ANALYSIS II, Homework 7

Due Wednesday 13.11.2013. Please hand in written answers for credit.

1. (a) Let A and B be two subsets of a normed space E. Suppose that A is closed in E and B is compact in E. Show that

$$A + B = \{x + y : x \in A, y \in B\}$$

is closed in E.

- (b) Let $e_n=(0,...0,1,0,....)\in l^2$ for n=1,2,..., and $A=\{e_n:n\in\mathbb{N}\}$ and $B=\{-e_n+\frac{1}{n}e_1:n\in\mathbb{N}\}$. Show that A and B are closed and bounded sets in the space l^2 but A+B is not closed in l^2 .
- 2. Let $f \in C([0,1],\mathbb{R})$. Suppose that for all $x \in [0,1]$ we have that $|f(x)| \leq \int_0^x f(t) dt$. Show that f(x) = 0 for all $x \in [0,1]$.
- 3. A metric space X is called separable, if there exists a countable set $\{x_1, x_2,\} \subset X$ such that $\overline{\{x_1, x_2,\}} = X$. Show that every precompact metric space is separable.
- 4. Show that the intersection of arbitrary many compacts sets in a metric space X is compact.
- 5. Let $f :]0, 1[\to]0, 1[$. True or false?
- (a) If f is continuous and $(x_n)_n$ is a Cauchy sequence, then $(f(x_n))_n$ is a Cauchy sequence?
- (b) If f maps every Cauchy sequence into a Cauchy sequence, then f is continuous?