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Chapter 1

Background

1.1 Introduction

Many results in modern control theory are based on the notion of a state
space, the purpose of which is to store enough information about the past
history so that, if we know both the present state and the future input, then
we can compute the future output of the system. The standard model in the

linear case is a system of ordinary differential equations

2(t) = Az(t) + Bu(t), t>0,

y(t) = Cz(t) + Du(t), t>0,

Here

) = theinput € U =R",
y(t) = the output € Y =R",

) = the state € Z =R",
zo = the initial state.

A, B, C and D are matrices:

R™ ™ the control matrix,

O Qwm
M M M M

R**™ the feedthrough matrix

R™ ™ is the state transition matrix,

R**™ the observation matrix and

(1.1)



(Often D = 0) This approach is fine if the dynamic is simple, so that it
can be appropriately described by a system of ordinary differential equa-
tions. However, certain systems can have a very complicated behavior (from
a mathematical point of view). Typical such systems are described by par-
tial differential equations or by delay equations. These systems are called
distributed parameter systems: Their state is not described by a finite
number of state variables, but by “infinitely many variables”, such as the “ve-
locity of the fluid” at infinitely many points. (“The variables are distributed
throughout the fluid.”)

Purpose of this course: To describe (some of) the mathematics which is
needed to extend the “standard” theory for the ODE-system (1.1) to such
more complicated systems. Formally we still write a system like (1.1), but
now A, B, C and D can be unbounded operators, e.g. A is often a partial
differential operator. This course is followed by another course on transfer
functions where we describe a system in terms of its input-output behavior
instead of “state space description”. Both of these points of view are used
side by side in the literature.

Example 1.1.1 (1.1.1) A guitar string.

z(t,x) = the (vertical) deflection of the string at the point x at time t.
u(z,t) = external force acting at the string (the wind blowing).
0?2(z, 1) 0?2(z, 1)
-«
oz N —

mass X accel.

(PDE)

restoring force

due to curvature

(BC) 2(0,t) =0, 2(1,t) = 0 (fixed end points)

0
(IC)  2(z,0) = 2o(x), az(m, 0) = z1(z) (initial position and velocity)
One possible problem: Try to choose u(z,t) in such a way that z(z,7) =0
(for all x) at time T, i.e., try to kill the motion of the string in a finite time.
Another problem: Instead of blowing at the string, let us move the end point.



Replace the right hand side in (PDE) by zero and replace (BC) by
2(0,t) =0, 2(1,t) = u(t).

Can we now choose u(t) so that the motion of the string is killed in finite

QOO

b ¢ ¢

heaters

Example 1.1.2 (1.1.3) Pasteurization of beer. Beer is pasturized. Bottles
are transported on a belt through a oven. The temperature in the bottle
should get high enough to Paseurize the beer, but not so high that it distroys
the tast.

0 02 0
(PDE)  Zo(wt) = ng (@ t) + vt go(et) —o 2o t) = w(wt) ]
temp. rise heat (;i?fusion belt isTnoving bottle temp.  temp. of furnace

and suitable (BC) and (IC). Control objective: We want the temperature
z(z,t) to be just right (for pasteurization).

See |CZ95] for additional examples.

1.2 Finite Dimensional Systems

By a finite dimensional system we mean the ODE case discussed on p. 1.

z(t) = Az(t)+ Bu(t),
Cz(t)+ Du(t),
2(0) = 2.

<

—~
~+

~—

By standard ODE-courses:

0

2(t) = ez + ft eAlt-9) B u(s) ds, t>0,
y(t) = Cettzy + fot Cer=)Bu(s) ds + Du(t), t>0,

(1.2)
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If zy = 0 (the system is at rest at time ¢ = (), then

y(t) = /Ot Ce =) Bu(s) ds + Du(t). (1.3)

Definition 1.2.1 The distribution D+ Ce?! B (where § is the “-function”,
Dirac’s delta) is the impulse response of the system.

(If D = 0 then this is an ordinary matrix-valued function, dimension &k x m.)
By taking Laplace-transforms in (1.3) we get

g(s) = [C(sI — A)"'B + D] a(s).

Definition 1.2.2 (1.2.1) The transfer function (6verforingsfunktion, si-
irtofunktio) of the above system is

C(sI —A)'B+D.

The next course “Transfer Function Theory” will discuss such functions in
detail without using this “(A, B, C, D)-representation”.

Notation 1.2.3 We denote the system above by X(A, B,C, D). We write
Y(A,B,—) if C and D are irrelevant, and (A, —,C) if B and D are irrele-
vant.

Definition 1.2.4 (1.2.2) ¥(A, B, —) is controllable (styrbar, ohjattava) if
there is some 7 > 0 such that, given any z; € Z it is possible to find some
control u such that, if zp = 0 and z is the solution of (1.1) with z(0) = z; = 0,
then z(7) = 2.

In other words, “every z; is reachable from the zero state in finite time”.

From (1.2) we get the following lemma.

Lemma 1.2.5 (A, B—) is controllable iff there is a T > 0 such that for
each z € Z we can find a u such that

/ AT Bu(s) ds = z.
0



Problem 1.2.6 Which class of controls u should we allow in Definition 1.2.4
and Lemma 1.2.57

There are two “standard” solutions.

(i) Traditionally (the ODE case) people are used to taking u to be contin-
uous, or “piecewise continuous”. This is actually OK in this course,
because we will not have the time to go into the really “difficult” cases
(boundary control of PDE).

(ii) In the modern theory one usually takes u € L*([0,7]; R™). This needs
more background knowledge (Lebesgue integration theory), but instead
it leads to much simpler computations since we can use the inner prod-
uct in L? to simplify many results. (Much of the course “Transfer
Function Theory” is based on L2-theory).

In the following it does not matter (at this point) if we require u € C([0, 7]; R™)
(u continuous) or u € L*([0, 7]; R™) (u in L?).

We denote N
BT = / AT Bu(s) ds.
0

Then B™ maps C([0,7];R™) into Z = R", (and also L*([0, 7]; R™) into Z),
and

Y (A, B, —) is controllable <= The range of B" is all of Z.

(We call B™ the controllability map or reachability map over the time interval
[0,7].)

We shall often instead use the alternative controllability map or reachability
map B, over the time interval [—7, 0] given by

0
B, = / e~ Bu(s) ds.

-7

This is the map from the input « to the final state x(0) if we take the initial
time to be —7 and the initial state z(—7) to be zero. It has the same range
as B7, since B,u is the same thing as B” applied to a function u which has
been shifted 7 units to the right (simply use a change of integration variable
in the definition of B;).



Definition 1.2.7 (1.2.2) The system (A, —,C) is observable (observer-
bar, tarkkailtava) if there is some 7 > 0 such that there is no initial condition
2o # 0 for which the output function y of (1.1) (with input u = 0) satisfies
y(t) =0 for all t € [0, 7].

Thus, observable means that every z; # 0 is “visible in the output” on the
interval [0, 7]. We can reformulate this: Let C™ be the operator which maps
z € R™ into the corresponding output y, restricted to [0, 7]. Thus, by (1.2),

(CT2)(t) = CeMz, 0<t < 7.

Then

Y (A, —,C) is observable <= C7 is one-to-one.

Definition 1.2.8 A is (exponentially) stable if
le|| < Me™, t >0,
for some M >0, o > 0.
Realizations 1.2.9 In many practical situations there is no obvious state

space, we only know that if we input certain signals u, then we get some
other signals y:

u(t) € R™ y(t) € RF
“Black box”

unknown “initial condition”

The only thing which we can measure at least approximately, is the impulse
response and the transfer function. Many MATLAB programs need a state
space and matrices (A, B, C, D) to function.

Solution: Construct an “artificial” state space Z, and find (A, B, C, D) so that
the transfer function of this system is approximately the measured transfer
function.



Definition 1.2.10 (A, B, C, D) is a minimal realization of a given trans-
fer function G(s) if ¥(A, B, —) is controllable, (A, —, C') is observable and

G(s)=C(s[—A)'B+D

(i.e., G is the transfer function of this system).

Theorem 1.2.11 All minimal realizations of a given transfer function are
similar to each other, i.e., if (A, B,C,D) and (A", B',C",D") are two
realizations of the same transfer function, then there is an invertible matrix
E € R™™ such that

A = E'AE,
B = E'B,
' = CE,
D = D

Mathematically this corresponds to a simple change of coordinates in the
state space Z.

1.3 Outline of this Course

The preliminary plan is to cover selected parts of [CZ95], chapters 1 - 4.
I. Intro. [CZ95], Chapter 1, this is what we have been doing so far.

II. Semigroup Theory. Describes how the state evolves in the state space
when there is no input. We also ignore the output. Most of sections 2.1, 2.2
and 2.5 in [CZ95]. An alternative source is [Paz83|.

II1. The Cauchy Problem. Describes the evolution of the state z when
the input v is nonzero. Section 3.1 and Theorem 3.2.1 in [CZ95].

IV. Inputs and Outputs. The “full” picture when we have input, state
and output. Appropriate parts of chapter 4 in [CZ95].

V. Stability and Detectability. Only if time permits. Found in chapter
5 of [CZ95].

Restriction. Throughout this course B and C' are bounded operators (the
most interesting applications to boundary control require unbounded B and

).



Chapter 2

Semigroups (halvgrupp,
puoliryhma

2.1 Needed Background

Definition 2.1.1 A separable Hilbert space is a (infinite-dimensional)
complete inner product space.

Typical examples:

L*([0,7];C") = {measurable C"-valued functions on [0, 7] with
| 1P de <00}
0
wh3([0,7];C") = {f € L*([0,7]; C™) such that also f’ € LQ([O,T];C")}
AN;CY) = {{ak};;, where each aj, € C" and

o0
3 fa? < oo}.
k=1

2.1.2 Crash Course: Roughly same as C" with a “very large n”, but some

familiar convergence properties does not hold. For example, if z, € Z and
l|zn]] < 1 for all n, then it is still possible that no subsequence of {z,}
converges to a limit. The other exceptions are similar.



2.2 An Abstract Differential Equation

Consider the “abstract differential equation” (1.1)
Z(t) = Az(t) + Bu(t), t>0,
y(t) =Cz(t)+ Du(t), t>0,
2(0) = 2.

Here

u(t) € U (a Hilbert space, often C™),
y(t) € Y (another Hilbert space, often CF),
2(t) € Z (another Hilbert space, infinite dimensional if we have a
DPS = Distributed Parameter System).
We have

B e L(U;Z) (bounded linear operator),
C € L(Z;Y) (bounded linear operator),
B e L(U;Y) (bounded linear operator),

but A is unbounded. It is defined only on some subset Z(A) of Z (the domain
(definitionsméngd, méérittelyalue)) and it maps Z(A) into Z. Thus, we have
an implicit requirement on (1.1): For A z(¢) to be defined we must have

2(t) € 2(A) for allt > 0
(in particular, zy € Z(A) ).

)

styrox @ @ @ styrox

heaters

Example 2.2.1 (2.1.1) Heated rod.
z(x,t) = temperature
u(z,t) = heat supply

9] 0?
(PDE) o (2,t) = 5 (w.) + u(a, )
(IC)  z(x,0) = &(z) (initial temperature)
(BC) %(O,t) =0= %(l,t) (isolated)

9



Classical solution: We require that all the derivatives listed in (PDE) exist
(in the sense taught in the basic calculus course) and are continuous. There
is no difficulty in interpreting what the equation means.

Modern solution: We use “Hilbert space techniques” (and distribution theory)
and require the equations to hold in the “L2-sense”.

Z = state space = L*([0,1];R) = L*(0,1)

The operator
d*z
Az = —
“T A
is not defined for all z € Z, only for some z € Z(A). The minimal require-
ment on Z(A) is that “2 € Z and Az € 77, i.e.,
d2
O 12(0,1),

dx?

so z should be “two times differentiable in the L2-sense”.

Definition 2.2.2 W"'%(0,1) is the set of functions z : [0,1] — R which are
of the form

z®:%+lu@Ms

for some 25 € R and some w € L*(0,1).

Definition 2.2.3 We call the function w in Definition 2.2.2 either the L2-
derivative of z or the distribution derivative of z, and denote w = 2'.
Thus, for z € W"?(0,1), we have z(t) = 2 + [ '(s) ds, where 2’ € L.

Definition 2.2.4 W?2(0, 1) = the set of functions z € C*[0, 1] whose deriva-
tive 2’ satisfies 2’ € W'2(0, 1).

2
Back to the example. In order to “make sense” out of the term —z in

x
(PDE) we require (at least) that for each fixed ¢ > 0, the function z — z(x,t)
belongs to W?%%(0,1). (We shall add some other conditions, related to the

boundary conditions).

Boundary condition: For each fixed ¢, if z — z(z,t) € W*2(0,1), then 2’ is
continuous in z, so 2/(0,¢) and z/(1,t¢) are well defined. The condition (BC)
require these to be zero. Therefore we have

10



P(A) = {z € W22(0,1) | 2(0) = 0 = 2/(1)}.

Note. Here we had “Neumann boundary condition”. If we instead had
“Dirichlet boundary condition”, then the appropriate Z(A) would have been

WF?(0,1) = {z € W*%(0,1) | 2(0) =0 = 2(1)}.
There are many other possibile configurations. Here we had
@
dx?’
P(A) = as above,
B =1 = identity operator = (at least formally)

2'(t)=Az(t)+ Bu(t), t>0
{ 2(0) = zp € Z(A) since z(t) € Z(A) for all t > 0.

Az =

Hot question: What if we instead used boundary control:
2(1,t) = w(t) = the control.

This may force z(t) to leave Z(A), and we run into technical problems (need
“unbounded” B). Not covered in this course.

2.2.5 Solution of Example 2.2.1. We separate the variables. Try solu-
tions of the type
2(z,t) = eMu(z).

Substitute into equation to get
AeMo(x) = Mo (z) +

TV
homogeneous part

doesn’t depend on z

Taking also (BC) in account we get an eigenvalue problem (egenvirdeprob-
lem, ominaisarvotehtéva)

V" (z) — Av(x) = 0; v'(0) =0 =12'(1).
The only possible solutions are
v(x) = constant - cos(vV —Ax),

where
V=X=nm, ie, \=—-n’7?, n=0,1,2,...

11



Let us normalize v so that

1
Joll? = / o(@)? dr = 1.

This leads to

(z) = 1 , n=20,
A V2cos(mna) , n=1,2,3,...

Project z(z,t) onto these eigenfunctions to get

2z, t) =Y z(t)vn(x),

where
2 (t) = (z,v,) = /0 z(z, t)v,(x) de.

So far all that has been said above is mathematically correct. Since the
purpose of this discussion is to motivate what is coming up next, let us
proceed formally (without verifying that all the tricks we do are permitted).
However, it is possible to make the following, too, exact.

Take the inner product of (PDE) with v,, and integrate by parts (the bound-
ary terms vanish because of (BC)):

(zt, Un) = (Zgz, Un) + (U, V).

This gives for n =0

1 1 1
/ 2z dx = / 2w AT + / u(z,t) dt
0 0 0

? d

1 1
— —/ 2(t,x) de = z,(1,t) — 2,(0,1) +/ u(z,t) de
dt 0 A - 0

~~

=0

=20 (t)

1
= z’o:/ u(x,t) dx.
0

Let us project also u on the same eigenfunctions:
u(z,t) = Zun(t)vn(:r:);
n=0

12



where )
un(t) = (u,v,) = / u(z, t)v,(x) de.
0
Then the above equation becomes
Zo(t) = UO(t), t Z 0.

Since z(0) = fol z(x,0) dr = folﬁ(x) dx (here we used (IC)), we can write
this explicitly as

t
0lt) = 2(0) + [ unls) ds,
0
where
1 1
20(0) :/ E(z)dx and  wug(s) :/ u(z, s) dx.
0 0
For n > 1 we get a similar result (remember to integrate by parts):
Zn(t) = _(nﬂ)2zn(t) + un (),
with

zn(O):/O 2(z,0)v,(z) dv and un(t):/o u(z, t)v,(x) dr,

which can be solved in the same way (by the variation of constants formula):
2 t 2
zn(t) = e ("2 (0) —l—/ e~ (=%, (s) ds.
0

(Note that the case n = 0 is a special case of this!) Adding the terms we get

13



(at least formally),

o0

2z, t) = nzozn(t)vn(a:)
z Ze—m)t / Ze—om =504y, (@) (5) ds
- 2}“” [w@mMy
/Z*WW/(WWW@

= /0 [Z 6‘(””)2tvn(x>vn(y)] E(y) dy
/ / Ze_(m)Q(t_s)vn(x)vn(y)] u(s,y) dy ds

= / g(t,z,y)&( dy+// —s,z,y)u(s,y) dy ds,
0

~

where
g(t,z,y) Z e =1+2 Z " cos(nmx) cos(nmy)
n=0

is the Green’s function. Once more: We get

z(x,t):/o g(t, z,y)&( dy+// — s, x,y)u(s,y) dy ds.

Interpretation: Compare this to the “classical” formula:
t

2(t) = e2(0) —|—/ eAt=)y(s) ds.
0

Let us define the operator T":

mmm:Ammem@

Then, at least formally, the solution of Example 2.2.1 is given by

2(t) =T + /Ot T 9u(s) ds.

14



The operator T acts on functions in Z = L?(0,1), and it can be shown
that it maps these functions into continuous functions, and even 7% C £(Z)
(bounded linear operator Z +— Z). Thus,

we get a family of operators T* € £(Z) which act like the standard
“fundamental solution” e?? of the system of ODE:s 2 = A 2.

2.3 Properties of Fundamental Solution

Let us assume that the solution of the “differential equation”
2(t) = Az(t); 2(0) = 2 (2.1)
can be written in the form
2(t) = Tz,

for some family of operators T (as above). What kind of properties does T"
have? (Formally, T* = e“.)

(i) T° =1 (because Tz = 2(0) = 2 for all zy € Z)

(ii) TG+ = TsT* for the following reason. Start at the point z, solve (2.1)
to get x(t), start again from the point z(¢) and let (2.1) evolve for s
more time units. (Total time = ¢ + s.)

time s time t

— T—

z, z(t) z(stt)

If the system is time-independent, then it does not matter if we start
at time ¢ and go to time t 4 s or if we start at time zero and go to time
s, as long as we use the same initial state z(¢) in both cases. Thus,

Tt 2y = 2(t+s) =  “solve equation (2.1) for s time units
with initial state z(t)”
=T°2(t)
=T5T" 2,

so TG+ 2y = 5Tt 2, for all 2y € Z.

15



(iii) Continuity: We would like z(t) to be continuously differentiable (so
that (2.1) makes sense), but we are also willing to settle for solutions
which are only continuous in Z (then (2.1) must be interpreted in some
“distributional sense”). This means that for each 2, € Z, the func-
tion t — T’z (= 2(t)) is continuous with values in Z. Called strong
continuity.

2.4 Different Continuity Notions

Notation 2.4.1 L£(Z) = The set of all bounded linear operators Z — Z.

Tz
1Tl ey = sup L2l = sup 7.
ez |2l

Definition 2.4.2 The statement 7,, — 17" as n — oo can be interpreted in
many ways (here T,,, T' € L(Z)).

(i) 7., — T uniformly (likformigt, tasaisesti) or “in operator norm” if
|7 =T z(z) — 0 as n — oo.
Equivalently lim,, .o sup,,j<; [ Tnz — Tz|z = 0.

(ii) T,, — T strongly (starkt, vahvasti) if 7,z — T'z for every fixed z € Z,
or equivalently lim, . |7,z — Tz|| = 0 for each fixed z € Z. Also
called pointwise convergence.

(iii) 7,, — T weakly (svagt, heikosti) if for all z, 2o € Z,

(21, Thza) — (21, T29) as n — oo.

We use the same concept to define different types of continuity of an operator-
valued function.

Definition 2.4.3 (i) 7" is a uniformly continuous function of ¢ (contin-
uous in norm) at a point ¢ if

lim HTt — Tt0‘|£(z) =0.

t—to

16



(ii) 7" is a strongly continuous function of ¢ at a point ¢ if
lim || T%2 — T"z||z =0
t—to

for each fixed 2 € Z.

(i) T" is a weakly continuous function of ¢ at tg if

lim(zy, (T" — T%)z) =0

t—0
for all fixed 21,20 € Z.
In this course the most used notion is strong continuity. This is the type
of continuity that guarantees that trajectories are continuous (see previous

section). Note: Weak continuity = strong continuity for semigroups (this is
a highly nontrivial fact).

2.5 Strongly Continuous Semigroups

Definition 2.5.1 (2.1.2) A function 7", defined for ¢ € [0, 00) with values
in £(Z), is a strongly continuous semigroup, or Cy-semigroup, if the
following conditions hold:

(i) T° =1 (the identity operator)
(ii) T+ = T'T*, t,5 > 0

(iii) for all z € Z, limyjo Tz = z (strong continuity at zero).

Example 2.5.2 (2.1.3) Let A € £(Z), and define

At)?
Tt—eAt—1+At+<2') :—'—...

This semigroup is even continuous in operator norm (“uniformly”). The series
converges in the Banach space £(Z) , uniformly on bounded subsets.

Example 2.5.3 (2.1.4) Left shift in L?(0, c0):

(T*h)(z) = h(t + ), t,z > 0.

17



Example 2.5.4 Right shift in L?(0, c0):

¢ hiz —t) ifx>t
(Tm(x):{o( )if0§x<t.

“Zero fill” (replace missing values by zero).

Example 2.5.5 Left shift in L?(—o0, 00):

(T'h)(z) = h(x +t), t >0, v € R.

Theorem 2.5.6 (Improved 2.1.5) Let {¢,}22, be an orthonormal basis in
Z. Let {\,}>2, be a sequence of complex numbers. Define

[e.9]

T'2 = Nz, 0n)bn.

n=1
This is a Cy-semigroup if and only if
sup R(A\,) < 0.

neN

PROOF. Homework (very similar to the proof of Example 2.1.5 in [CZ95)).

Note. Example 2.1.1 is of this type.

Comment 2.5.7 The modern approach to PDE:s of parabolic or hyperbolic
type, or more generally equations which contain a time variable, is the fol-
lowing.

(a) Formulate the problem in the form
2(t) = Az(t), 2(0) = 2o,
and prove that you get a “fundamental solution”, i.e., a semigroup.

b Stlldy separately under what conditions the solution is “smooth enough
g
in time and space” so that you get a classical solution (often easy).

Note. FElliptic equations require a different technique. These equations
(eigenvalueproblems) appear also as “auxiliary problems” in the approach
described above, they give stationary solutions (solutions which do not vary
in time, so that z =0, i.e., Az = 0).
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2.6 Properties of Semigroups

Theorem 2.6.1 (2.1.6) All Cy-semigroups have the following properties:

(a) supges<p T < 00 (for each fized M),
(b) t — T'2 is continuous for all t > 0 and all z € Z (not just at t = 0)
(says that trajectories are continuous),

1 t
(c) ;/Tszds—>za3t—>0+,
0

(d) the “growth bound” wy of T' satisfies

def . 1 : 1
oo ™ inf (10g ) = Jim §log |7'] < o,

(e) IT < Mye“" for each w > wy (M,, depends on w).

PROOF. See [CZ95] or [Sta05].

How is all of this related to the equation

2(t) = Az(t), t > 0, 2(0) = 27

A

In the classical case where A is a matrix and 7% = e“! we can recover A from

T:
Azg = #(0) = lim 2 (2(£) — 2(0)) = lim ~(T'2 — 2) = T,

t—0 ¢ t—0 ¢

So A = T°. The same idea works more generally:

Definition 2.6.2 (2.1.8) the generator A of T is defined for those z € Z
for which 7"z is differentiable at zero and we define it by

1
Az = lim —(T" —1)z
h—0+

(with Z(A) = {z € Z | the above limit exists}).

Here 2(A) is the domain (definitionsmangd, maarittelyalue). It is easily seen
to be a subspace of Z (i.e., a vector space). The above limit is computed in
the sense of “norm-limit” in 7, i.e., we require that
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1
limH—(Tt —1)z— Az
tlo 1l ¢

L= 0 for all z € Z(A).

Usually 2(A) # Z (in all interesting cases). The only exception (less inter-
esting) is:

Example 2.6.3 if T* = 4! where A € £(Z), then the generator of T is A,
and Z(A) = Z.

PROOF. See [CZ95] or [Sta05].
Theorem 2.6.4 (2.1.10) Let A be the generator of a Cy-semigroup T.

(a) 2(A) is invariant under T: If zo € P(A), then T'zy € D(A) for all
t>0.

(b) For zy € 2(A), the trajectory (bana, rata) t — z(t) = Tz, is differen-

tiable and p

ETtZO = ATtZQ = TtAZO, t Z 0
(thus, if T'zy is differentiable at zero, then it is differentiable for all
t>0).

(c) If zg € 2(A™) (this means that zg € D(A), Azy € D(A), A(Az) €
D(A) ete. up to A(A(A...2)) € Z(A)), then
—_———

n—1 times

d
(E)”th0 = A"T 2 =T A"z = ART' A 20, 0 <k <n, t>0.

¢
(d) Ttz — 20 = / T°Azy ds, zo € Z(A), t > 0.
0
(e) f(f T5zy ds € D(A) for all zo € Z and
¢
A/ Té2 ds =Tz — 29, t > 0.
0
Moreover, 2(A) is dense in Z (P(A) = Z).

(f) A is a closed operator (explained below).
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(8) N2, 2(A) is dense in Z, and T'zy € C™ if z9 € (o, Z(A™).

Comments: (e): “Dense” means that the closure of Z(A) is all of Z.

(f): “A closed” means that “the graph of A is closed”. By the graph of A we

mean the set of pairs
(AZ)EZXZ
z

where z varies over Z(A). If we use the standard norm in 22 2

()]

then a subset is closed iff the limit of every sequence of points in this set
belongs to the set: Denote

mm:{(f>ez

Take a sequence of points ( ‘Z" ) € G(A), which converges to ( ‘z ) €

n

1/2
(lZ +11=1%)

z € @(A)} = the graph of A.

Z2. The condition ( ’Z" ) € G(A) means that z, € Z(A) and y, = Az,.

n

Convergence means that z, — z in Z and also Az, — y in Z. The limit
point belongs to G(A) if and only if z € Z(A) and y = Az. Thus, “A closed”
means

if z, € 2(A), z, — z and Az, — y, then z € Z(A) and y = Az.

This is important, learn by heart!
PROOF of selected parts of Theorem 2.6.4.
(a),(b): Let z € Z(A). Then

hlil(r)l-i- l(Th — 1)z = Az. (2.2)
Now take ¢ > 0. Then for n > 0:
%[T(Hh) ~ Tz = %[ThTt — Tz (2.3)
:%whﬂwz (2.4)
= %[TtTh —T"z (2.5)
— T'%[T" — 1]z (2.6)



By (2.2), the last line (2.6) has a limit as h — 0+. Therefore also all the
other lines have limits as h — 0+. Step (2.4) implies that 7"z € Z(A).
Combining (2.3), (2.4) and (2.6) we get

1
i, E[TW) — Tz = AT'z = T"Az.

This proves differentiability from the right. Left-differentiability is slightly
more complicated. For 0 < h < t,

1 1

_—h[T(t‘h) — T"z (as above) = _—h[T(t‘h) —TETEM] (2.7)
1
— _—h[l—Th]T(t’h)z (2.8)
1
= 70N —h[l—Th]z : (2.9)
~————

limit exists as k—0+

Also the full limit of (2.9) exists as h — 0+ and so does the limit in (2.8).
See homework.

(c): Use (b) and induction.
(d): Let z € Z(A) = 4T'z = T"Az. (Integrate this function.)

t t
Tz — T2 :/ iTsz ds :/ T° Az ds.
- o ds 0
(e): Take z € Z, ¢t > 0. Then
1 ¢ i1
—[Th—l]/ T°zds = / —[T5" — Tz ds
h 0 o h

h

1 t+h 1 t
= —/ Tszds——/Tszds
h Jy h Jo

— Tlz2—zash—0+.

t+h t
1 1
(change int. var. s+ h — w) = / —T°zds — / ETSZ ds
h 0

This gives fg T?zds € P(A) and A fot T3z ds =T'z—z. That Z(A) is dense
in Z follows from the fact that for each ¢ > 0,

t
%/ T°z ds € P(A)

0
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and

1 t
;/Tszds—>zast—>0+.
0

(f): See |[CZ95] or [Sta05]. There is no need to use Lebesgue’s dominated
convergence here. A much simpler approach is sufficient (see extra home-
work).

(g): See [CZ95] or [Sta05]. 0

Corollary 2.6.5 For a certain dense set of zy € Z, the trajectories t — Tz
are C* smooth.

Note 2.6.6 Think: z € Z(A) means often that z has one or more space-
derivatives in Z. For example,

0? 0? 0?
AZ: @Z, OTAZ: (@_‘_a_?f) Z.

2.7 The Resolvent Operator

Since the generator A is unbounded, it is difficult to work with. It is often
simpler to work with the inverse (A — A)~! instead, for some suitable \ € C.

Definition 2.7.1 Let A : Z(A) — X be a linear operator. A point A € C
belongs to the resolvent set of A if A — A is one-to-one, its range is the
whole space, and the inverse

ROLA) =(A— A

is a bounded linear operator X +— X. We denote the resolvent set by p(A).
The complement o(A) is called the spectrum of A.

Lemma 2.7.2 Let A: (A) — X be a linear operator (with 2(A) C X).

(1) If p(A) # @, then A is closed.

(ii) If A is closed, then A € C belongs to p(A) if and only if A — A maps
P(A) one-to-one onto X.
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PrOOF. Homework.

Lemma 2.7.3 Resolvent identity. Let A : X D P(A) — X be a (closed)
linear operator with p(A) # &. Then, for all A\, u € p(A)

A=A =(p=A) " = (=N A=A (p=A) " = (1= (= A) A=A

PROOF. See [Sta05], p. 72.

Notation. 1 = the identity operator.

Theorem 2.7.4 (2.1.11) Let T be a Cy-semigroup with growth bound wy and
generator A. Then p(A) contains the half-plane C,, = {\ € C | R\ > wp}.
Moreover, for every w > wy and every A € C, = {\ € C | R\ > w}, we have

(a) A=A z= [TeNTlzdt, z € Z,

(b) [[(A—A) Y < 5 (M is a constant)

(c) limy_yuo XA —A)"lz =2, 2€ Z (X is real).
PROOF. (a), (b): Define
Ryz :/ e ATz dt.
0

Let ®(\) > w > wp. Recall that [T < Me** for some M < oo, which
implies that the integral converges, and

IRzl < / le Ttz dt
0

_ / T gt
0

S / e—(%)\-i-w)tM dt ||Z||
0
M
= —— Il

This proves (b), if we can show that Ry = (A — A)~L.
Claim: Ry maps X into Z(A).
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/ eIy — T2 dt
0

1 o0 oo
= - / e~ AE=ht gy — / e MT 2 dt
ho|Jn 0

1 [ 1 o
= ——/ e MRl a4+ — (M — 1)/ e MTtz dt
h Jo h 0
— —T% + \R,z,
so Ryz € Z(A) and ARz = —z + AR,z which implies that
(A= A)Ryz = z.

Thus, (A—A) is a left-inverse of R). To prove that A— A is also a right-inverse
we compute (for all z € Z(A))

Ry\Az = / e NT Az dt
0

dt
— [e‘Atth}oo + )\/ e MT 2 dt
0

e d
= / e”\t(—th) dt (integrate by parts)
0
0
= —2z+4+ AR)z,
so Ry(A— A)z = z for all z € Z(A). Thus, (A — A) is invertible, A € p(A),

and
(A=A =R,.

(This proof is “easier” (more elementary) than the proof in [CZ95].)
(c): If z € 2(A) and A\ > w > wy (A real), then

M=A2—z2=N=-2A+AN-A) " 2=AN-A) 2= (A - A) Az,
and
-1 -1 M
INA=A) "z —z|| < |[(A=A) || Az]] < mHAzH — 0 as A — +o0.
If z € Z(A), then we choose 2y € Z(A) with ||z — zy|| < e. Then

A =A) 2 = 2] < []AA = A) 20 — 20| + 1A = A) 1]z = 20l + |2 — 2ol
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AM
< A = A) 7z — 20| +( T +1) 12 = 2ol

.

~-
-0 S~ <e
—M -

so limsup,_ [JA(A — A)7'z — z|]| < (M + 1)e. Since € can be arbitrarily
small,

lim ||AA—A)'z—z||=0forall z € Z

A—-+o00

Note 2.7.5 Because of (c), we call
Jy=AA— A

the Yoshida approximation of the identity.

Lemma 2.7.6 If T is a Cy-semigroup on Z and o € C, then also e®*T" is a
Co semigroup on Z. Its generator is A + a, where A is the generator of T.

PrROOF. Easy.

Thus, by using an exponential shift (see above) we can make the growth
bound < 0 if we want. Sometimes useful.

2.8 The Hille-Yoshida Theorem

Theorem 2.8.1 Hille-Yoshida. A : Z O Y(A) — Z is the generator of a
Co-semigroup T on Z satisfying ||T*|| < Me*t, t > 0, if and only if

(i) 2(A) is dense in Z
(ii) every real X > w belongs to p(A), and for all X > w andn=1,2,3,...

. M
0= 271 < 5=

Note. If p(A) # @ then A is closed. (Lemma 2.7.2)

This theorem is very important, but since we are short of time, we skip most
of the proofs. See [CZ95] or [Sta05] for the full proof. We only look at some
results which come up in the proof and which are useful in other connections
too. Recall the resolvent identity (Lemma 2.7.3).
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Lemma 2.8.2 The mapping a — (o — A)~! is an analytic function defined

on p(A) with values in L(Z), and for alln=1,2,3,...

d\" >
<5> A=Atz = / (—t)"e MT'z dt = (—=1)"n!(A — A" 'z, z € Z
0

(“Analytic” means that the complexr derivative

d -1 _ 1 1 —1 —1
a(A—A) —}ILILI%]E[(/\—Fh—A) — (A=A (h complex)

ezists in operator-norm for all A € p(A).)

Note. The second formula is fairly easy to derive from the resolvent identity.
To prove the first formula you simply have to sit down and estimate (uniform
convergence on each finite interval, and everything goes to zero exponentially
at 00).

A useful tool which is used in this proof is the following.

Definition 2.8.3 We call
Ay = AN -A) = AN = A —-1) = AJ,

the Yoshida approximation of A.
Lemma 2.8.4 A,z — Az as a — oo for all z € D(A).

Corollary 2.8.5 A:Z D P(A) — Z is the generator of a Cy-semigroup T
on Z satisfying ||T|| < Me*t, t > 0, if and only if the following conditions
hold:

(i) 2(A) is dense in Z.

(ii) Every real X > w belongs to p(A), and for all A > w andn =0,1,2,3,...

(o

Corollary 2.8.6 A is the generator of a Cy-semigroup satisfying (take M =~

1)

Mn)!
<
— ()\ _ w)nJrl

1T < e

if and only if
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(i) 2(A) is dense in Z and

(ii) every real A > w belongs to p(A) and

_ 1
(A=A~ < N A>w.

PROOF. This follows from Theorem 2.8.1 since

(A=A = A=A A=A ... (A=A
< JA=A)IA =AY [ =A)7H)
—1|n 1
= [[(A=4)" §m~

Example 2.8.7 (2.1.13) The generator of the semigroup in Theorem 2.5.6
is given by:

9(A) = {zEZ

D Pz on)? < 00} :
n=1

and

Az = Z )\n<~7’7 ¢n>¢n
n=1

PROOF. Homework (maybe). The constants )\, need not be real, but the
must satisfy
sup R\, < o0.

2.9 Contraction Semigroups
Definition 2.9.1 T is a contraction semigroup if ||7"]| < 1 for all ¢ > 0.

Corollary 2.9.2 A is the generator of a contraction semigroup if and only
if the condition in Corollary 2.8.6 holds with w = 0O:

(i) 2(A) is dense in Z and
(ii) every real X > 0 belongs to p(A) and
AN =A)7H <1, A>0.
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(The norm of the “approximate identity” J is < 1.)

There is another characterization of a contraction semigroup which uses the
adjoint A* of A.

Definition 2.9.3 Let A: Z(A) — Z be a linear operator, with Z(A) dense
in Z. Then we define another operator A* as follows:

(i) 2(A*) consists of all those z € Z for which there is a finite constant M
such that
[{Az, 2) ||z < Mz,

for all x € 2(A).

(ii) We define A*z for z € 2(A*) as follows: If z € Z(A*), then the linear
map = +— (Ax,z) can be extended to a bounded linear map Z — C
(a bounded functional). By the “Riesz’ representation theorem”, each

such functional can be written in the form (x,y) for some unique y € Z.
We can therefore define A*z =y, z € Z(A").

Another way to put this:

Lemma 2.9.4 Let A: P(A) — Z be a linear operator with Z(A) dense in
Z. Then

(Az, z) = (z, A*z) (2.10)
for all x € P(A) and z € D(A*), and the preceding identity determines A*
uniquely on P(A*).

PROOF. Equation (2.10) is true, because we have

(Az, 2) = (z,y)
where y = A*z.
Uniqueness: Suppose that both B and C' maps Z(A*) into Z, and that
(Az, z) = (z,Bz) = (x,C%)

forallz € Z(A) and all z € Z(A*). Then (z,(B—C)z) = 0forallz € Z(A),
z € P(A*). Fix z. If x € Z is arbitrary, then we can find z,, € Z(A), z,, — «
as n — oo (since Z(A) is dense). Then

(x,(B—C)z) = lim (x,,(B—C)z) = lim 0 =0.

n—oo n—oo
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Thus, (z,(B —C)z) =0 for all z € Z(A), z € Z(A*). Take z = (B — C)z
to get
|(B—C)z|]| =0 for all z € 2(A")

= Bz = Cz for all z € Z(A").
0

Note. It is important that Z(A) is dense in Z. Otherwise A* is not defined.

Note 2.9.5 The adjoint operator A* is always closed. If A is closed, then
P(A*) is dense in Z, and (A*)* = A (with Z((A*)*) = 2(A)).

PROOF. See [Rud73], Theorem 13.12.

Warning. Note 2.9.5 is true in a Hilbert space, but not in every Banach
space (only in the reflexive ones).

Lemma 2.9.6 (a« — A)*=a — A"
PRrROOF. Easy.

Theorem 2.9.7 An operator A : Z D P(A) — Z is the generator of a Cy
contraction semigroup if and only if the following conditions hold:

(i) A is closed and Z(A) is dense in Z.
(i) [|[(N = A)z|| = M|z for all X > 0, x € D(A).
(iii) [|[(A = A")z|| = A||z]| for all A >0, z € Z(A").

Alternatively we may replace (i) by
(iii)’ Ewvery real X > 0 belongs to p(A).

Definition 2.9.8 An operator A satisfying (ii) above is called dissipative.
An operator satisfying (ii) and (iii)’ is called maximal dissipative (it is
impossible to extend the definition of A to a larger domain without destroying
the dissipativity).

Corollary 2.9.9 A is the generator of a contraction semigroup if and only
if A is maximal dissipative.
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PROOF of Theorem 2.9.7. Assume first that (i), (ii) and (iii)’ hold. Then (iii)’
implies that (A — A) is invertible. Let z € Z(A) and put y = (A — A)z <=
x = (A —A)"ly. By (i),

B 1
Izl = 1= A7yl < Syl

This is true for all y € Z since A — A maps Z(A) onto Z. By Corollary 2.9.2
A generates a contraction semigroup.

Assume next that (i), (ii) and (iii) hold. We claim that this implies (iii)’.
Clearly, by (ii), A — A is one-to-one. We claim that range(\ — A) (the range
of A\ — A) is closed in Z: If 2, € range(A — A) (i.e., z, = (A — A)x, for some
z, € P(A)), and if z, — z then {z,} is a Cauchy sequence. Then by (ii),
also {z,} is a Cauchy sequence and hence it converges to some = € Z. Then
z, — xin Z and (A — A)z,, — z in Z, and since A — A is closed, we must
have z € Z(A) and z = (A — A)z. Thus x € range(A — A), so range(A — A)
is indeed closed.

Next we claim that range(A — A) is also dense in Z (if it is both closed and
dense, then it is the whole Z). If not, then there is some z € Z, z # 0, such
that 2L (A — A)zx for all x € Z(A). Thus

(z,( A= A)z) =0forall z € Z(A).
This implies that z € Z(A*) and that
(A= A")z,2) = (z,(A = A)x) = 0= (0,2).

By Lemma 2.9.4, (A — A*)z = 0. Use this in (iii) to get [|(A — A*)z|| > A z||
(X is real). But we assumed that z # 0. Therefore no such z exists, i.e.,
range(A — A) is dense. Now we have showed that (i), (ii) and (iii) implies (i),
(ii) and (iii)’, so A generates a contraction semigroup in this case too.

Converse direction: If A generates a contraction semigroup, then (i), (ii) and
(iii)” hold (see Corollary 2.9.2). Condition (iii) remains. Proved as follows:

Proof #1. We shall see later that also (7")* is a semigroup whose generator
is A [[(TY)*|| = |IT"|l, so (T*)* is a contraction semigroup if and only if 7" is
a contraction semigroup. If we replace A by A* then (ii) becomes (iii). Thus
(iii) holds.
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Proof #2. Take x € (A*). Then

A =A%)zl = sup— [(A =A%)z, 2)[ (Z(A) is dense)
= sup [((A =A%)z, 2)|

zl|=1

ZHEQ(A)
sup |(z, (A — A)z2)| (take z = (A — A)"1y)
zl|=1

ZHEg(A)

SUP||(A—A)~1y||=1 |(z, 9| (use (ii), take y = Az /| z|)
SUDP|y (1< [(z,y)| = Allz.

AV

Thus, ||(A — A*)z|| > \|z|| for 2 € 2(A4%), A > 0.

2.10 Dual Semigroups

Theorem 2.10.1 The following conditions are equivalent.

(i) T is a Cy-semigroup with generator A,

(ii) (T%)* is a Co-semigroup with generator A*.

PROOF. (Outline.) Easy to show that if 7" is a semigroup then (7%)* is a
semigroup. If T" is strongly continuous then (7%)* is strongly continuous,

this is hard to show. See [CZ95] or [Sta05]. (The most difficult part is Z(A*)
is dense in Z.)
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Chapter 3

The Cauchy Problem

3.1 The Homogeneous Cauchy Problem

Recall from Theorem 2.6.4 that the homogeneous Cauchy problem

[0 dm, =0 @

(also called “initial value problem”) has at least one continuously differentiable
solution z(t) provided

(i) A is the generator of a Cy-semigroup,

(ii) 20 € 2(A),
namely the solution z(t) = T"z. This solution satisfies:

(A) 2(t) € Z(A) for all t > 0,
(B) =z is continuously differentiable on [0, c0),

(C) equation (3.1) holds for all ¢ € [0, 00).

Can there exist more than one solution? Answer: No (follows from Corollary
3.2.4 below).
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3.2 The Inhomogeneous Cauchy Problem

We study a more general problem at the same time.

(fzaooe o

where f € C(R";Z). Sometimes f(t) is defined only for ¢ € [0, 7], and we
restrict ¢ in (3.2) to belong to [0, 7] also (7 > 0 is given).

Definition 3.2.1 We call z a classical solution of (3.2) on the interval [0, 7]
if

(i) fec(o,7];2)
(i) z € C([0,7]; Z)
(iii) z2(t) € Z(A) for all t € [0, 7]

(iv) (3.2) holds on [0,7], i.e., 2(t) = Az(t) + f(t) for all ¢ € [0,7] and
2(0) = 2.

Lemma 3.2.2 (8.1.2) Let A be the generator of a Cy-semigroup T. If (3.2)
has a classical solution z on some interval [0, 7], then it must be given by

2(t) =Tz + /t T 5 f(s) ds.
0

PROOF. We claim that the function s — 7" °z(s) is continuously differen-
tiable. This is shown as follows:

1 t—s—h t—s
E[T z2(s+h) —T"°2(s)]

h) — 1
— Tt—s—hz(s + 2 Z(S) + E[Tt_s_h _ Tt—s]z<8) )

(1) @)

As h — 0, Z(SLQ_Z(S) — %(s), and T**~" tends strongly to T""%, so the
product tends to 7% 2(s) . Thus, (1) — T 52(s) as h — oo. The term (2)
is a little more complicated. If h < 0, then

1

(2) = —Tt_s_—h[T_h —1]z(s) — =T *Az(s)

[
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as h — 0— since z(s) € Z(A). If h > 0, then

1
_ t—s—h M _7h _ mt—s
2= T h[l T"z2(s) —» =T °Az(s),
—Tt=s strongly S=—————=————"
——Az(s)

so the whole limit exists, and
L) = T [e(s) - Ax(s)] = T ()
s

by (3.2). This is a continuous function. Integrating over [0,t] we get

/0 T f(s)ds = [Tt_sz(s)}g
= 2(t) = T"2(0) (use (3.2))
= Z(t) — TtZO.
0

Corollary 3.2.3 If A is the generator of a Cy-semigroup T, and if f €
C([0,7]; Z), then (3.2) has at most one classical solution on [0, 7] (namely
the one in Lemma 3.2.2).

Corollary 3.2.4 If A is the generator of a Cy-semigroup, then the homoge-
neous equation %(t) = Az(t), t > 0, z2(0) = zo has a classical solution if and
only if zo € D(A). This solution is unique.

PROOF. If 2p € 2(A), then Tz, is a classical solution, and it is unique by
Corollary 3.2.3. If z is a classical solution, then z is differentiable at zero, so

2(0) = zo € Z(A) (and Azy = £(0)). O

Thus, equation (3.2) does not always have a classical solution. (Take f =0,
20 ¢ Z(A).) However, the following theorem is true (this theorem is not
found in [CZ95]).

Theorem 3.2.5 Let A be the generator of a Cy-semigroup T, let zy € Z,
feC(0,7];2), and define

2(t) =Tz + /Ot T f(s) ds. (3.3)

Then z is a classical solution of (3.2) if and only if = € CY([0,7]; Z). (In
particular, this implies zo € Z(A).)
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PROOF. We know from Lemma 3.2.2 that if z is a classical solution then
(3.3) holds, and every classical solution must belong to C*([0, 7]; Z).

Conversely, suppose that z given by (3.3) belongs to C''([0, 7]; Z). The equa-
tion (3.3) implies that z(0) = zo. By assumption, the following limit exists.

1

H0) = Jim 5 (:(h) = 20)
= i lum—n +1 hﬂﬂﬂ)d
% S 0 s SI

—1(0)
1
:f@+m#ﬂ—m@

Therefore zp € Z(A) and 2(0) = f(0) + Azy. Now define z = u + v, where

u(t) = Tz, t>0,
{ o(t) = [[ T f(s)ds t>0.

Then u is a classical solution of

{ u(t) = Au(t), t >0,
u(0) = 2.

So if we can show that v is a classical solution of the equation

(fyzpoo ez e

then their sum z = u + v is a classical solution of (3.2). Thus, we got rid of
2p. We must still show that v is a classical solution of (3.4). We know that

v € C'([0,7]; Z). On one hand

t+h t
v —o(t) = tHh=s £(s) ds — t=s £(s) ds.
em—o)= [T ds— [ 1) d
On the other
(T" — 1)v(t) = /t(T”hs —T"%)f(s) ds.
0

Compare these two to get

1 v(t+h)—ov(t) 1

t+h
E<Th —1(t) = ; — E/t TH=s £(s) ds

[v(t+h)—v(t)]—%/0 T f(t+h—s)ds (3.5)

—!(t) —f®

1
b
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Thus, v(t) € Z(A), and

for 0 < ¢t < 7. Furthermore v(0) = 0. This means that v is a classical
solution of (3.4). O

Theorem 3.2.6 (3.1.3) If A generates a Cy-semigroup T, if zo € Z(A) and
if f € CY[0,7]; Z), then z(t) defined in (3.8) is a classical solution to (3.2).

PROOF. It suffices to show that z is continuously differentiable (see Theorem
3.2.5). We know that u(t) = T2 € C*([0,7]; Z). Must show that v(t) =
f[f T f(s) ds € C'. Compute (assume h > 0)

t+h t
Floen =) =5 [T ds— g [ 1)

(change integration variable)

_ %/ ths[f(s + h) — f(s)] ds + %/ TtJrh*Sf(s) ds

0 0
(+[f(s+h)—f(s)] — f'(s) uniformly on [0, 7] as h — 0+ since f’ continuous)
— /0 T % f'(s) ds + T" f(0)

as h — 0+.
A similar computation can be carried out when A — 0—.

Therefore v € C*([0,7]; Z) and

o(t) = THF(0) + /O i f'(s) ds.

O

Another way to check if (3.3) is a classical solution of (3.2) is the following:

Theorem 3.2.7 Let A be the generator of a Cy-semigroup T, let zy € Z,
feC([0,7]; Z) and define z by (3.3). Then z is a classical solution of (3.2)
if and only if z(t) € P(A) for allt € [0,7] and Az € C([0,7]; Z).
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PROOF. Necessity is obvious: By the definition of a classical solution (see
Definition 3.2.1) z(t) € Z(A) for all t € [0,7] and Az(t) = 2(¢t) — f(t) €
c([0,7]; 2).

Conversely, suppose that z(t) € Z(A) for all t € [0, 7] and that Az is contin-
uous. Then zy € Z(A) and we can get rid of the term T"z; in the same way
as in the proof of Theorem 3.2.5. This leaves the function

v(t) = /0 T f(s) ds.
By (3.5),

vt +h)—o(t) 1 (-
. :E(Th—l)v(t)jtﬁ/o T°f(t+ h—s) ds.

Since v(t) € Z(A), the limit of the right-hand side exists as h — 0+, so v
has a right-derivative:
lim v(t+h) —o(t)
h—0+ h

= Av(t) + f(t) :
A similar computation which uses the identity (valid for 0 < h <)

v(t —h) —o(t) 1

h Lt s
— :_E(1—T)v(t—h)+E/0 T°f(t = s) ds

(and the continuity of Av) shows that v also has a left-derivative, and that

o(t) = Av(t) + f(t).

The right-hand side is continuous, so v € C*([0, 7]; Z), and by Theorem 3.2.5,
v is a classical solution of (3.2). O

The following result follows from Theorem 3.2.7.

Theorem 3.2.8 If A generates a Cy-semigroup T, zo € Z(A), f € C([0,7]; X),
f(t) € 2(A) for allt € [0,7] and Af(t) is continuous with values in Z, then
the function z given by (8.3) is again a classical solution to (3.2).

ProOOF. Homework.

Definition 3.2.9 We call the function (3.3)

2(t) =Tz + /lt T f(s) ds

0
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the mild solution (mild, mieto) of

{ 2t)=Az(t)+ f(t) t>0
2(0) = 2o

(often also called weak (svag, hiekko)). The equation (3.3) above is called
the vartation of constants formula.

3.3 A Bounded Feedback Perturbation

If we in the equation

{ (t)=Az(t)+ f(t) t>0,
2(0) = 2o

make a “state feedback connection”; i.e., we let f depend on z through a
formula of the type
f(t) = D=z(t), t >0,

where D € L(Z), then the “closed loop system” where f has been replaced
by Dz(t) is of the form

{ 2(t) = (A+D)z(t) t>0,
2(0) = 2.

This system has a unique mild solution if (A + D) generates a Cy-semigroup.
Replacing f by Dz in the variation of constants formula (3.3) we get

¢
2(t) = T'z +/ T *Dz(s) ds, t > 0. (3.6)
0

Theorem 3.3.1 (38.2.1) If A generates a Cy-semigroup T, and if D € L(H),
then A + D is the generator of a Cy-semigroup S. This semigroup is the
unique strongly continuous solution of the equation

t
Slzg =T 2 + / T DSz, ds, (3.7)
0
and it also satisfies
t
Stz =T 2 + / S DTz ds. (3.8)
0

Moreover, if | T < Me*" for t >0, then

ISH| < MelerMIPIDE g > g,
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PROOF. (Only outline.)

Step 1. Use the “contraction mapping principle” (the Banach fixed point
theorem) to show that the equation (3.6) has a unique continuous solution z
for every zy € Z. Define S'zy = z(t), t > 0.

Step 2. Show that S is a Cyp-semigroup.

Step 3. Show that the generator of S is A+ D.

Step 4. Show that also (3.8) holds.

Note: A+ D has the same domain as A. The limit lim,_o 3 (S" — 1)z exists

if and only if lim,_o4 +(T" — 1)z exists and

IR T (P
A+D_hli%l+ﬁ(s _1)Zo_h11>%l+h(T 1)z0 + D.
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Chapter 4

Controllability and Observability

4.1 The system ¥ = (A, B,C, D)

We now go gradually back to the full system >:
2(t) = Az(t) + Bu(t), t >0,
y(t) = Cz(t) + Du(t), t >0, (4.1)
2(0) =

Here we assume that

generates a C-semigroup 7,
e LU;2),
e L(Z;)Y),
e LU;Y).

O QW

Definition 4.1.1 Let 2y € Z and v € L?
we mean the mild solution, given by

(R*; U). By the solution of (4.1)

loc

2(t) = Tz + /t T *Bu(s) ds, t >0 (4.2)
y = Cz(t) + Du(t).

(Thus, 2 € C(R™; Z) and y € L} (RT;Y).)

loc

Note. The integral in (4.2) can be interpreted as a classical Riemann integral
if u is continuous, and in this case also y is continuous. In general we must
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interpret this as a Lebesgue integral (or alternatively, replace u by a sequence
u, — uin L% _(R*;U) where each u,, is continuous, replace u by u, in (4.2)
and let n — 00).

4.2 Controllability in Time 7 < oo

To begin with we ignore the output part of the system and the initial state
and only look at the

‘interplay between input and state.

Therefore, it is enough to look at the equation

{ £(t) = Az(t) + Bu(t), t>0, (4.3)

2(0) = 0.

Definition 4.2.1 The controllability or reachability map B™ over the
time interval [0, 7] is the operator

Bu —/ T7°Bu(s) ds.
0

Note that B” is the mapping u to z(7), where z is the solution of (4.3). It is
a bounded linear operator from L?([0,7];U) to Z. This is the controllability
map used throughout in [CZ95].

Later we shall allow the ‘final time’ 7 to vary, and the formulas become
slightly simpler if we shift the starting time to —7 (and the ‘final time’ to be
Z€ro):

{ 2(t) = Az(t) + Bu(t), t > —, (4.4)
z(—1) =0.

Definition 4.2.2 The controllability or reachability map B, over the
time interval [—7, 0] is the operator

0
B.u = / T7°Bu(s) ds.

-7
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Note that B, is the mapping u to z(0), where z is the solution of (4.4). It
is a bounded linear operator from L?([—7,0];U) to Z. It has the same range
as B7.

In all the results of this subsection and the next we can as well replace B, by

BT, if we at the same time replace L?*([—7,0];U) by L*([0,7];U). (Some of
the formulas become slightly more complicated. This is what [CZ95] does.)

Definition 4.2.3 (a) Thesystem ¥ = (A, B, —) is exactly (exakt, tarkasti)
controllable (styrbar, reglerbar, sidettivi, ohjattava) in time 7 if
the range of B, is the whole space Z.

(b) The same system is approximatively controllable in time 7 if the
range of B, is dense in Z.
(c¢) The controllability Gramian (Gramoperator) is the operator
5z = B.B:.

What is B;?

For each bounded linear operator A € £(Z;; Z;) we define the adjoint in the
same way as the unbounded adjoint in Definition 2.9.3. If A € £(Z;; Z,), then
P(A) = Zy, and the adjoint operator is also bounded. It is still characterized
by the same identity,

(Az,2) 7, = (2, A"2) 2, x € Zy, 2z € Zs.

(Note that if A : Z; — Z,, then A* : Zy — Zj; the first inner product is
taken in Z5 and the second in Z;.) Thus,

Ae E(Zl, ZQ), A* e E(ZQ, Zl)7 and
(A, 2) 7, = (x,A*2) 7, for all z € 77, z € Zs.

Back to Bf. B, maps L?([—7,0]; U) into Z, so B maps Z into L*([—T,0]; U).
For any 2z € Z and u € L*([-7,0]; U),
<U7BiZ>L2([—T,O];U) = (BTU,Z

0

T *Bu(s) ds z>
Z

.
:/ T Bu(s), =) ds
/

0
T %) 2)y ds.



Since the function B’z has the same inner product in L?*([—7,0];U) with
every u € L?([—7,0];U) as the function s — B*(T~%)*z, this means that

(Brz)(s) = B (T"*)*z, —7 < s <0.
To get the controllability Gramian we compute

Lpz = BBz
= Bu (where u(s) = B*(T7°)"z)

0
= / T*BB*(T"*)*z ds (—s — )

T

= / T°BB*(T*)*z ds.
0
Thus, we have proved the following.

Lemma 4.2.4 i
BZ :/ T*BB*T*z ds,
0

where we have denoted T** = (T*)* = the dual semigroup evaluated at s.

Note 4.2.5 A similar computation shows that we also have Ly = B™(B7)*
(where we use the controllability map over the time interval [0, 7| instead.

Lemma 4.2.6 L} is self-adjoint and positive, i.e., (Lj)* = L, and

(Lgz,z) >0, z € Z.

PROOF. Self-adjoint because
(Lp)" = (B.B.)" = (B:)'B: = B,B:.
(Every bounded operator B satisfies (B*)* = B.) Positive because
(L2, 2) = (B.Bjz,z) = (Bjz,Brz) = |Bz]|* > 0.
L.

Back to Definition 4.2.3. Why do we need two different controllability no-
tions?

Answer: In the finite dimensional case we do not, but the infinite dimensional
case is problematic.
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Theorem 4.2.7 (4.1.5) If U is finite dimensional and Z infinite dimen-
sional, then X(A, B, —) is not exactly controllable in time T for any T > 0.

Idea of PROOF. The operator B, is compact in this case (it maps every
bounded set in L*([0, 7]; U) into a totally bounded subset of Z), and the range
of a compact operator is never the whole space (if it is infinite dimensional).
(Use Arzela-Ascoli.)

Corollary 4.2.8 Both B, and Lj are compact if U is finite dimensional.

Shown as a part of the proof of Theorem 4.2.7.

Thus, if you need exact controllability, then you must either

e use co-dimensional U, or

e use an unbounded operator B.

(Here “unbounded” means that B does not map U into Z but into some “larger
space” V O Z. For example, Z = L? and V consists of distributions.)

4.3 Equivalent Controllability Conditions

‘Controllability is preserved under feedback. ‘

Lemma 4.3.1 (4.1.6) The following conditions are equivalent:

(i) X(A, B, —) is ezactly controllable in time T,

(ii) (A + a, B, —) is exactly controllable in time T for some o € C,

(iii) X(A+ «, B, —) is exactly controllable in time T for all o € C,

(iv) X(A+BF, B, —) is exactly controllable in time T for some F € L(Z;U),
(v) X(A+ BF, B, —) is exactly controllable in time T for oll F € L(Z;U).

These conditions are also equivalent if we throughout replace “exactly con-
trollable” by “approximately controllable”.
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PROOF. Fairly simple. Based on the fact that all the different controllability
maps listed above have the same ranges. See [CZ95]. It is not formulated in
exactly this way in [CZ95], but the proof remains the same.

The following theorem connects the different controllability properties to the
corresponding properties of the Gramian.

Theorem 4.3.2 (4.1.7 (a)) The following conditions are equivalent:

() (Lg=2) = )20 for some > 0,

(ii) [IBzz)* = ~=I* for some v > 0,

(iii) [ |B*T*z||*> ds > ||z||* for some v > 0,
(iv) B: is one-to-one and has closed range,

(v) (A, B,—) is ezactly controllable in time 7.

PROOF. (i) <= (ii): True, because

(Lpz, 2) = (B B}z, 2) = || B2||".
(i) <= (iii): True because Bz = B*(T°)*z, —7 < s < 0, (use the same
change of integration variable as on p. 44).

(i) = (iv): Clearly, by (ii), B* is one-to-one. To prove the closed range,
take vy, = Bl z,, y, — y. This gives

Hyn - ymH = Bi(zn - Zm)7
so by (ii),
Y0 = Ymll = Yllzn — 2l

This implies that z,, is a Cauchy-sequence, hence it converges to some z € Z,
and by the continuity of BZ,

y = lim y, = lim Bz, = B}=z.
Thus, y belongs to the range of B?.

(iv) <= (v): ker(B?)* = range (B, ), so the range of B, is dense in Z if and
only if B} is one-to-one. That range (B;) = Z if and only if range (B;) is
closed follows from Theorem 4.3.3 below (“the closed range theorem”).

(iv) = (ii): See below. O

Above we used the following.
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Theorem 4.3.3 Closed Range Theorem. For every bounded operator A :
Z1 +— Zy we have

range (A) closed <= range (A*) closed.

PROOF. See [Rud73], Theorem 4.14. O

Theorem 4.3.4 Closed Graph Theorem. If a linear operator A from one
Hilbert space X to another Hilbert space Y is closed (has a closed graph,
see p. 21) and if 2(A) = X (the whole space), then A is bounded.

PROOF. See |Rud73|, Theorem 2.15. O
PROOF of Theorem 4.3.2 continues.

(iv) = (ii): If B is one-to-one and has closed range, then we may regard
range (B7) as a Hilbert space with the same inner product as in L?([0,7]; U)
(a closed subset of a complete space is complete). Then B has an inverse
defined on this space, and by the closed graph theorem (B)~! is continuous.
Thus, for all z € Z,

Izl = 1B~ Bzl < [1(B7) 11182,
ii) holds with v = ———. 0
so (ii) holds with ~ T

There is also a similar result about approrimate controllability.
Theorem 4.3.5 (4.1.7 (b)) The following conditions are equivalent.

(1) (Lgz,z) >0 for all z # 0.
(ii) B: is one-to-one.
(iii) The mapping z — B*T**z from Z to L*([0,7];U) is one-to-one.

(iv) X(A, B, —) is approzimately controllable in time T.

PROOF. Similar to the proof of Theorem 4.3.2 but easier. Il
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4.4 Observability in time 7

We now jump to another part of the system, we ignore the input and con-
centrate on the output instead. Thus, we study the system

Z(t) = Az(t), t>0,
y(t) =Cz(t), t>0, (4.5)
2(0) = 2o

Question: If we know the values of y(t) for all ¢ € [0, 7], can we then recon-
struct z(0) = 27

Definition 4.4.1 (4.1.12)

(a) The observability map of 3(A,—,C) is the map Z — L*([0,7];Y)
given by
(CT2)(s) = CT®z, 0 < s <T.

(b) This system is approximately observable in time 7 if C” is one-to-
one, i.e., if every nonzero z, results in a nonzero output y.

(c) The system X(A, —, C) is exactly observable in time 7 if C” is one-to-
one and, in addition, C™ has a bounded inverse (defined on its range).

Note 4.4.2 This is also referred to as initial observability, i.e., the initial
value zy can be reconstructed from the output.

Note 4.4.3 By the closed graph theorem, (c) is equivalent to the require-
ment that C™ is one-to-one and C” has a closed range. (Compare this to
condition (iv) in Theorem 4.3.2).

Note 4.4.4 C" is in practice never onto, because every y € range (C") is
continuous and not every L?-function is continuous.

Definition 4.4.5 We call the operator
c=(CT)C e L(Z)

the observability gramian of ¥(A, —, C).
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Lemma 4.4.6 Let C be the observability map of X(A, —,C'), and let B, be
the controllability map of X(A*,C*,—). Then

B =7C",
where Y s the reflection operator

Ty(s) =y(—s), —00 < s < .

Note. X (A*, C*, —) is described by the equation

{ Za(t) = A*zq(t) + C*ya(t), t>0
24(0) = given.

This is the dual system of the one in (4.5) (no output, but an input instead).
PROOF. We already computed B earlier,

B, z)y — < / (T Cruls) ds,z>

-7

- /((T_S)*C*u(s),z> ds

-7

_ / " tu(s), CT~2) ds

-7

= (u, TCTZ>L2(O7T),

SO

B =YC".

Lemma 4.4.7 (4.1.13)

(a) X(A,—,C) is approzimately observable in time T if and only if S(A*, C*, —)
18 approximately controllable in time 7.

(b) X(A,—,C) is exactly observable in time T if and only if L(A*, C*, —) is

exactly controllable in time 7.

PROOF. Use Definition 4.4.1, Lemma 4.4.6, Theorem 4.3.2 and Theorem
4.3.5. Note that Y*Y = I and that T* = T (it is a self-adjoint square root
of the unitary operator). O
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Corollary 4.4.8 (4.1.14 (a)) The following conditions are equivalent.

(i) (L&z, 2) > 7||2|1% for some v > 0.

(i) €722 0., = Y1213 for some > 0.
(iii) [; [|CT*z|)} ds > 7| z||% for some~y > 0.
(iv) C7 is one-to-one and has closed range.

(v) (A, —,C) is exzactly observable in time 7.

PROOF. See Lemma 4.4.6 and Theorem 4.3.2. OJ
Corollary 4.4.9 (4.1.14 (b)) The following conditions are equivalent.

(i) (L{z,2) >0 for all z # 0.

(ii) C7 is one-to-one.

(iii) CT°z =10 for all s € [0,7] = 2z = 0.

(iv) (A, —,C) is approzimately observable in time T.

PROOF. See Lemma 4.4.6 and Theorem 4.3.5. O

4.5 The Reachable and Unobservable Subspaces
Example 4.5.1 (4.1.16) Observability in infinite time. Let T" be the left
shift on W'?(R™). Observation Cz = 2(0), Y = R. This gives

(T'2)(z) = 2(x + 1), t >0, 2 >0,

and
y(t) =CT'z = 2(t), t > 0.

Thus, C™ maps z € W'?(R") into the restriction of Z to [0, 7]. In particular,
C™ is not one-to-one so it is not even approximately observable. (Neither is
its range closed in L?(0,7).) However, it is observable is we allow 7 = oc!
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Definition 4.5.2 (a) The (approximately) reachable subset (in infi-
nite time) of ¥(A, B, —) is the closure R in Z of the set

R = U range (B;)

7>0

(i.e., R contains all states that can be reached from the zero state with
some input active on some finite interval [—7,0]). We call 3(A, B, —)
(approximately) controllable (in infinite time) if R = Z.

(b) The nonobservable subspace A (in infinite time) of (A, —,C) is

N =(ker(C")={z€Z|CT'z=0 forall t > 0}.

7>0

We call ¥(A, —, C) (approximately) observable (in infinite time) if
N = {0}, i.e, if for every 0 # z € Z there is some ¢ > 0 such that
CT'z # 0.

Lemma 4.5.3 (4.1.18) N is the largest T-invariant subspace in ker (C') =
{reZ|Cz=0}.

PROOF. N C ker (C): Since C"z = CT"'z, 0 <t < 7, the condition C"z = 0
means that CT"z vanishes on [0, 7] in the L%-sense. But C'T"z is continuous,
so it vanishes in the L2-sense if and only if it is identically zero. Thus, taking
t=0weget CT°2=Cz=0, so z € ker (C).

Invariance: Assume that z € N,

< (CT?°z =0 for (almost) all s >0
= CT*"z =0 for (almost) all s >0 and t >0
= CT*(T"2) =0 for (almost) all s >0 and t >0

and this implies that Tz € N.

Largest possible: Let N3 C ker (C') be another T-invariant subspace. The
invariance means that 7z € Ny C ker (C) for all ¢ > 0, so CT"z = 0 for all
2z € Ny and all t > 0. This implies that Ny C N. .

Lemma 4.5.4 (4.1.19) The reachable subspace R is the smallest closed T-
invariant subspace that contains range (B).
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PROOF. Invariance: Let z € R. Then z = B,u = fi T~*Bu(s) ds for some
7 > 0 and some u.

0 0
Tz = Tt/ T~ °Bu(s) ds = / T'*Bu(s) ds
_t—T —T
= / T~ "Bu(r +t)ds = B""v C R,
—7—t
wherev(s) = u(s +t) for s € [t — 7, —t] and v(s) = 0 for s > —t. Thus, R
is invariant under 7', hence so is R.

range (B) C R: We use an “approximate identity” so that the input becomes
the “0-function”. Let z € range(B). Then z = Buy for some uy € U. Define

— <s<0.
un(s):{ nug, —1/n<s<0

0, otherwise.
Then
Rn = Bl/nun
0
= / T7°Buy(s) ds (eR)
—1/n

0
= n/ T~*Buy ds (s = —s)

—1/n

1/n
= n/ T°Bug ds — Bug as n — 00.
0

Since each z, € R, and z, — 2, we have z € R.

Smallest: If V' D range (B) is closed and T-invariant, then
T *Bu(s) C V for all u, s,

so (if you integrate a function whose values belong to a closed subspace, then
the integral belongs to the same subspace)

0
/ T~°Bu(s) ds C V.

T

Thus, range B, C V for all 7 > 0, so R C V. As R is closed, also R C V.
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4.6 Infinite Time Gramians

So far we have throughout studied controllability and observability over a
finite interval of fixed length 7 (sections 4.1-4.4) or varying length (section
4.5). What happens with the controllability and observability maps as 7 —
oo?

Recall: .
B,u :/ T~*Bu(s) ds

(CT2)(s) =CT?z, 0 <s<T.

We begin with C™. Here the extension is obvious:
(C*2)(s) = CT?z, 0 < s < o0.
There is one obvious problem, to which space do we require C*z to belong?

First solution: Interpret C*° as a mapping from Z to L° (R*;Y). This is a
Frechét space.

Second solution: Interpret C> as a mapping from Z to an “exponentially
weighted L2-space

loc

IERGY) =y € LLRY) | [l ya) de < oc),

This is a Hilbert space.

Third solution: Require that the class of systems under consideration satisfies
C>*z € L*(R™;Y) for all 2 € Z. This is true if, for example the system is
exponentially stable. (It is also true if C'= 0 and the system is unstable.)

Here we choose the third solution, and we require the system to be exponen-
tially stable. (See [Sta05] for the others.)

In the same way the the controllability map B, is extended to
0
Boou:/ T *Bu(s) ds.

The interpretation is that the input is active from time —oo on, and we look
at the state at time zero. We have the “same” three alternatives as before.
First alternative: Allow only input functions that vanish outside of a finite

interval.
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Second alternative: Allow input functions in L?(R7;Y) where w is bigger
than the growth rate of the system.

Third alternative: Suppose that the system is exponentially stable, and allow
input functions in L?(R~; U).

Again we choose the third alternative (see [Sta05] for the others).
Warning. [CZ95] uses Bu = [ T*Bu(s) ds instead!

Definition 4.6.1 (4.1.20) Let X(A, B,C, —) be exponentially stable. Then
we define

(i) The infinite-time controllability (or reachability) map B, : L*(R™;U) —
Z is 0
Boou = / T7°Buf(s) ds.

(ii) The infinite-time observability map C* : Z — L*(R";Y) is
(C™2)(s) =CT®z, 0 < s < o0
(iii) The infinite-time controllability Gramian Lg € £(Z) is
Lp = BB,
(iv) The infinite-time observability Gramian Lq € £L(Z) is
Lo = (C>)*C™.

Lemma 4.6.2 (4.1.21) The above maps are bounded linear maps between
the indicated spaces.

PROOF. Easy. See [CZ95] O

Lemma 4.6.3 -
Loz = / TC*CT?z ds
0

and -
Lpz = / T°BB*T*z ds
0

for all z € Z. These integrals converge absolutely (even exponentially) for all
z€ 7.
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PROOF. We have (C*z)(s) = CT*z, 0 < s < o0, so for all y € L*(RT;Y),

(y,C®2) 2 = /Ooo(y(s),CTsz>y ds = /OOO<T*SC’*y(s),z)Z ds

_ </0°O TGy (s) ds,z>Z = ((C®)"y, =)z

Therefore (C*°)* is the map
Y /oo T*C*y(s) ds, y € L*(RT;Y).
0
This together with the definition of C* gives
Loz = (C™®)"C>z = /00 TC*CT?z ds.
0
A similar computation shows that

0 (s——5)

Lpz =B Bz = / T°BB (T %)*zds =~ = / T*BB*T*z ds.

—00 0

OJ

Theorem 4.6.4 (4.1.23) Let (A, B,C,—) be exponentially stable. Then
the gramians Lo and Lp are the unique (self-adjoint) solutions of the equa-
tions

{ ALp + LgA* = —BB* (controllability Lyapunov equation)

A*Le + LcA = —C*C  (observability Lyapunov equation) (4.6)

More precisely, these equations should be interpreted in the following way:
Lp € L(Z) maps Z — Z and D(A*) — PD(A), Lc € L(Z) maps Z — Z and
D(A) — P(A%), and

ALpz+ LgA*z = —BB*z, z € 9(AY),
A*Lex + LoAz = —C*Cx, x € 9(A).

Another more symmetric way to write this is to take the inner product of the
first equation with z € Z(A*) and the inner product of the second equation
with 2 € 2(A) and write

{ (A'w, Lpz) + (Lpz, A'z) = —(B*2, B*z), x,2 € 9(A") (4.7)

(Az, Lox) 4+ (Leoz, Ax) = —(Cz,Cx), xr,z € P(A).
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Here we can actually even without loss of generality take x = z, because if
these identities are true when z = z, then they are also true when = # z (use
the “polarization identity”).

The two Lyapunov equations can be reduced to each other by means of the

following lemma.

Lemma 4.6.5 Let A be the generator of an exponentially stable semigroup.
Then the infinite-time observability map C> of (A, —,C) is related to the
controllability map B of X(A*, C*,—) as follows:

(C™®)" =BT
where Y 1s the reflection operator

(Tu)(s) = u(—s), s € R.

PRrROOF. Easy.

In particular, the observability gramian Lo = (C*)*C* of (A, —, C) is equal
to the controllability gramian Lp = B, B, = BcRRBZ, of X(A*,C*, —).

PROOF of Theorem 4.6.4. Because of Lemma 4.6.5, it suffices to prove e.g.
the claim about the observability gramian Lo. We begin by showing that
(4.6) and (4.7) are equivalent. If (4.6) holds, then we get (4.7) simply by
taking the inner product as explained on p. 55. Suppose that (4.7) holds.
Let € Z(A). Then

z+— —(Cz,Cz) — (Loz, Ax), (2 € D(A))

has an obvious extension to a bounded linear operator z — C (since C' and
L¢ are bounded). Therefore also z — (Az, Lox) has the same extension, so
Lox € P(A*), and (Az, Lox) = (z, A*Lex). Using this in (4.7) we get

(2, A*Lex + LcAx + C*Cz) =0, z € Z(A).
Since Z(A) is dense in Z, this implies that
A*Ler + LocAx + C*Cx =0, x € Z(A),

i.e., (4.6) hold. (The proof of first half of (4.6) is analogous.)
In the sequel we replace (4.6) by (4.7).
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L¢ satisfies (4.7): For z,z € 2(A) we have (use the rule for the derivative
of the product)

d
E<CTtZ’ CT'z)yy = (CT'Az,CT'z)y + (CT'z, CT" Az)y,

hence

/ (CT'Az,CT'z)y dt + / (CT'z,CT" Ax)y dt
0 —0 exponen;i,ally as t—oo 0

= [(CT'z,CT'x)| " = —(Cz,Cax).

The first two integrals are equal to

= /OO<Az,T*tC*CTt:r;> dt + /OO<2,T*tC*CT*Ax> dt
= <1(4)1z, Lex) + (2, Lo Ax) :
= (Az Lex) + (Lez, Ax).
Thus (4.7) holds.
Uniqueness: Let L be another self.adjoint solution. Put A = Lo — L. Then
(Az, Az) + (Az, Az) = 0.
Here we take v = T'zy and z = T"z, and get

d
—_ <TtZO, ATt.I'()) = <ATtZO, ATt.T()) -+ <7—‘t,207 AATt.I'())

dt
= (Az,Azx) + (Az, Ax)
= 0

so (T'zp, AT"xq) = constant = (zq, Axzg). But (T"zq, AT z) — 0 as t — oo,
so (zo,Axg) = 0 for all zg,x9 € Z(A). Z(A) is dense, so Az, = 0 for all
xo € Z(A) which implies A = 0. O

o7



Chapter 5

Input-Output Maps

5.1 The Impulse Response and Transfer Func-
tion

We now return to th full system
2(t) = Az(t) + Bu(t), t>0,

y(t) = Cz(t) + Du(t), t >0, (5.1)
2(0) = zo.

Definition 5.1.1 The input-output map of the system (A, B,C, D) is
the mapping from the input function v in (5.1) to the output y in (5.1) when
20 = 0.

Warning 5.1.2 Above we interpret z as a mild solution of (5.1), not as a
classical solution, and we permit u € L2 _(R™;U). The output y then belongs
to L2 (RT;Y).

Lemma 5.1.3 The input-output map s given by

t
(e / CT"*Bu(s) ds + Du(t), t > 0.
0

PROOF. The mild solution is given by (if zo = 0)
t
2(t) = / T °Bu(s) ds, t > 0,
0
and Cz(t) + Du(t) = the formula given above. O

o8



Definition 5.1.4 The impulse response of X(A, B, C, D) is the distribu-
tion

Déy + CT'B,
where §, is the J-function at zero and C'T'B is a continuous function. In

particular, if D = 0, then the impulse response is the function ¢ — CT'B.

Interpretation: If we use ugdg as an input, where g is a fixed vector in U and
dp is the d-function at zero, then the output of the system is the distribution

Duéy + CT' Bu.

Lemma 5.1.5 Let 3(A, B,C, D) be a system and let w be the growth bound
of the semigroup T generated by A. If u € L _(RT;U) and

loc

/ lle=“ u(t)||y dt < oo,
0

then the Laplace transforms of u,z and y in (5.1) converge absolutely in the
half-plane R(s) > w, and

Hs) = (s—A) (20 + Bi(2)), R(s) >
g(s) = Cls—A) 7'z + D(s)a(s), R(s)

v &

0,
where D(s) = C(s — A)"'B+ D.

PROOF. Easy, but we have no time to present it. See [CZ95] or [Sta05].

Definition 5.1.6 The operator-valued function D(s) (with values in £(U;Y)),
defined on the half-plane $(s) > w4 (the growth bound of the system) is called
the transfer function of (A, B,C, D).

The course on “transfer functions” (which is a continuation of this course)
will discuss these transfer functions in detail. They are very important if we
look at the system from an input-output point of view.

5.2 Realizations

It will be shown in the course on “transfer functions” that under very general
conditions, the relationship between the “input” and the “output” of a “black
box” is determined by a “transfer function” G-
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“Black box”

The black box is assumed to be

e linear
e time-invariant

e causal.

Then there is an operator-valued function GG, defined on some right-half plane,
with values in £(U;Y’), such that the Laplace transform g of the output is
given by

i(s) = G(s)a(s)

(R(s) large enough), where @ is the Laplace transform of w.

Definition 5.2.1 Let G be an analytic £(U;Y )-valued function defined on
some right half-plane R(s) > w. We call the system (A, B,C,D) a re-
alization of G if the transfer function D of Y(A,B,C,D) is equal to G.
This realization is minimal if (A, B, —) is (approximately) controllable and
Y(A,—,C) is (approximately) observable.

77’

‘More about realizations in the course in “Transfer Functions

The End
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