ANALYSIS II, Homework 4

Due Wednesday 9.10.2013. Please hand in written answers for credit.

- 1. Let $E = C([0,1],\mathbb{R})$ be equipped with its usual $||\cdot||_{\infty}$ -norm. Prove or disprove the following assertions:
 - (a) $A = \{ f \in X : f([0,1]) = [0,1] \}$ is closed in E,
 - (b) $B = \{ f \in X : f \text{ is injective} \}$ is closed in E,
 - (c) $C = \{ f \in X : f(\frac{1}{2}) = 0 \}$ is closed in E.
- 2. On $C^1([0,1],\mathbb{R})$ consider the norm

$$||f|| = ||f'||_{\infty} + ||f||_{\infty}.$$

Let $g,h\in C([0,1],\mathbb{R})$ be fixed and $C([0,1],\mathbb{R})$ equipped with the $||\cdot||_{\infty}$ -norm. Define the operator $T:C^1([0,1],\mathbb{R})\to C([0,1],\mathbb{R})$

$$(Tf)(t) = g(t)f'(t) + h(t)f(t).$$

Show that T is linear and bounded.

3. Let 0 , and define

$$l^p = \{x = (x_1, x_2,) : x_n \in \mathbb{C}, ||x||_p := (\sum_{n=1}^{\infty} |x_n|^p)^{\frac{1}{p}} < \infty \}.$$

- (a) Show that l^p is a complex vector space,
- (b) Let $1 \leq p < \infty$. Show that $(l^p, ||\cdot||_p)$ is a normed space,
- (c) Consider the shift operators $T_r, T_l: l^2 \to l^2$ defined by

$$T_r(x) = (0, x_1, x_2, ...)$$
 and $T_l(x) = (x_2, .x_3, ...)$.

Calculate the norms of T_r and T_l .