ANALYSIS II, Homework 1

Due Wednesday 18.9.2013. Please hand in written answers for credit.

- 1. The set of all real-valued polynomials with real coefficients and degree less or equal to n is denoted by \mathcal{P}_n . Show that \mathcal{P}_n is a vector space over \mathbb{R} .
- 2. Give an example of a nonempty subset U of \mathbb{R}^2 such that U is closed under scalar multiplication, but is not a linear subspace of \mathbb{R}^2 .
 - 3. Let E be a inner product space. Show that the following statements hold:
 - (a) If $x_1, ..., x_n \in E$ are such that $\langle x_i, x_j \rangle = 0$ for $i \neq j$, then

$$||\sum_{k=1}^{n} x_k||^2 = \sum_{k=1}^{n} ||x_k||^2.$$

- $(b) \ ||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2 \ \text{ for all } \ x,y \in E.$
- 4. Let E be a complex inner product space. Show that the following statements are valid for all $x,y,z\in E$:
 - (a) If $\langle x, y \rangle = \langle x, z \rangle$ for all $x \in E$, then y = z.
 - (b) $4\langle x, y \rangle = ||x + y||^2 ||x y||^2 + i||x + iy||^2 i||x iy||^2$.
- 5. If $f \in C([a,b],\mathbb{K})$, let $||f||_1 = \int_a^b |f(x)| \ dx$. Show that $||\cdot||_1$ is a norm in $C([a,b],\mathbb{K})$.
- 6. The space $(C([0, \frac{\pi}{2}], \mathbb{K}), ||\cdot||_{\infty})$, where $||f||_{\infty} = \sup_{t \in [0, \frac{\pi}{2}]} |f(t)|$, is a normed space. Show that $(C([0, \frac{\pi}{2}], \mathbb{K}), ||\cdot||_{\infty})$ is not an inner product space.