kPax: Bayesian Search for Functionally Divergent Protein Subgroups and Their Function Specific Residues
Manual

Pekka Marttinen, Jukka Corander, Petri Toronen, and Liisa Holm
INQUIRIES CONCERNING THE PROGRAM CAN BE SENT TO: pekka.marttinen@helsinki.fi
Last update 28.9.06

1kPax: Bayesian Search for Functionally Divergent Protein Subgroups and Their Function Specific Residues

1Manual

2Introduction

2Installation

2Inputs for the program

2Data file format:

3Inputs required from the user

3Running the program

4About results

5General instructions

6References:

Introduction

kPax uses aligned amino acid sequences to create a clustering of proteins into evolutionarily related groups. The program is based on a probabilistic Bayesian model that allows the simultaneous optimization of: number of clusters, clustering of the protein sequences, and the signal preserving positions in each cluster.
Installation

The package contains three files that are needed to run the program: kPax_program.exe, kPax.exe, and kPax.ctf. You should run kPax_program.exe to start the program. However, before running the program you will need to install Matlab component runtime (MCR) on your computer. MCR can be downloaded from page http://www.rni.helsinki.fi/~jic/softa.html. The installation of MCR can be done by running the executable MCRinstaller.exe file. More information on MCR can be found from page: http://www.mathworks.com/access/helpdesk/help/toolbox/compiler/.
Inputs for the program
Data file format:

The program requires the aligned sequences of the proteins as input. The sequences for all the proteins must be equally long. Each line in the data file has the following format: “the name of the protein, the sequence of the protein”, i.e. the line consists of the name and the sequence of the protein separated by a comma. Gaps in the alignment are represented by “-“ character in the sequence. Other symbols for gaps (e.g. ‘.’) are NOT supported by the program. Also, in every column, there must be at least one observed amino acid, i.e. it is not allowed that every sequence has a gap at some column. The sequences must be presented by capital letters. Each row must contain a comma. If there are more than one commas in some row, (=the name of the protein contains a comma) the last comma on the row is used as a separator between the name and the sequence. The data file must be a plain text file saved in *.txt format. An example data file, ‘example_data.txt’ is included in this package. A simpler data file might look like:

Name 1, -LIRGA
Prot 2, -LI-GA
Some Protein, LVIKNG
Name4, ILIRGG
Protein number 5, LLIKGG
Before the program starts to search the actual best clustering the data is preprocessed. The preprocessing of large data sets may take up to a few hours. If the user wishes to analyze the same data many times (possibly with different initial settings) it is a good idea to save the preprocessed data after having done the preprocessing once. The preprocessed data can then be used in the following runs of the same data.

Inside the program the sequences of the proteins are converted into binary sequences. In the binary sequences each attribute corresponds to presence or absence of some amino acid in a column. This conversion is not visible to the user. However, later on in this manual, when we refer to attributes we mean the attributes in the binary sequences.

Inputs required from the user

Before the search starts the user may be asked to input some of the following:
1) Upper bound to the number of populations. Solutions where the number of clusters is greater than the value given here are not considered by the program.

2) Initial partition. The user can specify a partition that is used as a starting point in the search. The file specifying the initial partition is a plain text file (*.txt) containing as many rows as there are proteins in the data set. On each row there is a number specifying the cluster ID for the corresponding protein. An example file defining initial partition:
1

2

1

2

defines a partition where proteins 1 and 3 form one cluster and proteins 2 and 4 form another cluster.
3) Initial number of populations. If no initial partition is given by the user the program initializes the partition such that the number of clusters in the initial partition is the value given here.

4) Distance measure used in the initialization. The specified distance measure is used in creating the initial partition (in case no initial partition was given by the user). The meanings of the two different distance measures are explained later in section Running the program.
Running the program
The program is started by choosing either manual clustering or automated clustering. After specifying all the values that are needed in the initialization the program starts searching through the partition space looking for the best partition for the proteins. In manual clustering the user specifies the order in which different steps are performed when the best solution is searched. In automated clustering the program tries different steps in a pre-specified order and finishes when there exists no such step that would increase the value of the solution. Manual search can be terminated at any point and the current partition can be saved. Manual search terminates if enter is pressed when extra steps for the search are asked. The manual search can be continued later using the saved partition as an initial partition for the new run.
The steps that are available in manual clustering are:

1) Process proteins one by one in random order. For each protein, compute the values of log(ml*prior) that would result from moving the protein to other clusters. Move the protein to the cluster that gives the highest value of log(ml*prior).
2) Try joining each pair of clusters. Join two clusters such that the resulting log(ml*prior) is the highest possible.

3) Use distance measure dist2 to split each cluster into sub-clusters such that the average sub-cluster size is 5 proteins. If splitting a population leads to a higher log(ml*prior) the split is performed.

4) The same as 3) except that here each cluster is divided into 2 sub-clusters.

5) Same as 3) but splitting is based on distance measure dist1.
6) Same as 4) but splitting is based on distance measure dist1.
7) Same as 3) but splitting is based on distance measure dist4(5).
8) Same as 4) but splitting is based on distance measure dist4(5).
9) Same as 3) but splitting is based on distance measure dist4(50).
10) Same as 4) but splitting is based on distance measure dist4(50).
11) Same as 3) but splitting is based on distance measure dist4(200).
12) Same as 4) but splitting is based on distance measure dist4(200).
13) Same as 3) but splitting is based on distance measure dist3.

14) Same as 3) but splitting is based on distance measure dist3.

Different distance measures:

1) dist1: Hamming distance computed using about 2 per cent of attributes (see Data file format) that have highest number of ones in all the proteins.
2) dist2: When Hamming distance is computed between two proteins only those attributes are used that equal one for at least one of the proteins.
3) dist3: Hamming distance.
4) dist4(k): These distances are computed between proteins in cluster that is being processed in the split step. The distance is Hamming distance computed using k such attributes that are most diverse in the cluster (meaning such attributes where the number of zeros and ones is most equal).
The first six steps in the search have turned out to be the best. Other steps can be tried in the end when the first six do not cause changes anymore.
About results

When the search algorithm finishes the user must specify the name of the file in which the results will be written. This result file can be opened with any editor (e.g. WordPad in Windows). Note that the editor settings must be made such that the text is not wrapped to fit the long lines to editor screen. An example result file (clusters.txt) is included in the same package as this manual.
The first rows in the result file show the number of clusters and Log(marginal likelihood*prior) for the optimal solution. Sequences in same cluster are grouped together. The different clusters are separated by three empty lines. Above each cluster the positions in the alignment that include the 'cluster specific positions' are marked with a capital letter, showing one of the conserved amino acids for that position. Also the actual alignments show capital letters for these positions whereas the rest of the positions are presented with lower case letters.
The value Log(marginal likelihood*prior) can be used to compare between two different solutions. Exponential of the absolute value of the difference between the values of two different solutions is the amount of how much more likely the solution with greater (less negative) value of Log(marginal likelihood*prior) is.

In addition to the summary output file the program creates two other kinds of output files, one containing the obtained partition and the other containing the Bayes factors (BF) of signal model versus noise model for each position (column) in the alignment. The partition file contains the inferred cluster IDs for each protein in the data. The BF file for the different positions contains more specifically two values for each position: the first is the sum and the second is the maximum of log(BF) among the amino acids in the position. These two output files can be easily loaded for instance in Matlab or some corresponding program. The names for these two output files are created by the program from the name of the result file by adding _partition or _columns to the name of the corresponding summary file.
General instructions

The search is a greedy search and as such, does not give a guarantee of finding the global optimum. Therefore, to get more certainty related to the obtained clustering, one should do the search several times starting with different initial assignments. Here, different initial assignments are easily created by varying the number of clusters in the initial partition and the distance measure used in the initialization. If it happens that the search ends up in two different solutions in different runs, the obtained solutions should be compared by using the provided values of log(marginal likelihood*prior) for the two solutions. Also, starting the search a few times with the same initial values and using the search steps in a little bit different order is a good idea.
Automated search worked well with simulated data sets. However, manual search gives the user more flexibility and allows the user to try different kinds of search strategies. One strategy that was observed to be good with tests of simulated data is to start the search with a partition having about double the expected number of clusters, then run step 1 (moving single proteins) as many times as some changes occur. After that one could run step 2 (combining clusters) as many times as changes occur. After that one can try different steps in different orders so that in the end there are no such steps available that would cause any change to happen.

If the user has a particular partition in mind and wishes to find out the value of log(marginal likelihood*prior) for the partition, it can be done by using the manual search. Just start the manual search using the partition as an initial partition and stop the search before doing any search steps. Then the result files are written on the basis of the given partition.
References:

[1]
Marttinen, P., Corander, J., Toronen, P. and Holm, L. (2006) Bayesian Search of Functionally Divergent Protein Subgroups and Their Function Specific Residues. Bioinformatics, doi:10.1093/bioinformatics/btl411
