ANALYSIS II, Homework 8

Due Wednesday 20.11.2013. Please hand in written answers for credit.

1. Let F(x) be a continuously differentiable function defined on [a,b] such that F(a) < 0 and F(b) > 0 and

$$0 < K_1 \le F'(x) \le K_2 < \infty$$
 for all $x \in [a, b]$.

Use the Banach fixed point theorem to find the unique root to the equation F(x) = 0.

Hint: Consider the function $f(x) = x - \lambda F(x)$ and choose λ carefully.

- 2. Consider the family $\mathcal{F} = \{f_n : n \in \mathbb{N}\}$, where $f_n(x) = n \sin(\frac{x}{n})$ is defined on $I = \{x : 0 \le x < \infty\}$. Investigate if
 - (a) \mathcal{F} is equicontinuous,
 - (b) \mathcal{F} is precompact in $(BC(I,\mathbb{R}),||\cdot||_{\infty})$.
- 3. Let $A \subset C([a,b],\mathbb{R})$ be a bounded set with respect to $||\cdot||_{\infty}$. Show that the set of all functions $F(x) = \int_a^x f(t) dt$ with $f \in A$ is precompact in $(C([a,b],\mathbb{R}),||\cdot||_{\infty})$.
- 4. Show that the equation

$$3x = \cos^2(x) + 2$$

has exactly one real root.