |At x − x | + |z − t ||Ax |
1 − k

,

where the last inequality is true provided we choose z and t to satisfy (|z −
t |M1e)/t ≤ k < 1. As before, we take z perpendicular to z − t . Let ϕ = arg z.
Then |ϕ| < δ, |z − t |/t = |sin ϕ| < sin δ ≤ 1, and

t cos δ < t cos ϕ = |z| ≤ t.

Thus, with this choice of z and t , the condition z → 0, z ∈ �δ , is equivalent to
t ↓ 0, and

|Ãz x − x | ≤ |At x − x | + t |Ax |
1 − k

.
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Because of the strong continuity of At , this tends to zero as t ↓ 0. Thus, (3.10.8)
holds, and the proof is complete. �

Let us record the following facts, which were established as a part of the
proof of Theorem 3.10.6:

Corollary 3.10.7 If the equivalent conditions listed in Theorem 3.10.6 hold,
then, for each ϕ ∈ (0, δ), the generator of the semigroup Ae jϕ t , t ≥ 0, is e jϕ A,
where A is the generator of A.

This was established as a part of the proof that (i) ⇒ (ii).

Corollary 3.10.8 Condition (iv) in Theorem 3.10.6 implies that

‖(A − γ )nAt‖ ≤ (nM1)neγ t

t n
, t > 0, n = 1, 2, 3, . . . .

This follows from (3.10.5) (with A replaced by A − γ and At replaced by
e−γ tAt ).

In our applications to well-posed linear systems we are especially interested
in the following extension of the estimates in Definition 3.10.2 and Corollary
3.10.8 to fractional powers of (γ − A):

Lemma 3.10.9 Let A be sectorial on some sector �θ,γ ′ , let γ > γ ′, and let A

be the analytic semigroup generated by A. Then there exist constants M and C
such that, for all 0 ≤ α ≤ 1,

‖(γ − A)αAt‖ ≤ M(1 + t−α)eγ ′t , t > 0,

‖(γ − A)α(λ − A)−1‖ ≤ C |λ − γ ′|−1
(
1 + |λ − γ ′|α)

, λ ∈ �θ,γ ′ .

Proof For α = 0 and α = 1 these estimates follow from Definition 3.10.2 and
Theorem 3.10.6(iv). For intermediate values of α we interpolate between these
two extreme values by using Lemma 3.9.8 as follows. By that lemma and
Theorem 3.10.6(iv), we have for all x ∈ X and t > 0 (recall that At x ∈ D (A)
for t > 0)

‖(γ − A)αAt x‖ ≤ 2C |At x |1−α
X |(γ ′ − A)At x + (γ − γ ′)At x |αX

≤ 2C M1−α
0 (M1/t + |γ − γ ′|M0)αeγ ′t |x |X

≤ C1(1 + t−α)eγ ′t |x |X .
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To get the second inequality we argue essentially in the same way but replace
Theorem 3.10.6(iv) by Definition 3.10.2:

‖(γ − A)α(λ − A)−1x‖
≤ 2C |(λ − A)−1x |1−α

X |(γ − A)(λ − A)−1x |αX
≤ C1|λ − γ ′|α−1

(
1 + |λ − γ |/|λ − γ ′|)α|x |X

≤ C2|λ − γ ′|−1
(
1 + |λ − γ ′|α)|x |X .

�

Lemma 3.10.9 enables us to add the following conclusion to Theorem 3.8.2
in the case of an analytic semigroup:

Theorem 3.10.10 Let A be an analytic semigroup on X, and define the
spaces Xα , α ∈ R as above. Let s ∈ R, xs ∈ X, 1 < p ≤ ∞, and f ∈
L p

loc([s, ∞); X−α), with

α < 1 − 1/p.

Then the function x given by (3.8.2) is a strong solution of (3.8.1) in X.

Proof This follows from (3.8.2), Lemma 3.10.9, and Hölder’s inequality. �

Let us end this section with a perturbation result. The feedback transform
studied in Chapter 7 leads to a perturbation of the original semigroup of the
system, so that the generator A of this semigroup is replaced by A + T for
some operator T . In the analytic case we are able to allow a fairly large class of
perturbations T without destroying the analyticity of the perturbed semigroup.

Theorem 3.10.11 Let A be the generator of an analytic semigroup on the
Banach space X, and define the fractional spaces Xα , α ∈ R, as in Section 3.9.
If T ∈ B(Xα; Xβ) for some α, β ∈ R with α − β < 1, then the operator (A +
T )|Xα

generates an analytic semigroup AT
|Xα−1

on Xα−1. For γ ∈ [α − 1, β + 1],
the spaces Xγ are invariant under AT

|Xα−1
, and the restriction AT

|Xγ
of AT

|Xα−1
to

Xγ is an analytic semigroup on Xγ . The generator of AT
|Xγ

is (A + T )|Xγ+1 if

γ ∈ [α − 1, β], and it is the part of A + T in Xγ if γ ∈ (β, β + 1].9 Moreover,
if 0 ∈ [α − 1, β + 1] (so that AT

|X is an analytic semigroup on X) and if we let
X T

α , α ∈ R, be the analogues of the spaces Xα with A replaced by A + T , then
X T

γ = Xγ for all γ ∈ [α − 1, β + 1].

Proof We begin by studying the special case where α = 1 and 0 < β ≤ 1. By
Theorem 3.10.6, every λ in some half-plane C+

µ belongs to the resolvent set of

9 See Definition 3.14.12 and Theorem 3.14.14.
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A, and for all λ ∈ C+
µ ,

‖(λ − A)−1‖ ≤ C

|λ − µ| . (3.10.9)

We claim that A + T has the same property on some other half-plane C+
ν . For

all λ ∈ C+
µ we may write λ − A − T in the form

λ − A − T = (λ − A)(1 − (λ − A)−1T ).

Here λ − A maps X1 one-to-one onto X , so to show that λ − A − T is invertible
it suffices to show that 1 − (λ − A)−1T is invertible in B(X1). Fix some δ ∈
ρ(A). Then (δ − A)−β T ∈ B(X1), and

‖(λ − A)−1T ‖B(X1) = ‖(δ − A)β(λ − A)−1(δ − A)−β T ‖B(X1)

≤ ‖(δ − A)β(λ − A)−1‖B(X1)‖(δ − A)−β T ‖B(X1).

By Lemma 3.10.9 (with X replaced by X1), we can make the right-hand
side less than 1

2 by choosing |λ| large enough, and then it follows from the
contraction mapping principle, 1 − (λ − A)−1T is invertible in B(X1) and
‖(1 − (λ − A)−1T ))−1‖B(X1) ≤ 2. This proves that, for some sufficiently large
µ1 ≥ µ, every C+

µ1
⊂ ρ(A + T ), and that for all λ ∈ C+

µ1
, λ − A − T maps X1

one-to-one onto X and

‖(λ − A − T )−1‖B(X ;X1) ≤ 2‖(λ − A)−1‖B(X ;X1).

Fix some ν ∈ C+
µ1

. Then both ν − A and ν − A − T are boundedly invertible
maps of X1 onto X , so the above inequality implies the existence of some C > 0
such that, for all λ ∈ C+

µ1
,

‖(ν − A − T )(λ − A − T )−1‖B(X ) ≤ C‖(ν − A)(λ − A)−1‖B(X ).

Equivalently,

‖(ν − λ)(λ − A − T )−1 + 1‖B(X ) ≤ C‖(ν − λ)(λ − A)−1 + 1‖B(X ),

hence, by the triangle inequality,

‖(λ − A − T )−1‖B(X ) ≤ C‖(λ − A)−1‖B(X ) + C + 1

|λ − ν| . (3.10.10)

This, together with (3.10.9) and Theorem 3.10.6 implies that A + T generates
an analytic semigroup.

Still assuming that α = 1 and 0 < β ≤ 1, let us show that X T
γ = Xγ for all

γ ∈ (0, 1) (we already know that this is true for γ = 0 and γ = 1). This is
equivalent to the claim that (ν ′ − A − T )−γ has the same range as (ν ′ − A)−γ ,
where, for example, ν ′ > ν, and ν is the same constant as in the proof above.
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A short algebraic computation shows that, for s ≥ 0,

(s + ν ′ − A)−1(1 + T (s + ν ′ − A − T )−1) = (s − A)−1,

and therefore, by Lemma 3.9.9,

(ν ′ − A − T )−γ − (ν ′ − A)−γ

= c
∫ ∞

0
s−γ

(
s + ν ′ − A

)−1
T

(
s + ν ′ − A − T

)−1
ds,

(3.10.11)

where c = sin πα
π

. Since T ∈ B(X1; Xβ), we get by a computation similar to the
one leading to (3.10.10) that there exist constants C1, C2 > 0 such that for all
s ≥ 0 (see also (3.10.9)),∥∥T

(
s + ν ′ − A − T

)−1∥∥
B(X ;Xβ ) ≤ C1

∥∥s(s + ν ′ − A)−1 + 1
∥∥
B(X ) ≤ C2.

If γ ≤ β, then we can estimate∥∥(
s + ν ′ − A

)−1∥∥
B(Xβ ;Xγ ) ≤ C3

∥∥(
s + ν ′ − A

)−1∥∥
B(Xβ ) ≤ C4(s + ν ′ − ν)−1,

and if γ > β then we get from Lemma 3.10.9 (with α = γ − β),∥∥(
s + ν − A

)−1∥∥
B(Xβ ;Xγ ) ≤ C((s + ν ′ − ν)−1 + (s + ν ′ − ν)γ−β−1).

In either case we find that the operator-norm in B(X ; Xγ ) of the integrand
in (3.10.11) is bounded by a constant times s−γ

(
(s + ν ′ − ν)−1 + (s + ν ′ −

ν)γ−β−1
)
, and this implies that the integral converges in B(X ; Xγ ). Since

also (ν ′ − A)−γ ∈ B(X ; Xγ ), this implies that R
(
(ν ′ − A − T )−γ

) ⊂ Xγ , or
in other words, X T

γ ⊂ Xγ . To prove the opposite inclusion it suffices to show
apply the same argument with A replaced by A + T and T replaced by −T
(i.e., we interchange the roles of A and A + T .

Let us recall what we have proved so far: If α = 1 and 0 < β ≤ 1, then
A + T generates an analytic semigroup on X , and X T

γ = Xγ for all γ ∈ [0, 1].
The restriction β ≤ 1 is irrelevant, because if β ≥ 1, then T ∈ B(X1), and we
can repeat the same argument with β replaced by one. Thus, the conclusion that
we have established so far is valid for all β > 0 when α = 1.

Next we look at another special case, namely the one where β = 0 and
0 ≤ α < 1. The proof is very similar to the one above, so let us only indicate
the differences, and leave the details to the reader. The estimate (3.10.9) is still
valid. This time we write λ − A − T in the form

λ − A − T = (1 − T (λ − A)−1)(λ − A),

where λ − A still maps X1 one-to-one onto X . To prove that λ − A − T maps
X1 one-to-one onto X it suffices to show that 1 − T (λ − A)−1 is invertible
in B(X ) for sufficiently large |λ|, and this is done by using the same type of
estimates as we saw above. In particular, we find that ‖T (λ − A)−1‖B(X ) ≤ 1

2
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and that (3.10.10) holds for |λ| large enough. Thus, A + T generates an analytic
semigroup on X .

If α < 0 and β = 0, then T ∈ B(X ), and we may simply replace α by zero
in the preceding argument. Thus, A + T generates an analytic semigroup on X
whenever α < 1 and β = 0.

Let us finally return to the general case where α, β ∈ R with α − β < 1. To
deal with this case we replace X by the new state space X ′ = Xβ−ε , where ε is an
arbitrary number satisfying 0 < ε ≤ β − α + 1. With respect to this new state
space the index α is replaced by α′ = α − β + ε ≤ 1, β is replaced by β ′ =
ε > 0, and T ∈ B(X ′

α′ ; X ′
β ′ ). This implies that T ∈ B(X ′

1; X ′
β ′ ) (since α′ ≤ 1),

so we can apply the first special case where we had α = 1 and β > 0 (replacing
X by X ′). We conclude that (A + T )|X ′

1
generates an analytic semigroup AT

|X ′

on X ′ = Xβ−ε and that X ′
γ ′

T = X ′
γ ′ for all γ ′ ∈ [0, 1], where X ′

γ ′
T are the

fractional spaces constructed by means of the semigroup AT
|X ′ as described in

Section 3.9. Moreover, by restricting AT
|X ′ to X ′

γ ′
T = X ′

γ ′ we get an analytic
semigroup AT

|X ′
γ ′

on X ′
γ ′ for all γ ′ ∈ [0, 1]. The above ε could be any number in

(0, β − α + 1]. In particular, taking ε = β − α + 1 we get a semigroup AT
|Xα−1

generated by (A + T )|Xα
on Xα−1.

One drawback with the above construction is that the fractional spaces X ′
γ ′

T

that we get depend on X ′, hence on the choice of the parameter ε. However,
as we saw in Section 3.9, we get the same spaces if we replace X ′ by any of
the spaces X ′

γ ′
T , and adjust the index accordingly. Since X ′

γ ′
T = X ′

γ ′ for all
γ ′ ∈ [0, 1], this means that we may fix one particular value of the parameter ε

(for example, ε = β − α + 1 which gives X ′ = Xα−1), and base the definition
of the fractional spaces induced by A + T on this fixed value of ε. After that, by
letting ε vary in (0, β − α + 1] we find that for all γ ∈ [α − 1, β), the operator
(A + T )|Xγ+1 generates the analytic semigroup AT

|Xγ
on Xγ , where AT

|Xγ
is the

restriction of AT
|Xα−1

to Xγ . Moreover, for γ ∈ [β, β + 1), the restriction AT
|Xγ

of AT
|Xα−1

to Xγ is an analytic semigroup on Xγ . By Theorem 3.14.14, the
generator of this semigroup is the part of A + T in Xγ . If 0 ∈ [α − 1, β + 1),
then we may base our definition of the fractional spaces induced by A + T on
the original state space X .

We have now proved most of Theorem 3.10.11. The only open question is
whether we can also take γ = β (instead of γ < β). To deal with this case we
replace the state space X by X ′ = Xβ . Then α is replaced by α′ = α − β < 1
and β is replaced by β ′ = 0. By the second of the two special cases that we
studied above, (A + T )|X ′

1
generates an analytic semigroup AT

|Xβ
on X ′ = Xβ

and X ′
1

T = X ′
1 = Xβ+1. Thus, (A + T )|Xβ+1 generates an analytic semigroup

on Xβ and X T
β+1 = Xβ+1. Furthermore, the restriction of AT

|Xβ
to Xβ+1 is an

analytic semigroup on this space. �
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3.11 Spectrum determined growth

One of the most important properties of a semigroup A is its growth bound ωA.
We defined ωA in Definition 2.5.6 in terms of the behavior of ‖At‖ as t → ∞.
In practice it is often more convenient to use characterizations of ωA which
refer to the generator A of A and not directly to A.

There is one obvious condition that the generator A of A must satisfy: by
Theorem 3.4.1 the half-plane C+

ωA
belongs to the resolvent set of A. Thus, it is

always true that

ωA ≥ sup{�λ | λ ∈ σ (A)}. (3.11.1)

If the converse inequality also holds, then we say that A has the spectrum
determined growth property:

Definition 3.11.1 The C0 semigroup A has the spectrum determined growth
property if

ωA = sup{�λ | λ ∈ σ (A)}. (3.11.2)

Example 3.11.2 Suppose that the semigroup A on X has the spectrum de-
termined growth property. Then so do the following semigroups derived from
A:

(i) the exponentially shifted semigroup t �→ eαtAt for every α ∈ C (see
Example 2.3.5);

(ii) the time compressed semigroup t �→ Aλt for every λ > 0 (see Example
2.3.6;

(iii) the similarity transformed semigroup t �→ E−1At E for every invertible
E ∈ B(X1; X ) (see Example 2.3.7).

The easy proof is left to the reader.
Some other classes of semigroups which have the spectrum determined

growth property are the following:

Example 3.11.3 The following semigroups have the spectrum determined
growth property:

(i) the left shift semigroups τ , τ+, τ−, τ[0,T ), and τTT in Examples 2.3.2 and
2.5.3;

(ii) diagonal semigroups (see Example 3.3.3 and Definition 3.3.4);
(iii) analytic semigroups (see Definition 3.10.1).

Proof (i) See Examples 2.5.3 and 3.3.1.
(ii) See Examples 3.3.3 and 3.3.5.
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(iii) We know that (3.11.1) holds for all semigroups, so it suffices to prove
the opposite inequality. Choose ω ∈ R so that �λ < ω − ε for some ε > 0
and all ω ∈ σ (A). The fact that A is sectorial on some sector �θ,ω′ for some
π/2 < θ < π and some ω′ ∈ R then implies that condition (ii) in Theorem
3.10.6 holds. By the same theorem, the growth bound of A is at most ω. Since
ε > 0 is arbitrary we get ωA ≤ sup{�λ | λ ∈ σ (A)}. �

Example 3.11.3(iii) is a special case of the following theorem:

Theorem 3.11.4 A semigroup At on a Banach space which is continuous in the
operator norm on an interval [t0, ∞), where t0 ≥ 0, has the spectral determined
growth property.

Proof Let ωA = sup{�λ | λ ∈ σ (A)}. By Theorem 2.5.4(i), it suffices to show
that, for some t > 0, the spectral radius of At is equal to eωAt . However, this
follows from the operator norm continuity of At which implies that etσ (A) ⊂
σ (At ) ⊂ {0} ∪ etσ (A); see Davies (1980, Theorems 2.16 and 2.19). �

Corollary 3.11.5 The semigroup At on the Banach space X has the spectrum
determined growth property (at least) in the following cases:

(i) t �→ At x is differentiable on [t0, ∞) for some t0 ≥ 0 and all x ∈ X, or
equivalently, R

(
At0

) ⊂ D (A) for some t0 ≥ 0.
(ii) At is compact for all t ≥ t0, where t0 ≥ 0, or equivalently, At0 is compact

for some t0 ≥ 0.

Proof This follows from Theorem 3.11.4 and the fact that in both cases, t �→ At

is continuous in the operator norm on [t0, ∞). See, for example, Pazy (1983,
Theorem 3.2 and Lemma 4.2). �

One way of looking at the spectrum determined growth property is to inter-
pret it as a condition that the generator A must not have a spectrum ‘at infinity’
in the right half-plane C+

ωA
. This idea can be made more precise. Theorem 3.4.1

not only implies that the half-plane C+
ωA

belongs to the resolvent set of A, but
in fact,

sup
�λ≥ωA+ε

‖(λ − A)−1‖ < ∞, ε > 0.

As the following theorem shows, this condition can be used to determine ωA

whenever the state space is a Hilbert space.

Theorem 3.11.6 Let A be the generator of a C0 semigroup A on a Hilbert
space X. Then

ωA = inf
{
ω ∈ R

∣∣∣ sup
�λ≥ω

‖(λ − A)−1‖ < ∞
}
.
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The proof of this theorem will be given in Section 10.3 (there this theorem
is reformulated as Theorem 10.3.7).

This theorem has the following interesting consequence:

Lemma 3.11.7 Let A be the generator of a C0 semigroup A on a Hilbert space
X, and suppose that, for some ω ∈ R, some M > 0, and some 0 < ε ≤ 1, the
half-plane C+

ω belongs to the resolvent set of A, and

‖(λ − A)−1‖ ≤ M(�λ − ω)ε−1, �λ > ω. (3.11.3)

Then the growth bound ωA of A satisfies

ωA ≤ ω − δ,

where δ > 0 is given by

δ =
{

1/M, ε = 1,

ε(1 − ε)1/ε−1 M−1/ε, 0 < ε < 1.

In particular, we conclude that (3.11.3) cannot possibly hold with ω = ωA

(because that would imply ωA < ωA). (It cannot hold for ε > 1, either.)

Proof The proof is based on Lemma 3.2.8(ii) and Theorem 3.11.6. The case
ε = 1 follows directly from these two results (the line �λ = ω must belong to
the resolvent set in this case, and, by continuity, (3.11.3) holds for �λ = ω,
too).

If 0 < ε < 1, then we take α in Lemma 3.2.8(ii) to lie on the line

�α = ω + (1 − ε)1/ε M−1/ε

(this is the choice that will maximize the constant δ), and takeλ to have�λ ≤ �α

and �λ = �α. Then, by Lemma 3.2.8(ii), λ will belong to the resolvent set of
A if

�(α − λ) = α − λ < 1/‖(α − A)−1‖,
which by (3.11.3) is true whenever �(α − λ) < 1/κ , where

κ = M−1(�α − ω)ε−1 = (1 − ε)1/ε−1 M−1/ε.

This can equivalently be rewritten as

�α − 1/κ = ω − δ < �λ ≤ ω + (1 − ε)1/ε M−1/ε.

Moreover, by the same lemma, ‖(λ − A)−1‖ is bounded by

‖(λ − A)−1‖ ≤ ‖(λ − A)−1‖
1 − ‖(λ − A)−1‖(α − λ)

≤ κ

1 − κ(α − λ)
= 1

�λ − (ω − δ)
.
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The conclusion now follows from Theorem 3.11.6. �

There is a related result which connects the growth bound of a semigroup to
some L p-estimates in the time domain:

Theorem 3.11.8 Let A be a C0 semigroup on the Banach space X and let
ω ∈ R. Then the following conditions are equivalent:

(i) ωA < ω;
(ii) e−ωt‖At‖ → 0 as t → ∞;

(iii) ‖At‖ < eωt for some t > 0;
(iv) For all x0 ∈ X, the function x(t) = At x0, t ≥ 0, belongs to L p

ω(R+; X )
for all p ∈ [1, ∞];

(v) For some p ∈ [1, ∞) and all x0 ∈ X, the function x(t) = At x0, t ≥ 0,
belongs to L p

ω(R+; X );
(vi) For all q ∈ [1, ∞], there is a finite constant Mq such that, for all

u ∈ Cc(R−; X ), ∣∣∣∣∫ 0

−∞
A−su(s) ds

∣∣∣∣
X

≤ Mq‖u‖Lq
ω(R−;X ).

(vii) For some q ∈ (1, ∞], some finite constant Mq, and all u ∈ C1
c (R−; X1),∣∣∣∣∫ 0

−∞
A−su(s) ds

∣∣∣∣
X

≤ Mq‖u‖Lq
ω(R−;X ).

(viii) For all p ∈ [1, ∞], there is a finite constant Mp such that, for all
u ∈ Cc(R; X ),∥∥∥∥t �→

∫ t

−∞
At−su(s) ds

∥∥∥∥
L p

ω(R;X )

≤ Mp‖u‖L p
ω(R;X ).

(ix) For some p ∈ [1, ∞], some finite constant Mp, and all u ∈ C1
c (R+; X ),∥∥∥∥t �→

∫ t

0
At−su(s) ds

∥∥∥∥
L p

ω(R+;X )

≤ Mp‖u‖L p
ω(R+;X ).

In particular, if ω = 0, then all the preceding conditions are equivalent to the
exponential stability of A.

Proof Without loss of generality, we take ω = 0 (see Examples 2.3.5 and 3.2.6).
(i) ⇒ (ii) and (i) ⇒ (iv): This follows from Theorem 2.5.4(i).
(i) ⇒ (vi): Use Theorem 2.5.4(i) and Hölder’s inequality.
(i) ⇒ (viii): Apply Theorem 2.5.4(ii) to the system in Proposition 2.3.1 with

B = C = 1 and D = 0.
(ii) ⇒ (iii), (iv) ⇒ (v), (vi) ⇒ (vii), and (viii) ⇒ (ix): These implications

are obvious.



168 Strongly continuous semigroups

(iii) ⇒ (i): Clearly, the spectral radius of At is less than one, and Theorem
2.5.4(i) implies that ωA < 0.

(v) ⇒ (ii): The operator x0 �→ x is continuous X → C(R
+

; X ), hence it
is closed X → L p(R+; X ). By the closed graph theorem, there is a constant
Mp > 0 such that(∫ ∞

0
|As x0|p

X ds
)1/p

≤ Mp|x0|X , x0 ∈ X. (3.11.4)

By Theorem 2.5.4(i), there are constants α > 0 and M > 0 such that ‖At‖ ≤
Meαt . Therefore, for all x0 ∈ X and t > 0,

1 − e−pαt

pα
|At x0|p

X =
∫ t

0
e−pαs ds|At x0|p

X =
∫ t

0
e−pαs |AsAt−s x0|p

X ds

≤
∫ t

0
‖e−αsAs‖p|At−s x0|p

X ds ≤ M p
∫ t

0
|At−s x0|p

X ds

≤ M p M p
p |x0|p

x .

This implies that there is a finite constant M∞ such that ‖At‖ ≤ M∞ for t ≥ 0.
We can now repeat the same computation with α = 0 to get

t‖At x0‖p
X =

∫ t

0
|At x0|p

X ds ≤
∫ t

0
‖As‖p|At−s x0|p

X ds

≤ M p
∞

∫ t

0
|At−s x0|p

X ds ≤ M p
∞M p

p |x0|p
x ,

which implies that

‖At‖ ≤ (Mp M∞)t−1/p.

(vii) ⇒ (ii): Let t > 0. If q < ∞ then we can use the density of
C1([−t, 0); X1) in Lq ([−t, 0); X ), and if q = ∞ then we can use a simple
approximation argument and the Lebesgue dominated convergence theorem to
show that, for all t > 0 and all u ∈ C([0, t); X ),∣∣∣∣∫ t

0
Asu(s) ds

∣∣∣∣
X

=
∣∣∣∣∫ 0

−t
A−su(−s) ds

∣∣∣∣
X

≤ Mq‖u‖Lq ([0,t);X ).

In particular, taking u(s) = eαsAt−s x0, where α > 0 and x0 ∈ X we get

eαt − 1

α
|At x0|X =

∣∣∣∣∫ t

0
eαsAt x0 ds

∣∣∣∣
X

=
∣∣∣∣∫ t

0
AseαsAt−s x0 ds

∣∣∣∣
X

≤ eαt Mq Kq |x0|X ,

where Kq is the (finite) Lq -norm over R of the function s �→ e−αs‖As‖. This
implies that ‖At‖ ≤ M1 for some finite M1 and all t ≥ 0. We then repeat the
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same computation with α = 0 to get

t |At x0|X =
∣∣∣∣∫ t

0
At x0 ds

∣∣∣∣
X

=
∣∣∣∣∫ t

0
AsAt−s x0 ds

∣∣∣∣
X

≤ Mq

∥∥(s �→ ‖As‖)
∥∥

Lq ([0,t))|x0|X ≤ Mq M1t1/q |x0|X ,

i.e., ‖At‖ ≤ Mq M1t1/q−1.
(ix) ⇒ (i): First we consider the case p = ∞. In (ix) we can replace

C1
c (R+; X ) by C1

c (R; X ) if we at the same time replace L∞(R+; X ) by
L∞(R; X ) and

∫ t
0 At−su(s) ds by

∫ t
−∞ At−su(s) ds since the convolution op-

erator t �→ ∫ t
−∞ At−su(s) ds is time-invariant (shift u ∈ C1

c (R; X ) to the right
until it is supported on R+, apply the convolution operator, and then shift the
result back). The integral

∫ t
−∞ At−su(s) ds is continuous in t , and by evaluating

this integral at zero we conclude that (vii) holds with q = ∞. As we saw above,
this implies (i).

In the case p < ∞ we argue as follows. As C1
c (R+; X ) is dense in L p(R+; X ),

we can weaken the condition u ∈ C1
c (R+; X ) to u ∈ L p(R+; X ), and the same

estimate still holds. Let x0 ∈ X , and define

u(t) =
{

At x0, 0 ≤ t < 1,

0, t ≥ 1,

and y(t) = ∫ t
0 At−su(s) ds. Then

y(t) =
{

tAt x0, 0 ≤ t < 1,

At x0, t ≥ 1,

and by (ix), y ∈ L p(R+; X ). In particular, t �→ At x0 ∈ L p(R+; X ) for every
x0 ∈ X . Thus (v) is satisfied, hence so is (i). �

3.12 The Laplace transform and the frequency domain

Some of the shift semigroups in Examples 2.3.2 and 2.5.3 and their generators
and resolvents described in Examples 3.3.1 and 3.3.2 have simple frequency
domain descriptions, which will be presented next. When we say ‘frequency
domain description’ we mean a description given in terms of Laplace transforms
of the original functions.

Definition 3.12.1 The (right-sided) Laplace transform of a function u ∈
L1

loc(R+; U ) is given by

û(z) =
∫ ∞

0
e−zt u(t) dt



170 Strongly continuous semigroups

for all z ∈ C for which the integral converges (absolutely). The left-sided
Laplace transform of a function u ∈ L1

loc(R−; U ) is given by

û(z) =
∫ 0

−∞
e−zt u(t) dt

for all z ∈ C for which the integral converges (absolutely). The bilateral Laplace
transform of a function u ∈ L1

loc(R; U ) is given by

û(z) =
∫ ∞

−∞
e−zt u(t) dt

for all z ∈ C for which the integral converges (absolutely). The finite Laplace
transform over the interval [0, T ] of a function u ∈ L1([0, T ]; U ) is given by

û(z) =
∫ T

0
e−zt u(t) dt

for all z ∈ C.

The finite Laplace transform is always an entire function. It is easy to see
that the domains of definition of the other Laplace transforms, if nonempty,
are vertical strips {z ∈ C | �z ∈ J }, where J is an interval in R (open, closed,
or semi-closed, bounded or unbounded). The one-sided, left-sided, and finite
Laplace transforms can be interpreted as special cases of the bilateral Laplace
transform, namely, the case where u vanishes on the complements of R+, R−,
or [0, T ]. For the one-sided Laplace transform, either J is empty or the right
end-point of J is +∞, and for the left-sided Laplace transform, either J is
empty or the left end-point of J is −∞. In the case of the bilateral Laplace
transform J may be bounded or unbounded, and it may consist of one point
only. In the interior of their domains all the different Laplace transforms are
analytic. For example, if u ∈ L1

c(R; U ), then the bilateral Laplace transform of
u is entire (as in the case of the finite Laplace transform).

All the Laplace transforms listed above determine the original function u
uniquely (on its given domain), whenever the domain of the Laplace transform is
nonempty. To prove this it suffices to consider the case of the bilateral transform
(since the others can be reduced to this one). If û(z) is defined for some z ∈ C,
then u ∈ L1

α(C; U ) where α = �z. Under some further conditions we can get
the following explicit formula for u in terms of û.

Proposition 3.12.2 Let u ∈ L1
α(R; U ), whereU is a Banach space, and suppose

that the bilateral Laplace transform û of u satisfies û ∈ L1(α + jR; U ). Define

v(t) = 1

2π

∫ ∞

−∞
e(α+ jω)t û(α + jω) dω, t ∈ R.

Then u = v almost everywhere, v ∈ BCα,0(R; U ), and û ∈ BC0(α + jR; U ).
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Proof In the scalar case with α = 0 this is shown in Rudin [1987, Theorem
9.12, p. 185]. We can introduce a general α ∈ R by applying the same result
with u(t) replaced by e−αt u(t). The proof of the vector-valued case is identical
to the proof of the scalar case given in Rudin (1987). �

It follows from Proposition 3.12.2 that the Laplace transform is injective:
If two functions u and v have the same Laplace transform, defined on the
same vertical line �z = α, then they must be equal almost everywhere (apply
Proposition 3.12.2 to the difference u − v).

In the case of the left-sided or right-sided Laplace transform, the most restric-
tive condition in Proposition 3.12.2 is the requirement that û ∈ L1(α + jR; U ).
If u is continuous with u(0) �= 0, then Proposition 3.12.2 cannot be applied to
the one-sided transforms, due to the fact that π+u and/or π−u will have a jump
discontinuity at zero. The following proposition has been designed to take care
of this problem.

Proposition 3.12.3 Let U be a Banach space.

(i) Suppose that u ∈ L1
α(R+; U ) and that there exists some u0 ∈ C such that

the function ω �→ û(α + jω) − (1 + jω)−1u0 belongs to L1(R; U ),
where û is the (right-sided) Laplace transform of u. Let β ∈ C−

α , and
define for all t ∈ R+,

v(t) = eβt u0 + 1

2π

∫ ∞

−∞
e(α+ jω)t

[
û(α + jω) − (α + jω − β)−1u0

]
dω.

Then v is independent of β, v ∈ BCα,0(R+; U ), v(0+) = u0, and u = v

almost everywhere on R+.
(ii) Suppose that u ∈ L1

α(R−; U ) and that there exists some u0 ∈ C such that
the function ω �→ û(α + jω) − (1 + jω)−1u0 belongs to L1(R; U ),
where û is the left-sided Laplace transform of u. Let β ∈ C+

α , and define
for all t ∈ R−,

v(t) = −eβt u0 + 1

2π

∫ ∞

−∞
e(α+ jω)t

[
û(α + jω) − (α + jω − β)−1u0

]
dω.

Then v is independent of β, v ∈ BCα,0(R−; U ), v(0−) = −u0, and u = v

almost everywhere on R+.

Proof The proof is essentially the same in both cases. First we observe that the
function ω �→ û(α + jω) + (α + jω − β)−1u0 belongs to L1

α(R; U ) since the
difference

1

α + jω − β
− 1

1 + jω
= 1 − α + β

(α + jω − β)(1 + jω)
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belongs to L1(R). We get the conclusion of (i) by applying Proposition 3.12.2
to the function t �→ u(t) − eβt u0 (whose right-sided Laplace transform is
û(λ) − (λ − β)−1u0 for �λ ≥ α), and we get the conclusion of (ii) by applying
Proposition 3.12.2 to the function t �→ u(t) + eβt u0 (whose left-sided Laplace
transform is û(λ) − (λ − β)−1u0 for �λ ≤ α). �

In the proof of Proposition 3.12.3 given above we observe that, although
the Laplace transform is injective in the sense that we explained earlier, it is
possible to have two functions, one supported on R+ and another supported
on R−, which have ‘the same’ one-sided Laplace transforms in the sense that
the two Laplace transforms are analytic continuations of each other. As our
following theorem shows, this situation is not at all unusual.

Theorem 3.12.4 Let U be a Banach space, and let f be a U-valued function
which is analytic at infinity with f (∞) = 0. Let � be a positively oriented
piecewise continuously differentiable Jordan curve such that f is analytic on
� and outside of �, and define

u(t) = 1

2π j

∮
�

eλt f (λ) dλ.

Then u is entire, u(0) = limλ→∞ λ f (λ), u(t) = O(eβt ) as t → ∞ and u(t) =
O(e−αt ) as t → −∞, where β = sup{�λ | λ ∈ �} and α = inf{�λ | λ ∈ �}.
Moreover, the restriction of f to C+

ω is the (right-sided) Laplace transform of
π+u, and the restriction of f to C−

α is the (left-sided) Laplace transform of
−π−u.

Proof That u is entire and satisfies the two growth bounds follows immediately
from the integral representation. The expression for u(0) follows from Lemma
3.9.1(ii). Thus, it only remains to prove that f , suitably restricted, is the right-
sided Laplace transform of π+u and the left-sided Laplace transform of −π−u.

We begin with the case where f (λ) = (λ − γ )−1u0, where γ is encircled by
� (in particular, α < �γ < β). Then a direct inspection shows that the theorem
is true with u(t) = eγ t u0. Since f is analytic at infinity with f (∞) = 0, it has
an expansion of the type f (λ) = u0/λ + O(λ−2) as λ → ∞. After subtracting
(λ − γ )−1u0 from f , the new function f satisfies f (λ) = O(λ−2) as λ → ∞.
Thus, we may, without loss of generality, assume that f (λ) = O(λ−2) as λ →
∞. Then u(0) = 0. (By subtracting off further terms it is even possible to assume
that f (λ) = O(λ−k) as λ → ∞ for any finite k.)



3.12 The frequency domain 173

Choose some β ′ > β and α′ < α, and define, for all t ∈ R,

v(t) = 1

2π

∫ ∞

−∞
e(β ′+ jω)t f (β ′ + jω) dω,

w(t) = 1

2π

∫ ∞

−∞
e(α′+ jω)t f (α′ + jω) dω.

We claim that v(t) = 0 for t ≤ 0, that w(t) = 0 for t ≥ 0, and that v(t) − w(t) =
u(t) for all t ∈ R. Suppose that this is true. Then v = π+u, w = −π−u, v is the
inverse right-sided Laplace transform of the restriction of f to the line �λ = β ′,
and w is the inverse left-sided Laplace transform of the restriction of f to the
line �λ = α′. Since the inverse Laplace transform is injective (the proof of
this is identical to the proof of the fact that the bilateral Laplace transform is
injective), the right-sided Laplace transform of π+u must coincide with u on
C+

β ′ and the left-sided Laplace transform of −π−u must coincide with u on C−
α′ .

Thus, it only remains to verify the claim that v(t) = 0 for t ≤ 0, that w(t) = 0
for t ≥ 0, and that v(t) − w(t) = u(t) for all t ∈ R.

We begin with the claim that v(t) = 0 for all t ≤ 0. For each R > 0, by
Cauchy’s theorem, we have

1

2π j

∮
�R

eλt f (λ) dλ = 0,

where �R is the closed path running from β ′ − j R to β ′ + j R along the line
�λ = β ′, and then back to β ′ − j R along a semi-circle in C

+
β ′ centered at β ′. If

t ≤ 0, then eλt is bounded on C+
β , and we can use the fact that f (λ) = O(λ−2)

as λ → ∞ to let R → ∞ (the length of the semi-circle is π R, hence this part
of the integral tends to zero), and get

v(t) = 1

2π

∫ ∞

−∞
e(β ′+ jω)t f (β ′ + jω) dω = lim

R→∞
1

2π j

∮
�R

eλt f (λ) dλ = 0.

This proves that v(t) = 0 for t ≤ 0. An analogous proof shows that w(t) = 0
for t ≥ 0.

Finally, let us show that v(t) − w(t) = u(t) for all t ∈ R. By analyticity, for
sufficiently large values of R, we can deform the original path � given in the
theorem to a rectangular path �R , running from β ′ − j R to β ′ + j R to α′ + j R
to α′ − j R, and back to β ′ − j R, and get for all t ∈ R,

u(t) = 1

2π j

∮
�R

eλt f (λ) dλ.
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Letting again R → ∞ we get

u(t) = lim
R→∞

1

2π j

∮
�R

eλt f (λ) dλ

= 1

2π

∫ ∞

−∞
e(β ′+ jω)t f (β ′ + jω) dω

− 1

2π

∫ ∞

−∞
e(α′+ jω)t f (α′ + jω) dω

= v(t) − w(t).

�

Corollary 3.12.5 Let U be a Banach space.

(i) Suppose that u ∈ L1
α(R+; U ) and that û is analytic at infinity. For all

t ∈ R+, define

v(t) = 1

2π j

∮
�

eλt û(λ) dλ,

where � is a positively oriented piecewise continuously differentiable
Jordan curve which encircles σ (û). Then v is the restriction to R+ of an
entire function, and u = v almost everywhere on R+.

(ii) Suppose that u ∈ L1
α(R−; U ) and that û is analytic at infinity. For all

t ∈ R−, define

v(t) = 1

2π j

∮
�

eλt û(λ) dλ,

where � is a negatively oriented piecewise continuously differentiable
Jordan curve which encircles σ (û). Then v is the restriction to R− of an
entire function, and u = v almost everywhere on R−.

Proof This follows from Theorem 3.12.4. �

By combining the symbolic calculus developed in Section 3.9 with Corollary
3.12.5 we get the following result.

Theorem 3.12.6 Let A be the generator of a C0 semigroup A on X with growth
bound ωA. Let u ∈ L1

ω(R−; C) for some ω > ωA, and suppose that the left-sided
Laplace transform û of u is analytic at infinity. Then û(A) ∈ B(X ; X1) and

û(A)x =
∫ 0

−∞
u(t)A−t x dt, x ∈ X.

Proof The assumptions imply that û is analytic on C−
ω ∪ ∞ with û(∞) = 0. In

particular, by Lemma 3.9.3, û(A) ∈ B(X ; X1).
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Let � be a negatively oriented piecewise continuously differentiable Jordan
curve which encircles σ (û) with σ (A) on the outside. Then Theorem 3.2.9,
Corollary 3.12.5, Fubini’s theorem, and (3.9.3) give, for all x ∈ X ,∫ 0

−∞
u(t)A−t x dt = 1

2π j

∫ 0

−∞

∮
�

eλt û(λ) dλ A−t x dt

= 1

2π j

∮
�

û(λ)
∫ 0

−∞
eλtA−t x dt dλ

= 1

2π j

∮
�

û(λ)
∫ ∞

0
e−λtAt x dt dλ

= 1

2π j

∮
�

û(λ)(λ − A)−1x dλ

= û(A)x .

�

Corollary 3.12.7 Let A be the generator of a C0 semigroup A on X with growth
bound ωA. Let u ∈ L1

−ω(R+; C) for some ω > ωA, and suppose that the right-
sided Laplace transform û of u is analytic at infinity. Then û(−A) ∈ B(X ; X1)
and

û(−A)x =
∫ ∞

0
u(t)At x dt, x ∈ X. (3.12.1)

Proof This follows from Theorem 3.12.6 through a change of integration vari-
ables (i.e., we apply Theorem 3.12.6 to the function t �→ u(−t)). �

It is possible to use (3.12.1) as a definition of û(−A), and in this way it is
possible to extend the functional calculus presented in the first half of Section
3.9 to a larger class of functions of A, namely those that correspond to functions
u ∈ L1

loc(R+) satisfying ∫ ∞

0
|u(t)|‖At‖ dt < ∞ (3.12.2)

(thus, u should be integrable with respect to the weight function ‖A‖). One
such example was the definition of the fractional powers of γ − A given in the
second half of Section 3.9.

Theorem 3.12.8 Let A be the generator of a C0 semigroup A on X with growth
bound ωA. Let u, v ∈ L1

ω(R−; C) for some ω > ωA, and suppose that the left-
sided Laplace transforms of u and v are analytic at infinity. Define w(t) =∫ 0

t u(t − s)v(s) ds for all those t ∈ R− for which the integral converges. Then
w ∈ L1

ω(R−; C) (in particular, w is defined for almost all t), ŵ(λ) = û(λ)v̂(λ)
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for λ ∈ C−
ω , and

ŵ(A) = û(A)v̂(A).

Proof The function (s, t) �→ u(t − s)v(s) is measurable (see, e.g., Hewitt and
Stromberg [1965, pp. 396–397]). By Fubini’s theorem and a change of integra-
tion variable,∫ 0

−∞
eωt |w(t)| dt ≤

∫ 0

−∞

∫ 0

t
|eω(t−s)u(t − s)||eωsv(s)| ds dt

=
∫ 0

−∞

∫ s

−∞
|eω(t−s)u(t − s)| dt |eωsv(s)| ds

=
∫ 0

−∞
|eωt u(t)| dt

∫ 0

−∞
|eωsv(s)| ds < ∞.

This proves that w ∈ L1
ω(R−; C). Using Fubini’s theorem once more we get for

all λ ∈ C−
ω ,

ŵ(λ) =
∫ 0

−∞
e−λtw(t) dt

=
∫ 0

−∞

∫ 0

t
e−λ(t−s)u(t − s)e−λsv(s) ds dt

=
∫ 0

−∞

∫ s

−∞
e−λ(t−s)u(t − s) dt e−λsv(s) ds

=
∫ 0

−∞
e−λt u(t) dt

∫ 0

−∞
e−λsv(s) ds

= û(λ)v̂(λ).

In particular, ŵ is analytic at infinity. To show that û(A) = û(A)v̂(A) it suffices
to repeat the computation above with e−λt replaced by A−t (and use Theorem
3.12.8). �

Theorem 3.12.9 Let A be the generator of a C0 semigroup A on X with growth
bound ωA. Let u ∈ L1

ω(R−; C) and v ∈ L1
ω(R−; X ) for some ω > ωA, and sup-

pose that the left-sided Laplace transforms of u and v are analytic at infinity.
Define w(t) = ∫ 0

t u(t − s)v(s) ds for all those t ∈ R− for which the integral
converges. Then w ∈ L1

ω(R−; X ) (in particular, w is defined for almost all t),
ŵ(λ) = û(λ)v̂(λ) for λ ∈ C−

ω , and∫ 0

−∞
A−tw(t) dt = û(A)

∫ 0

−∞
A−tv(t) dt.

Proof The proof of this theorem is the same as the proof of Theorem 3.12.8.
�
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Lemma 3.12.10 Let β ∈ R and α > 0, and define

f (t) = 1

�(α)
eβt tα−1, t ∈ R+.

Then the (right-sided) Laplace transform of f is given by

f̂ (λ) = (λ − β)−α, λ ∈ C+
β .

We leave the proof to the reader (one possibility is to make a (complex)
change of variable from t to u = t/(λ − β) in (3.9.7)).

If U is a Hilbert space and p = 2, then it is possible to say much more about
the behavior of the various Laplace transforms. Some results of this type are
described in Section 10.3.

3.13 Shift semigroups in the frequency domain

The following proposition describes how the shift semigroups introduced in
Examples 2.3.2 and 2.5.3 behave in the terms of Laplace transforms.

Proposition 3.13.1 Let U be a Banach space, let 1 ≤ p ≤ ∞, let ω ∈ R, and
let T > 0.

(i) Let τ t be the bilateral shift (τ t u)(s) = u(s + t) for all s, t ∈ R and all
u ∈ L1

loc(R; U ). Then, for all t ∈ R and all u ∈ L1
loc(R; U ), the bilateral

Laplace transforms τ̂ t u and û of τ t u, respectively u, have the same
domain (possibly empty), and for all z in this common domain,

τ̂ t u(z) = ezt û(z).

(ii) Let τ t
+ = π+τ t for all t ≥ 0, where τ t is the bilateral shift defined in (i).

Then, for all t ≥ 0 and all u ∈ L1
loc(R+; U ), the (one-sided) Laplace

transforms τ̂ t+u and û of τ t
+u, respectively u, have the same domain

(possibly empty), and for all z in this common domain,

τ̂ t+u(z) = ezt
∫ ∞

t
e−zsu(s) ds.

In particular, if u ∈ L p
ω(R+; U ), then τ̂ t u and û are defined at least for

all z ∈ C+
ω and the above formula holds.

(iii) Let τ t
− =< τ tπ− for all t ≥ 0, where τ t is the bilateral shift defined in

(i). Then, for all t ≥ 0 and all u ∈ L1
loc(R−; U ), the left-sided Laplace

transforms τ̂ t−u and û of τ t
−u, respectively u, have the same domain

(possibly empty), and for all z in this common domain,

τ̂ t−u(z) = ezt û(z).
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In particular, if u ∈ L p
ω(R−; U ), then τ̂ t u and û are defined at least for

all z ∈ C−
ω and the above formula holds.

(iv) Let τ t
[0,T ), t ≥ 0, be the finite left shift introduced in Example 2.3.2(iv).

Then, for all u ∈ L1([0, T ]; U ), the finite Laplace transform of τ t
[0,T )u

over [0, T ] is given by (for all z ∈ C))

τ̂ t
[0,T )u(z) =

{
ezt

∫ T
t e−zsu(s) ds, 0 ≤ t ≤ T,

0, otherwise.

(v) Let τ t
TT

, t ∈ R, be the circular left shift introduced in Example 2.3.2(v).
Then, for all u ∈ L1(TT ; U ), the finite Laplace transform of τ t

TT
u over

[0, T ] is given by (for all z ∈ C))

τ̂ t
TT

u(z) = ezt
∫ t+T

t
e−zsu(s) ds.

In particular, this Laplace transform is a T -periodic function of t .

Proof The proof is the same in all cases: it suffices to make a change of variable
v = s + t in the integral defining the Laplace transform of the shifted u (and
adjust the bounds of integration appropriately):∫

e−zsu(s + t) ds = ezt
∫

e−zvu(v) dv.

�

From Proposition 3.13.1 we observe that especially the bilateral shift τ t

and the outgoing shift τ t
− have simple Laplace transform descriptions, whereas

the descriptions of the other shifts are less transparent. Fortunately, all the
generators and the resolvents of the various shifts have simple descriptions.

Proposition 3.13.2 The generators of the (semi)groups τ t , τ t
+, τ t

−, τ t
[0,T ), and

τ t
TT

in Examples 2.3.2 and 2.5.3 (see Example 3.2.3), have the following de-
scriptions in terms of Laplace transforms:

(i) For all u in the domain of the generator d
ds of the bilateral left shift group

τ t on L1
ω(R; U ), the bilateral Laplace transforms of u and u̇ = d

ds u are
defined (at least) on the vertical line �z = ω, and̂̇u(z) = zû(z), �z = ω.

(ii) For all u in the domain of the generator d
ds + of the incoming left shift

semigroup τ t
+ on L p

ω(R+; U ) or on BUCω(R+; U ), the Laplace transforms
of u and u̇ = d

ds +u are defined (at least) on the half-plane C+
ω , and

̂̇u(z) = zû(z) − u(0), �z > ω.



3.13 Shift semigroups in the frequency domain 179

(iii) For all u in the domain of the generator d
ds − of the outgoing left shift

semigroup τ t
− on L p

ω(R−; U ) or on {u ∈ BUCω(R
−

; U ) | u(0) = 0}, the
left-sided Laplace transforms of u and u̇ = d

ds +u are defined (at least) on
the half-plane C−

ω , and̂̇u(z) = zû(z), �z < ω.

(iv) For all u in the domain of the generator d
ds [0,T )

of the finite left shift
semigroup τ t

[0,T ) on L p([0, T ); U ) or on {u ∈ C([0, T ]; U ) | u(T ) = 0},
the finite Laplace transforms over [0, T ] of u and u̇ = d

ds [0,T )
u are

related as follows: ̂̇u(z) = zû(z) − u(0), z ∈ C.

(v) For all u in the domain of the generator d
ds TT

of the circular left shift
group τ t

TT
on L p(TT ; U ) or on C(TT ; U ), the finite Laplace transforms

over [0, T ] of u and u̇ = d
ds TT

u are related as follows:

̂̇u(z) = zû(z) + (e−zT − 1)u(0), z ∈ C.

Proof All the proofs are identical: it suffices to integrate by parts in the integral
defining the particular Laplace transform, and to take into account possible
nonzero boundary terms (i.e., the terms −u(0) and (e−zT − 1)u(0) in (ii), (iv)
and (v)). �

Proposition 3.13.3 The resolvents of the generators d
ds , d

ds +, d
ds −, d

ds [0,T )
, and

d
ds TT

in Examples 3.2.3 and 2.5.3 (see Example 3.3.2), have the following de-
scriptions in terms of Laplace transforms:

(i) For all f ∈ L1
ω(R; U ) and all λ with �λ �= ω, the bilateral Laplace

transforms of f and u = (
λ − d

ds

)−1
f are defined (at least) on the

vertical line �z = ω, and

û(z) = (λ − z)−1 f̂ (z), �z = ω.

(ii) For all f ∈ L p
ω(R+; U ) or f ∈ BUCω(R+; U ) and all λ ∈ C+

ω , the

Laplace transforms of f and u = (
λ − d

ds +
)−1

f are defined (at least) on
the half-plane C+

ω , and

û(z) = (λ − z)−1( f̂ (z) − f̂ (λ)), �z > ω.

(iii) For all f ∈ L p
ω(R−; U ) or f ∈ BUCω(R−; U ) with f (0) = 0 and all λ

with �λ > ω, the left-sided Laplace transforms of f and
u = (

λ − d
ds −

)−1
f are defined (at least) on the half-plane C−

ω , and

û(z) = (λ − z)−1 f̂ (z), �z < ω.
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(iv) For all f ∈ L p
ω([0, T ]; U ) or f ∈ Cω([0, T ]; U ) with f (T ) = 0 and all

λ ∈ C, the finite Laplace transforms over [0, T ] of f and
u = (

λ − d
ds [0,T )

)−1
f are related as follows:

û(z) = (λ − z)−1( f̂ (z) − f̂ (λ)), z �= λ.

(v) For all f ∈ L p(TT ; U ) or f ∈ C(TT ; U ) and all
λ /∈ {2π jm/T | m = 0, ±1, ±2, . . .}, the finite Laplace transforms over
[0, T ] of f and u = (

λ − d
ds TT

)−1
f are related as follows:

û(z) = (λ − z)−1( f̂ (z) − (1 − e−zT )(1 − e−λT )−1 f̂ (λ)), z �= λ.

Proof Throughout this proof the convergence of the indicated Laplace trans-
forms are obvious, so let us only concentrate on the formulas relating û(z) to
f̂ (z).

(i) This follows from Proposition 3.13.2(i), which given f̂ (z) = λû(z) −̂̇u(z) = (λ − z)û(z).
(ii) By Proposition 3.13.2(ii), f̂ (z) = λû(z) − ̂̇u(z) = (λ − z)û(z) + u(0).

Taking z = λ we get u(0) = f̂ (λ), and so

(λ − z)û(z) = f̂ (z) − f̂ (λ).

(iii)–(iv) These proofs are identical to the proofs of (i) and (ii), respectively.
(v) By Proposition 3.13.2(v),

f̂ (z) = λû(z) − ̂̇u(z) = (λ − z)û(z) + (1 − e−zT )u(0).

Taking z = λ we get u(0) = (1 − e−λT )−1 f̂ (λ), and so

(λ − z)û(z) = f̂ (z) − (1 − e−zT )(1 − e−λT )−1 f̂ (λ).

�

3.14 Invariant subspaces and spectral projections

We begin by introducing some terminology.

Definition 3.14.1 We say that the Banach space X is the direct sum of Y and
Z and write either X = Y +̇ Z or X = [

Y
Z

]
if Y and Z are closed subspaces of

X and every x ∈ X has a unique representation of the form x = y + z where
y ∈ Y and z ∈ Z . A subspace Y of X is complemented if X is the direct sum
of Y and some other subspace Z .

Instead of writing x = y + z (corresponding to the notation X = Y +̇ Z ) as
we did above we shall also use the alternative notation x = [

y
z

]
(corresponding

to the notation X = [
Y
Z

]
), and we identify y ∈ Y with

[ y
0

] ∈ X . Note that
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every closed subspace Y of a Hilbert space X is complemented: we may take
the complement of Y ⊂ X to be Z = Y ⊥.

Lemma 3.14.2 Let X be a Banach space.

(i) If π is an arbitrary projection on X (i.e., π ∈ B(X ) and π = π2), then
X = N (π ) +̇ R (π ). (In particular, the range of a projection operator is
closed.)

(ii) Conversely, to each splitting of X into a direct sum X = Y +̇ Z there is a
unique projection π such that Y = N (π ) and Z = R (π ). We call π the
projection of X onto Z along Y .

Proof (i) Clearly, every x ∈ X can be split into x = πx + (1 − π )x whereπx ∈
R (π ) and (1 − π )x ∈ N (π ) (since π (1 − π )x = πx − π2x = 0). Obviously,
if x ∈ N (1 − π ), then x = πx , so x ∈ R (π ), and conversely, if x ∈ R (π ),
then x = πy for some y ∈ X , so πx = π2 y = πy = x , i.e., x ∈ N (1 − π ).
This means that R (π ) = N (1 − π ), hence R (π ) is closed.

(ii) For each x ∈ X , split x (uniquely) into x = y + z where y ∈ Y and
z ∈ Z . Define πx = y. Then πx = x iff x ∈ Y and πx = 0 iff x ∈ Z . It is easy
to see that the operator π defined in this way is linear and closed, and that it
satisfies π = π2. By the closed graph theorem, π ∈ B(X ). �

Definition 3.14.3 Let X be a Banach space, and let A : X ⊃ D (A) → X be a
linear operator.

(i) A subspace Y of X is an invariant subspace of A if Ax ∈ Y for every
x ∈ D (A) ∩ Y .

(ii) A pair of subspaces Y and Z of X are reducing subspaces of A if
X = Y +̇ Z , every x ∈ D (A) is of the form x = y + z where
y ∈ D (A) ∩ Y and z ∈ D (A) ∩ Z , and both Y and Z are invariant
subspaces of A,

(iii) By an invariant subspace of a C0 semigroup A on X we mean a subspace
Y which is an invariant subspace of At for every t ≥ 0.

(iv) By a pair of reducing subspaces of a C0 semigroup A on X we mean a
pair of subspaces which are reducing subspaces of At for every t ≥ 0.

Theorem 3.14.4 Let A be a C0 semigroup on a Banach space X with gener-
ator A and growth bound ωA, and let Y be a closed subspace of X. Denote
the component of ρ(A) which contains an interval [ω, ∞) by ρ∞(A) (by Theo-
rem 3.2.9(i) such an interval always exists). Then the following conditions are
equivalent.
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(i) Y is an invariant subspace of A.
(ii) Y is an invariant subspace of (λ − A)−1 for some λ ∈ ρ∞(A).

(iii) Y is an invariant subspace of (λ − A)−1 for all λ ∈ ρ∞(A).
(iv) Y is an invariant subspace of A and ρ(A|D(A)∩Y ) ∩ ρ∞(A) �= ∅.

If these equivalent conditions hold, then it is also true that

(v) A|Y is a C0 semigroup on Y whose generator is A|D(A)∩Y .

Here it is important that Y is closed. For example, D (A) is an invariant
subspace of A but not of A.

Proof (i) ⇒ (ii): If (i) holds, then by Theorem 3.2.9(i), for all λ ∈ ω+
A

and all
x ∈ Y ,

(λ − A)−1x =
∫ ∞

0
e−λsAs x ∈ Y.

(ii) ⇒ (iii): Take an arbitrary x∗ ∈ Y ⊥, where

Y ⊥ = {x∗ ∈ X∗ | 〈x, x∗〉(X,X∗) = 0 for all x ∈ Y }.

Fix x ∈ Y , and take some λ0 ∈ ρ∞(A) such that Y is invariant un-
der (λ0 − A)−1. Then (λ0 − A)−n x ∈ Y for all n = 1, 2, 3, . . . , hence
〈(λ0 − A)−n x, x∗〉(X,X∗) = 0 for all n = 1, 2, 3, . . . . Define f (λ) = 〈(λ −
A)−n x, x∗〉(X,X∗). Then f is analytic in ρ∞(A), and all its derivatives van-
ish at the point λ0 (see (3.2.6)). Therefore f (λ) = 〈(λ − A)−n x, x∗〉(X,X∗) = 0
for all λ ∈ ρ∞(A). Taking the intersection over all x∗ ∈ Y ⊥ we find that
(λ − A)−n x ∈ Y .

(iii) ⇒ (i): If (iii) holds, then by Theorem 3.7.5, for all t ≥ 0 and all x ∈ Y ,

At x = lim
n→∞

(
1 − t

n
A
)−n

x ∈ Y.

(i) ⇒ (iv): For all x ∈ D (A) ∩ Y ,

Ax = lim
h↓0

1

h
(Ah − 1)x ∈ Y.

That ρ(A|D(A)∩Y ) ∩ ρ∞(A) �= ∅ follows from (v) and Theorem 3.2.9(i).
(i) ⇒ (v): Trivially, A|Y is a C0 semigroup on Y (since Y is invariant, and

we use the same norm in Y as in X ). Let us denote its generator by Ã. We
have just seen that x ∈ D ( Ã) whenever x ∈ D (A) ∩ Y , and that Ãx = Ax for
all x ∈ D (A) ∩ Y . Conversely, if x ∈ D ( Ã), then x ∈ Y and 1

h (Ah − 1)x has a
limit in Y as h ↓ 0, so x ∈ D (A) ∩ Y .
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(iv) ⇒ (ii): Assume (iv). Let λ ∈ ρ(A|D(A)∩Y ) ∩ ρ∞(A). Then λ − A maps
D (A) ∩ Y one-to-one onto Y (since λ ∈ ρ(A|D(A)∩Y ) and (λ − A|D(A)∩Y )y =
(λ − A)y for every y ∈ D (A) ∩ Y ). This implies that (λ − A)−1 maps Y one-
to-one onto D (A) ∩ Y . In particular, Y is invariant under (λ − A)−1. �

Invariance is preserved under the symbolic calculus described at the begin-
ning of Section 3.9.

Lemma 3.14.5 Let A ∈ B(X ), let � be a piecewise continuously differentiable
Jordan curve which encircles σ (A) counter-clockwise, and let f be analytic on
� and inside �. Define f (A) by (3.9.1). Then the following claims are true.

(i) If Y is a closed invariant subspace of A, then Y is also invariant under
f (A).

(ii) If Y and Z are a pair of reducing subspaces of A, then they are also
reducing for f (A).

Proof This follows from (3.9.1), the fact that Y and Z are closed, and Theorem
3.14.4. �

In the decomposition of systems into smaller parts we shall encounter closed
invariant subspaces contained in the domain of the generator.

Theorem 3.14.6 Let A : X ⊃ D (A) → X be a closed linear operator, and
let Y be an invariant subspace of A which is contained in D (A) and closed
in X. Then Y ⊂ ∩∞

n=1D (An), A|Y ∈ B(Y ), and (An)|Y = (A|Y )n for all n =
1, 2, 3, . . . . If A is the generator of a C0 semigroup A on X, then Y is invariant
under A and A|Y is a uniformly continuous semigroup on Y whose generator
is A|Y .

Proof The operator A|Y is closed since A is closed. Its domain is all of Y , and
therefore, by the closed graph theorem, A|Y ∈ B(Y ).

Let x ∈ Y . Then x ∈ D (A) (since Y ⊂ D (A)), and Ax ∈ Y (since Y is
invariant). Repeating the same argument with x replaced by Ax we find
that Ax ∈ D (A), i.e, x ∈ D

(
A2

)
, and that (A2)|Y = (A|Y )2. Continuing in

the same way we find that Y ⊂ ∩∞
n=1D (An) and that (An)|Y = (A|Y )n for all

n = 1, 2, 3, . . . .
That Y is invariant under A follows from Theorem 3.14.4 (every λ with |λ| >

‖A|Y ‖ belongs to the resolvent set of A|Y ). That A|Y is uniformly continuous
follows from the fact that its generator A|Y is bounded. �

We now turn our attention to subspaces which are reducing and not just
invariant.
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Lemma 3.14.7 Let X = Y +̇ Z, let π be the projection of X onto Y along Z,
and let A : X ⊃ D (A) → X be a linear operator. Then Y and Z is a pair of
reducing subspaces of A if and only if π maps D (A) into D (A) and π Ax =
Aπx for all x ∈ D (A).

Proof Assume that π maps D (A) into itself and that π Ax = Aπx for all
x ∈ D (A). Then every x ∈ D (A) can be split into x = πx + (1 − π )x where
πx ∈ D (A) ∩ Y and (1 − π )x ∈ D (A) ∩ Z . Moreover, for all y ∈ D (A) ∩ Y ,
π Ay = Aπy = Ay, hence Ay ∈ Y , and for all z ∈ D (A) ∩ Z , π Az = Aπ z =
0, hence Az ∈ Z . Thus both Y and Z are invariant subspaces of A, and Y and
Z is a pair of reducing subspaces of A.

Conversely, suppose that Y and Z is a pair of reducing subspaces of A.
Then π maps D (A) into D (A) (since every x ∈ X has a unique representation
x = y + z with y ∈ D (A) ∩ Y and z ∈ D (A) ∩ Z , and πx = y). Moreover,
for all x ∈ D (A), π A(1 − π )x = 0 and (1 − π )Aπ = 0 (since 1 − π is the
complementary projection of X onto Z along Y ), and

π A = π Aπ = Aπ.

�

Theorem 3.14.8 Let X = Y +̇ Z, let π be the projection of X onto Y along Z,
and let A : X ⊃ D (A) → X be a linear operator with a nonempty resolvent
set. Then the following conditions are equivalent:

(i) Y and Z are reducing subspaces of A,
(ii) Y and Z are reducing subspaces of (λ − A)−1 for some λ ∈ ρ(A).

(iii) Y and Z are reducing subspaces of (λ − A)−1 for all λ ∈ ρ(A).

If, in addition, A is the generator of a C0 semigroup A, then (i)–(iii) are equiv-
alent to

(iv) Y and Z are reducing subspaces of A.

Proof Let π denote the projection of X onto Y along Z .
(i) ⇒ (iii): Assume (i). By Lemma 3.14.7, (λ − A)πx = π (λ − A)x for all

λ ∈ C and all x ∈ D (A). In particular, if we take λ ∈ ρ(A), then we can apply
(λ − Ã)−1 to both sides of this identity and replace x by (λ − A)−1x to get for
all x ∈ X ,

π (λ − A)−1x = (λ − A)−1πx .

By Lemma 3.14.7, this implies (iii).
(iii) ⇒ (ii): This is trivial.
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(ii) ⇒ (i): Assume (ii). Then, for all x ∈ D (A),

πx = (λ − A)−1π (λ − A)x .

This implies that π maps D (A) into itself. Applying (λ − A) to both sides of
this identity we get (λ − A)πx = π (λ − A)x , or equivalently, π Ax = Aπx .
By Lemma 3.14.7, this implies (i).

(iv) ⇒ (ii): This follows from the fact that (i) implies (ii) in Theorem 3.14.4.
(iii) ⇒ (iv): If (iii) holds, then by Theorem 3.7.5, for all t ≥ 0 and all x ∈ X ,

Atπx = lim
n→∞

(
1 − t

n
A
)−n

πx = π lim
n→∞

(
1 − t

n
A
)−n

x = πAt x .

By Lemma 3.14.7, this implies (iv). �

Corollary 3.14.9 If the equivalent conditions (i)–(iii) in Theorem 3.14.8 hold,
then ρ(A) = ρ(A|Y ) ∩ ρ(A|Z ), and for all λ ∈ ρ(A),

(λ − A|Y )−1 = (λ − A)−1
|Y , (λ − A|Z )−1 = (λ − A)−1

|Z ,

(λ − A)−1 = (λ − A|Y )−1π + (λ − A|Z )−1(1 − π ),
(3.14.1)

where π is the projection of X onto Y along Z.

Proof Let λ ∈ C. Then λ ∈ ρ(A) if and only if the equation (λ − A)x = w has
a unique solution x for every w ∈ X , and x depends continuously on w. By
projecting this equation onto Y and Z (i.e., we multiply the equation by π and
1 − π , where π is the projection onto Y along Z , and recall that π commutes
with A) we get the two independent equations

(λ − A|Y )y = πw, (λ − A|Y )z = (1 − π )w,

where y = πx ∈ Y and z = x − y ∈ Z . The original equation is solvable if
and only if both of these equations are solvable, and this implies that ρ(A) =
ρ(A+) ∩ ρ(A−). Furthermore,

x = (λ − A)−1w = y + z

= (λ − A|Y )−1πw + (λ − A|Y )−1(1 − π )w,

which gives us (3.14.1). �

One common way to construct invariant subspaces of a semigroup is to use
a spectral projection. This is possible whenever the spectrum of the generator
is not connected.

Theorem 3.14.10 Let A : X ⊃ D (A) → X be a densely defined linear opera-
tor with a nonempty resolvent set ρ(A). Let � be a positively oriented piecewise
continuously differentiable Jordan curve contained in ρ(A) which separates
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σ (A) into two nontrivial parts σ (A) = σ+(A) ∪ σ−(A), where σ+(A) lies in-
side � and σ−(A) lies outside � (in particular, ∞ /∈ σ+(A)). Then the operator
π ∈ B(X ) defined by

π = 1

2π j

∮
�

(λ − A)−1 dλ. (3.14.2)

is a projection which maps X intoD (A). Denote X+ = R (π ) and X− = N (π ),
A+ = A|X+ and A− = A|X− . Then the following claims are true.

(i) X = X+ +̇ X−, and X+ and X− are reducing subspaces of A and of
(λ − A)−1 for all λ ∈ ρ(A).

(ii) X+ ⊂ ∩∞
n=1D (An), A+ ∈ B(X+), and for all n = 1, 2, 3, . . . ,

(A+)n = An
|X+ and (A−)n = An

|D(An )∩X− .
(iii) σ (A+) = σ+(A) and σ (A−) = σ−(A).
(iv) If A is the generator of a C0 semigroup A, then A+ is the generator of the

norm-continuous semigroup A+ = A|X+ and A− is the generator of the
C0 semigroup A− = A|X− .

The projection π constructed above is often referred to as the Riesz projection
corresponding to the part σ+(A) of σ (A).

Proof As in Section 3.6, let us denote D (A) by X1. Then the function λ �→
(λ − A)−1 is bounded and (uniformly) continuous on � with values inB(X ; X1),
so π ∈ B(X ; X1).

Let µ ∈ ρ(A). Then (µ − A)−1 is analytic on �, so

(µ − A)−1π = (µ − A)−1 1

2π j

∮
�

(λ − A)−1 dλ

= 1

2π j

∮
�

(µ − A)−1(λ − A)−1 dλ = π (µ − A)−1,

since (µ − A)−1 and (λ − A)−1 commute. Thus, π commutes with (µ − A)−1.
Furthermore, by the resolvent identity (3.2.1),

(µ − A)−1π = 1

2π j

∮
�

(µ − A)−1 − (λ − A)−1

λ − µ
dλ

= (µ − A)−1

2π j

∮
�

(λ − µ)−1 dλ − 1

2π j

∮
�

(λ − A)−1

λ − µ
dλ

=
{

(µ − A)−1 − 1
2π j

∮
�

(λ−A)−1

λ−µ
dλ, if µ lies inside �,

− 1
2π j

∮
�

(λ−A)−1

λ−µ
dλ, if µ lies outside �.

(3.14.3)

We next show that π is a projection. If we perturb the path � in such a way
that the new path �1 lies outside �, and so that both �1 and � together with the
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area in between lie in ρ(A), then, by the analyticity of the resolvent (λ − A)−1

in this area,

π = 1

2π j

∮
�1

(µ − A)−1 dµ.

Therefore, by (3.14.2), (3.14.3) (note that the index of λ with respect to �1 is
one)

π2 = 1

2π j

∮
�1

(µ − A)−1π dµ

= − 1

2π j

∮
�1

1

2π j

∮
�

(λ − A)−1

λ − µ
dλ dµ

= − 1

2π j

∮
�

(λ − A)−1 1

2π j

∮
�1

dµ

λ − µ
dλ

= 1

2π j

∮
�

(λ − A)−1 dλ = π.

Thus π2 = π , and we have proved that π is a projection. By Lemma 3.14.2,
X = X+ +̇ X−. (In particular, X+ and X− are closed.)

We now proceed to verify properties (i)–(iv).
(i) We know from the argument above that π commutes with (λ − A)−1 for

all λ ∈ ρ(A), and we get (i) from Lemma 3.14.7 (applied to (λ − A)−1) and
Theorem 3.14.8.

(ii) This follows from Theorem 3.14.6.
(iii) By Corollary 3.14.9, ρ(A) = ρ(A+) ∩ ρ(A−). Thus, to prove (iii) it

suffices to show that A+ has no spectrum outside � and that A− has no spectrum
inside �.

Let µ ∈ ρ(A) lie outside �. Then µ ∈ ρ(A+), and by (3.14.3) and Corollary
3.14.9, for all x ∈ X+,

(µ − A+)−1x = − 1

2π j

∮
�

(λ − A)−1

λ − µ
x dλ.

Thus, in particular,∥∥(µ − A+)−1
∥∥ ≤ 1

2π

∮
�

|λ − µ|−1
∥∥(λ − A)−1

∥∥| dλ|.

We know that neither A nor A+ has any spectrum in a neighborhood of �

(since � ∈ ρ(A)), and away from � the right-hand side of the above inequality
is bounded, uniformly in µ. This implies that A+ cannot have any spectrum
outside �, because by Lemma 3.2.8(iii),

∥∥(µ − A+)−1
∥∥ → ∞ as µ approaches

a point in σ (A+). In the same way it can be shown that A− cannot have any



188 Strongly continuous semigroups

spectrum inside �: note that by (3.14.3),

(µ − A−)−1x = 1

2π j

∮
�

(λ − A)−1

λ − µ
x dλ

for all x ∈ X− and all µ ∈ ρ(A) which lie inside �.
(iv) See Theorems 3.14.6 and 3.14.8. �

In the case of a normal semigroup it is possible to use a different type of
spectral projection, which does not require the spectrum of the generator to be
disconnected.

Theorem 3.14.11 Let A be a closed and densely defined normal operator on
a Hilbert space X (i.e., A∗ A = AA∗), and let E be the corresponding spectral
resolution of A, so that

〈Ax, y〉X =
∫

σ (A)
λ〈E( dλ)x, y〉, x ∈ D (A) , y ∈ X.

Let F be a bounded Borel set in C, and let π = E(F), i.e.,

〈πx, y〉X =
∫

σ (A)∩F
〈E( dλ)x, y〉, x ∈ X, y ∈ X.

Then π is an orthogonal projection which maps X into D (A). Denote X+ =
R (π ) and X− = N (π ), A+ = A|X+ and A− = A|X− . Then the claims (i), (ii),
and (iv) in Theorem 3.14.10 hold, and the claim (iii) is replaced by

(iii′) σ (A+) = σ (A) ∩ F, and σ (A−) = σ (A) \ F.

We leave the proof of this theorem to the reader. (That π is a self-adjoint
projection follows from the definition of a spectral resolution, and the rest
follows either directly from the properties of a spectral resolution or from an
argument similar to the one used in the proof of Theorem 3.14.10. Note, in
particular, that R (π ) ⊂ D (A) since F is bounded.)

So far we have primarily looked at closed invariant subspaces. There is also
another class of subspaces that play an important role in the theory, namely
invariant Banach spaces which are continuously embedded in the state space.
An example of this are the spaces Xα with α > 0 introduced in Sections 3.6
and 3.9. These spaces are typically invariant under the semigroup A, but not
under its generator A.

Definition 3.14.12 Let A : X ⊃ D (A) → A be a linear operator, and let Y be
a subspace of X (not necessarily dense). By the part of A in Y we mean the
operator Ã which is the restriction of A to

D ( Ã) = {x ∈ D (A) ∩ Y | Ax ∈ Y }.
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Definition 3.14.13 Let A be a C0 semigroup on the Banach space X with gen-
erator A, and let let Y be another Banach space embedded in X (not necessarily
densely). We call Y A-admissible if Y is invariant under A and the restriction
of A to Y is strongly continuous in the norm of Y (i.e, A|Y is a C0 semigroup
on Y ).

Theorem 3.14.14 Let A be a C0 semigroup on the Banach space X with gener-
ator A and growth bound ωA, and let Y be another Banach space embedded in
X (not necessarily densely). Then Y is A-admissible if and only if the following
two conditions hold:

(i) Y is an invariant subspace of (λ − A)−1 for all real λ > ωA,
(ii) The part of A in Y is the generator of a C0 semigroup on Y .

When these conditions hold, then the generator of A|Y is the part of A in Y .

Proof Assume that Y is A-admissible. Then Theorem 3.2.9(i) (applied to A|Y )
implies (i) (and it is even true that Y is an invariant subspace of (λ − A)−1 for
all real λ ∈ C+

ωA
). Denote the generator of A|Y by A1, and denote the part of A

in Y by Ã. Since the norm in Y is stronger than the norm in X , it follows easily
that D (A1) ⊂ D (A) ∩ Y , and that for x ∈ D (A1), Ax = A1x ∈ Y . Thus, Ã is
an extension of A1. On the other hand, if x ∈ D ( Ã), then Ax ∈ Y , and each
term in the identity

At x − x =
∫ t

0
As Ax ds, t ≥ 0,

belongs to Y . Dividing by t and letting t ↓ 0 we find that x ∈ D (A1). Thus,
A1 = Ã, and Ã is the generator of the C0 semigroup A|Y on Y .

Conversely, suppose that (i) and (ii) hold. Denote the C0 semigroup generated
by Ã by Ã. For all x ∈ D ( Ã) and all λ > ωA we have (since λ ∈ ρ(A))

(λ − A)−1(λ − Ã)x = (λ − A)−1(λ − A)x = x,

and for all y ∈ Y we have (because of (ii))

(λ − Ã)(λ − A)−1x = (λ − A)(λ − A)−1x = x .

Thus, (λ − Ã) maps D ( Ã) one-to-one onto Y , and (λ − Ã)−1 is the restriction
of (λ − A)−1 to Y . Fix t > 0, and choose n so large that n/t > ωA. Then, for
all λ > ωA and all y ∈ Y ,(

1 − t

n
A
)−n

y =
(

1 − t

n
Ã
)−n

y.

Let n → ∞. By Theorem 3.7.5, the left-hand side tends to At y in X and the
right-hand side tends to Ã

t y in Y , hence in X . Thus, Ã = A|Y . This implies
both that Y is invariant under A, and that A|Y is strongly continuous. �
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Let us end this section by proving the following extension of Theorem 3.14.8
(to get that theorem we take X̃ = X , E = π , Ã = A, and Ã = A).

Theorem 3.14.15 Let A be the generator of a C0 semigroup A on X, let Ã
be the generator of a C0 semigroup Ã on X̃ , and let E ∈ B(X ; X̃ ). Then the
following conditions are equivalent.

(i) EAt = Ã
t E for all t ≥ 0.

(ii) E(λ − A)−1 = (λ − Ã)−1 E for some λ ∈ ρ(A) ∩ ρ( Ã).
(iii) E(λ − A)−1 = (λ − Ã)−1 E for all λ ∈ ρ(A) ∩ ρ( Ã).
(iv) E maps D (A) into D ( Ã), and E Ax = ÃEx for all x ∈ D (A).

If, in addition, A and Ã
t are groups, then these conditions are further equivalent

to

(v) EAt = Ã
t E for all t ∈ R.

Proof (i) ⇒ (ii): If (i) holds, then by Theorem 3.2.9(i), for all λ > max{ωA, ω
Ã
}

and all x ∈ X ,

E(λ − A)−1x =
∫ ∞

0
e−λs EAs x =

∫ ∞

0
e−λsÃ

s Ex = (λ − Ã)−1 Ex .

(ii) ⇒ (iv): By (ii), for all x ∈ D (A),

Ex = (λ − Ã)−1 E(λ − A)x .

This implies that E maps D (A) into D ( Ã). Applying (λ − Ã) to both sides of
this identity we get (λ − Ã)Ex = E(λ − A)x , or equivalently, E Ax = ÃEx .

(iv) ⇒ (iii): If (iv) holds, then (λ − Ã)Ex = E(λ − A)x for all λ ∈ C and
all x ∈ D (A). In particular, if we take λ ∈ ρ(A) ∩ ρ( Ã), then we can apply
(λ − Ã)−1 to both sides of this identity and replace x by (λ − A)−1x to get for
all x ∈ X ,

E(λ − A)−1x = (λ − Ã)−1 Ex .

(iii) ⇒ (i): If (iii) holds, then by Theorem 3.7.5, for all t ≥ 0 and all x ∈ X ,

At Ex = lim
n→∞

(
1 − t

n
A
)−n

Ex = E lim
n→∞

(
1 − t

n
Ã
)−n

x = EÃ
t x .

(v) We get EA−t = Ã
−t E for all t ≥ 0 by multiplying the identity in (i) by

Ã
−t to the left and by A−t to the right.

�
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3.15 Comments

By now, most of the results in this chapter are classic. We refer the reader to
Davies [1980], Dunford and Schwartz [1958, 1963, 1971], Goldstein [1985],
Lunardi [1995], Nagel [1986], Hille and Phillips [1957], Pazy [1983], and
Yosida [1974] for the history and theory of C0 semigroups beyond what we
have presented here.

Sections 3.2–3.3 The generators of the shift semigroups and their resolvents
have been studied in, e.g., Hille and Phillips [1957, Sections 19.2–19.4]. Diag-
onal semigroups appear frequently in the theory of parabolic and hyperbolic
partial differential equations. Sometimes the basis of eigenvectors of the gen-
erator is not orthonormal, but instead a Riesz basis in the sense of Curtain
and Zwart (1995, Definition 2.3.1). However, a Riesz basis can be transformed
into an orthonormal basis by means of a similarity transformation of the type
described in Example 2.3.7. This makes it easy to extend the theory for diag-
onal semigroups presented in Examples 3.3.3 and 3.3.5 to semigroups whose
generator has a set of eigenvectors which are a Riesz basis for the state space.
These types of semigroups are studied in some detail by Curtain and Zwart
[1995].

Sections 3.4, 3.7, and 3.8 See, for example, Pazy [1983], for the history of
the Hille–Yosida and Lumer–Phillips theorems, the different approximation
theorems, and the Cauchy problem.

Section 3.5 Our presentation of the dual semigroup follows roughly Hille and
Phillips (1957, Chapter 14), except for the fact that we use the conjugate-linear
dual instead of the linear dual.

Section 3.6 Rigged spaces of the type discussed in Section 3.6 are part of the tra-
ditional semigroup formulation of partial differential equations of parabolic and
hyperbolic type. See, for example, Lions [1971], Lunardi [1995], and Lasiecka
and Triggiani [2000a, b]. In the reflexive case the space X−1 is usually defined
to be the dual of the domain of the adjoint operator (see Remark 3.6.1). The
spaces X1 and X−1 have been an important part of the theory of well-posed lin-
ear systems since Helton [1976]. Spaces Xα of fractional order are introduced
in Section 3.9.

Section 3.9 This section is based in part on Dunford and Schwartz (1958,
Section VII.9), Rudin (1973, Chapter 10), and Pazy (1983, Section 2.6).

Section 3.10 The results of this section are fairly standard. Analytic semi-
groups most frequently arise from the solution of parabolic or heavily damped
hyperbolic partial differential equations. Theorem 3.10.11 has been modeled
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after Lunardi (1995, Proposition 2.4.1) and Mikkola (2002, Lemma 9.4.3). For
further results about analytic semigroups we refer the reader to standard text
books, such as Goldstein (1985, Sections 1.5, 2.4 and 2.5), Hille and Phillips
(1957, Chapter 17), Lunardi [1995], Lasiecka and Triggiani [2000a, b], and
Pazy (1983, Sections 2.5, 7.2 and 7.3).

Section 3.11 The proof of Theorem 3.11.4 is based on Davies (1980, Theorem
2.19), which goes back to Hille and Phillips (1957, Theorem 16.4.1, p. 460).
This theorem is also found in Nagel (1986, p. 87). The reduction of the spectrum
determined growth property to the corresponding spectral inclusion that we use
in the proof of Theorem 3.11.4 is classic; see, e.g., Slemrod (1976, pp. 783–784),
Triggiani (1975, p. 387), Zabczyk (1975), or Nagel (1986, p. 83). Corollary
3.11.5(i) is due to Triggiani [1975, pp. 387–388] and Corollary 3.11.5(ii) is
due to Zabczyk [1975]. Theorem 3.11.6 was proved independently by Herbst
[1983], Huang [1985], and Prüss [1984]. Lemma 3.11.7 has been modeled
after Weiss (1988b, Theorem 3.4). The implication (v) ⇒ (i) in Theorem
3.11.8 is often called Datko’s theorem after Datko (1970, p. 615) who proves
this implication in the Hilbert space case with p = 2. The general version of
the same implication was proved by Pazy (1972) (see Pazy (1983, Theorem
4.1 and p. 259)). Our proof follows the one given by Pritchard and Zabczyk
[1981, Theorem 3.4]. In the reflexive case the implication (vii) ⇒ (i) can be
reduced to the implication (v) ⇒ (i) through duality, but we prefer to give a
direct proof, which is valid even in the non reflexive case (the non reflexive part
of the implication (vii) ⇒ (i) may be new). Our proof of the implication (ix) ⇒
(i) in Theorem 3.11.8 has been modeled after Weiss (1988b, Theorem 4.2) (we
have not been able to find this explicit implication in the existing literature).
Examples of semigroups which do not have the spectrum determined growth
property are given in Curtain and Zwart (1995, Example 5.1.4 and Exercise
5.6), Greiner et al. (1981, Example 4.2), Davies (1980, Theorem 2.17), Hille
and Phillips (1957, p. 665), and Zabczyk [1975]. For additional results about the
spectral determined growth property, and more generally, the spectral mapping
property, we refer the reader to van Neerven [1996], which is devoted to this
very question.

Section 3.12 The frequency domain plays a very important role in many texts,
including this one. Most mathematical texts use the Fourier transform instead of
the Laplace transform, and they replace the right half-plane by the upper half-
plane. However, we prefer to stick to the engineering tradition at this point. It
is possible to develop a symbolic calculus for generators of semigroups based
on the representation of û(A) in Theorem 3.12.6 (this is done in Dunford and
Schwartz (1958, Section VIII.2) in the case where A generates a group rather
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than a semigroup), and our definition of (γ − A)−α given in Section 3.9 is based
on a special case of that calculus.

Section 3.13 Most books on operator theory define the shift semigroups using
the characterization given in Propositions 3.13.1 and 3.13.2 (and they com-
pletely ignore the time-domain versions of these semigroups). This is especially
true in the Hilbert space L2-well-posed case. In our context the time-domain
versions are more natural to work with.

Section 3.14 The results in this section are classic (but not always that easy
to find in the literature). Our presentation follows loosely Curtain and Zwart
[1995] and Pazy [1983].


