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• The Bayesian approach to inferring genetic 
population structure using DNA sequence or 
molecular marker data has attained a 
considerable interest among biologists for 
almost a decade.

• Numerous models and software exist to date, 
such as: BAPS, BAYES, BayesAss+, 
GENECLUST, GENELAND, InStruct, 
NEWHYBRIDS, PARTITION, STRUCTURAMA, 
STRUCTURE, TESS...

• The likelihood core of these methods is perhaps 
surprisingly similar, however, the explicit model 
assumptions, fine details and adopted 
computational strategies to performing inference 
vary to a large extent. 



Basis of Bayesian learning of 
genetic population structure

• Assume that the target population is potentially 
genetically structured, such that boundaries limiting gene 
flow exist (or have existed). The extent and shape of 
such substructuring is typically unknown for natural 
populations.



• Bayesian models capture genetic 
population structure by describing the 
molecular variation in each subpopulation 
using a separate joint probability 
distribution over the observed sequence 
sites or loci.



A Bayesian model describing a 
genetic mixture in data

• Let xij be an allele (e.g. AFLP, SNP, microsatellite) 
observed for individual i at locus j, j = 1,…,NL (NL is the 
total #loci).

• Assume that the investigated data represents a mixture 
of k subpopulations c = 1,…,k (k is typically unknown). 

• A mixture model specifies the probability pc(xij) that xij is 
observed if the individual i comes from the subpopulation 
c.

• Such probabilities are defined for all possible alleles at 
all loci, and they are assumed as distinct model 
parameters for all k subpopulations. 

• These parameters represent the a priori unknown allele 
frequencies of the subpopulations. 



• The basic mixture models operate under the 
assumption that the subpopulations are in HWE.

• The model gets statistical power from the joint 
consideration of multiple loci, i.e. it can compare the 
probabilities of occurrence for a particular multi-locus 
allelic (genotype) profile between the putative 
ancestral sources.

• The unknown mixture model parameters also include 
the assignment of individuals to the subpopulations 
(the explicit assumptions concerning the probabilistic 
assignment vary over the suggested models in the 
literature).

• The model attempts to create k groups of individuals, 
such that those allocated in the same group resemble 
each other genetically as much as possible.

• Notice that mixture models based on a similar 
reasoning have been in use in other fields (e.g. 
robotics, machine learning) long before they 
appeared in population genetics.



An example of how a mixture model reasons:

Allelic profile of a haploid 
individual i for 50 biallelic loci.

Black/white correspond to the two allelic forms.

The model calculates the probability of occurrence of an allelic profile 
conditional on the observed profiles of those individuals already allocated to a 
particular subpopulation (here 1 or 2).

Allelic profiles of 9 individuals 
currently assigned to 
subpopulation 1.

Allelic profiles of 9 individuals 
currently assigned to 
subpopulation 2.

This way, inference can be made about where allocate individual i.



How to do inference with these 
mixture models?

• Most of the methods in the literature rely on standard 
Bayesian computation, i.e. MCMC using the Gibbs 
sampler algorithm.

• This algorithm simulates draws from the posterior 
distribution of the model parameters conditional on the 
observed data. 

• It cycles between the allele frequency and allocation 
parameters, and it can also handle missing alleles by 
data augmentation.

• In the MCMC literature Gibbs sampler is known to have 
convergence problems, in particular when the model 
complexity increases (#individuals, #subpopulations, 
#loci). 

• Also, Gibbs sampler is computationally slow and as it 
assumes a fixed value of k, inference about the number 
subpopulations supported by a data set becomes more 
difficult.



What about BAPS?

• The genetic mixture modelling options in the 
current BAPS software are built on a quite 
different approach compared to the ordinary 
latent class model.

• The BAPS mixture model is derived using novel 
Bayesian predictive classification theory, applied 
to the population genetics context. 

• Also, the computational approach is different 
and it utilizes the results on nonreversible 
Metropolis-Hastings algorithm introduced by 
Corander et al. (Statistics & Computing 2006).

• A variety of different prior assumptions about the 
molecular data can be utilized in BAPS to make 
inferences. 



The partition-based mixture
model in BAPS

• Let S = (s1,…, sk) represent a partition of the n observed
individuals into k non-empty classes (clusters).

• Let the complete set of observed alleles over all 
individuals be denoted by x(N), i.e. this set reflects the 
presence of any missing alleles among the individuals.

• In the Bayesian framework it is acknowledged that all 
uncertainty faced in any particular situation is to be 
quantified probabilistically. 

• Such a quantification may be specified as the following 
probability measure for the observed molecular data, 
where the summation is over the space of partitions:
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• Here P(S) describes the a priori uncertainty about S, 
i.e. the genetic structure parameter

• Further p(x(N)|S) is the (prior) predictive distribution of 
the marker data given the genetic structure

• This means that the statistical uncertainty about the 
allele frequency parameters for each subpopulation 
in S (the pc(xij)’s) has been acknowledged in p(x(N)|S) 
by integration w.r.t a prior probability distribution for 
them (product Dirichlet distribution).

• From the perspective of statistical learning 
concerning the genetic structure, we are primarily 
interested in the conditional distribution of S given the 
marker data (i.e. the posterior), which is determined 
by the Bayes' rule:

pS|xN =
pxN|SpS

∑
S∈S pxN|SpS

.



• The prior predictive distribution p(x(N)|S) for the 
observed allelic data given a genetic structure S can 
be derived exactly (Corander et al. 2007, BMB) 
under the following assumptions:

(1) Assume that each class (cluster) of S represents a 
“random mating unit”.

(2) Assume loci to be unlinked and to be representable
by a fixed number of alleles.

• Then, p(x(N)|S) has the form:
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Explaining the model further…
• The model investigates whether there is evidence for 

subgroups that have genetically drifted apart.
• This reflects the assumption of neutrality of the 

considered molecular information.
• The Bayesian predictive nature of the model means that 

both the level of model complexity and predictive power 
are always taken into account, when two putative genetic 
structures are compared to each other.

• The presence of missing alleles in the allelic profile of an 
individual i is reflected by a flatter marginal posterior 
distribution over the possible subpopulation assignments 
for i.

• Handling the posterior is computationally an extreme 
problem in general. 



The number of partitions as a function of n.
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Some advantages of the stochastic 
partition -based approach:

• Avoids Monte Carlo errors related to the allele 
frequency parameters, which is particularly 
important for small subpopulations.

• Enables directly inference about the 
#subpopulations, as k is not assumed fixed in the 
model.

• Allows for fast adaptive computation in learning 
of the genetic population structures supported by 
the data.

• Enables a flexible use of different types of priors 
for the structure and allele frequency 
parameters.



Currently available mixture learning 
options in BAPS (v5.1):

1. User specifies an upper bound K (or a set of upper bound 
values) for #subpopulations k, whereafter the algorithm 
attempts to identify the posterior mode partition in the range 
1≤k≤K (or 1≤k≤max(K) if multiple values are used).

2. User specifies a fixed k and the algorithm attempts to identify 
the a posteriori most probable partition having exactly k
subpopulations. 

3. User specifies a finite set of any a priori hypotheses about S 
(i.e. distinct configurations of the genetic structure) and the 
program calculates the posterior probabilities for each of 
them.

4. User provides an additional auxiliary data from a set of known 
baseline populations and specifies an upper bound K for the 
#subpopulations k, whereafter the algorithm attempts to 
identify for the current data the posterior mode partition 
conditionally on the baseline data (in the same range of 
values as in the option 1.)



Genetic mixture estimation in BAPS

• Given either the upper bound K or the ’Fixed k’
specification, BAPS uses repeatedly the following 
stochastic search operators to identify posterior 
mode partition:

• Given the current partition, attempt to re-allocate 
every individual in a stochastic order to improve 
p(x(N)|S).

• Given the current partition, attempt to merge 
clusters to improve p(x(N)|S).

• Given the current partition, attempt to split clusters 
in an intelligent manner to improve p(x(N)|S) 
(random splits extremely inefficient!)



Genetic mixture estimation in BAPS

• The stochastic search for the posterior mode should be 
repeated to decrease the probability of identifying a local 
mode.

• No search method exists (apart from complete enumeration) 
that can be guaranteed to find posterior optimum in a FINITE 
number of steps (limit results).

• Given our accumulated experience, BAPS is highly efficient 
even for very large and complex data sets (say ~5500 
individuals and ~130 clusters).

• In the output BAPS provides a measure of local uncertainty 
around the optimal partition (log changes of p(x(N)|S) when 
moving data into other clusters).

• The ‘Fixed k’ option may also be utilized to find posterior 
optima for alternative values of k around the estimate of the 
global optimum.



Choosing an appropriate prior for the partition 
parameter (= choosing clustering model in BAPS)

• BAPS software contains five variations of the genetic mixture
model, which are based on different biological sampling 
scenarios: 

1. Individuals sampled dispersely from the population without any 
relevant geographical information. Choose ‘Clustering of 
individuals’, (or ‘Clustering with linked loci’ depending on data).

2. Individuals sampled from a number of chosen geographically
limited areas (commonly used in population genetics to enable
use of F-statistics). Choose either ‘Clustering of groups of 
individuals’ or ‘Clustering of individuals’ (or even both), 
depending on the properties of the molecular data. If very small
#loci is available, then ‘Clustering of individuals’ is not a 
statistically sound option. The most extreme case is ‘#loci = 1’, 
where a mixture model clustering just individuals is not even 
identifiable. The option ‘Clustering with linked loci’ can also 
handle pre-grouping of the data.



Choosing an appropriate prior for the partition 
parameter (= choosing clustering model in BAPS)

3. Individuals sampled fairly continuously from the 
population with relevant known geographical
coordinates. Choose ’Spatial clustering of individuals’. 

4. Groups of individuals known to belong to the same
deme are sampled with relevant known geographical
coordinates for the group. Choose ’Spatial clustering of 
groups’. As in the 2nd option, this choice enables a 
statistically better handling of small #loci.

5. Two types of samples available, one with known
genetic origins (baseline sample) and one without 
(current sample). Choose ’Trained clustering’ to let the 
baseline data to be used for updating knowledge about 
allele frequencies in the baseline populations. Notice 
that individuals in the current sample may either be 
forced to be assigned to some of the baseline 
populations or allowed to become members of new 
clusters outside the baseline.



Why bother with the choice of the prior?
• Use of an appropriate prior may strengthen the 

inferences considerably.
• For sparsely informative genetic markers, the 

geographical information is highly useful.
• This applies both to the ’Spatial clustering’ as well to 

’Clustering of groups of individuals’.
• The rationale for the latter is that the prior can bind 

individuals together in the mixture model when the 
markers are too weak to do that appropriately. 

• In the ’Clustering of groups’ options the mixture model 
investigates the observed allele frequencies (counts) of 
the pre-grouped data and targets to identify those 
groups where there is enough statistical evidence to 
claim that the underlying allele frequencies differ.



Spatial clustering of groups of individuals, where each 
group corresponds to a small breeding region (meadow) for 
the Glanville fritillary metapopulation at Åland Islands (Ilkka

Hanski’s group). DNA extracted from a small number of 
larvae collected per sampling site. 

Some examples of genetic mixture analyses



 

Genetic structure estimated using 4 microsatellites and 10 
SNPs (Orsini et al. Mol Ecol 2008).



Results for simulated human data using the ‘Fixed k’

option. Data taken from Gasbarra et al. Theor Pop 

Biol 2007; consists of 15 unlinked microsatellites, 3 

populations, each consisting of 10 trios of siblings.

k = 3

k = 30



For comparison purposes the STRUCTURE results 

obtained by Gasbarra et al. for the same data (no 

admixture model):



Results of ‘Clustering of individuals’ for large human data from 

Corander and Marttinen 2006, Mol Ecol. The data contains 

1056 individuals and 377 microsatellite loci. Admixture results 

are shown below. 



Going over to admixture models…

• If the amount of available molecular information 
is sufficiently large, it is biologically relevant to 
consider also questions of admixed ancestry, in 
addition to genetic mixture modelling.

• Some examples in the literature show that 
admixture inference may behave very spuriously 
when pushing the limits too far (say only 6 loci 
available).

• Let us try to understand the statistical rationale 
behind genetic admixture modelling... 



The 50 observed alleles of a 
haploid individual i for 50 
biallelic loci.

An example of how an admixture model reasons:

Each allele is assigned to an ancestral subpopulation according to the 
conditional probability of observing it there. The conditioning is based on the 
alleles already allocated to that particular subpopulation (here 1 or 2).

Examples of alleles having 
likely ancestry in 
subpopulation 1.

This way, inference can be made about where to allocate all the 
alleles of individual i.

Examples of alleles having 
likely ancestry in 
subpopulation 2.

Examples of alleles having 
equally likely ancestry in 
subpopulations 1 and 2.

Pop 1

Pop 2



A (latent class) admixture model considers in a sense the k putative 
ancestral origins as baskets, where the alleles of an individual may 
be placed.
The proportion of alleles in each such basket may be represented by 
an admixture coefficient, such that the sum of them equals unity. 

If we consider a diploid individual and NLloci, each allele represents 
100/(2NL)% of the observed genomic characters. Thus, the amount 
of loci determines the resolution at which an admixed ancestry can 
be considered.

For instance, with 10 microsatellite loci for a diploid species, each 
allele represents 5% of the genome in the admixture inference.  
Thus, with a small number of loci, it is not feasible to reliably make 
detailed statements at very fine scale

More about admixture models
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How to do inference with such 
admixture models?

• MCMC-based approach using the Gibbs 
sampler algorithm cycles between the allele 
frequency and allocation parameters for each 
allele (earlier allocation was done at the level of 
individuals).

• The posterior estimates of the admixture 
coefficients are then typically based on the 
relative number of times an individual’s alleles 
visit a particular basket (=ancestral 
subpopulation) during the simulation. 

• This enables a numerical approximation of the 
posterior probability distribution for the 
admixture coefficients. 



Challenges with the admixture inference
• Convergence problems for the Gibbs 

sampler applied to admixture models are 
even more serious than for genetic mixture 
models.

• The admixture model is burdened by a 
serious unidentifiability problem, when 
both the admixture coefficients AND the 
#ancestral sources (=k) are inferred 
simultaneously.

• This causes a strong dependence on the 
prior and can lead to overfitting (too large 
a k is inferred).



Challenges with the admixture inference
• Posterior distribution of the admixture 

coefficients does not necessarily reflect 
directly their statistical significance, i.e. the 
posterior may be centered away from zero 
for a particular ancestral subpopulation, 
although the individual is not admixed.

• The reason for this behavior is actually 
quite simple. 

• Consider two ancestral populations that 
have diverged only moderately in genetic 
terms (e.g. Fst ~.05 -.10).



Challenges with the admixture inference
• Assume that 20 microsatellites are used for 

inferring the parameters of the admixture model 
for a set of diploid individuals.

• Consider any particular individual i with non-
admixed ancestry in subpopulation 1, whose 
alleles are to be assigned to ancestral origins in 
an iteration of the Gibbs sampler algorithm.

• Now, given the moderate difference between the 
ancestral origins, it is quite unlikely that for 
EVERY allele xij of i, the probability pc(xij) is 
considerably higher for c = 1 than for c = 2.

• In fact, it is not unreasonable to expect that 
p2(xij) is higher than p1(xij) for, say 4, alleles out 
of the 40 observed. 



Challenges with the admixture inference
• Then, it is likely that these alleles are assigned to subpopulation 

2, which would correspond to q2 = .1.
• Unfortunately, even higher spurious values of the admixture 

coefficients can be expected by chance.
• Observe that the same phenomenon would persist even if the 

#loci is very large, e.g. we have investigated this in detail by a 
simulation scenario comparable to the 377 microsatellite human 
data set shown earlier.

• Below is an example of the posterior distribution (histogram 
approximation) for a spurious admixture coefficient.



How do we deal with these problems in BAPS?
• Genetic mixture, i.e. k and the corresponding clustering are 

estimated first. Alternatively, user can specify the underlying 
ancestral populations (BUT THEY SHOULD THEN REALLY 
BE GENETICALLY DISTINCT!).

• This solves the problem with the weak admixture model 
identifiability.

• Conditional on the inferred or given ancestral populations, 
admixture coefficients are inferred for each individual using 
the posterior mode estimate calculated with a Monte Carlo 
simulation combined with standard numerical optimization.

• Significance level for the admixture is obtained using a new 
Monte Carlo simulation, where non-admixed reference 
individuals are simulated from the populations and admixture 
coefficients are estimated for them.

• Eventual missing data is dealt with by randomly deleting 
appropariate amount of alleles from the multilocus genotypes 
of the reference individuals.



How do we deal with these problems in BAPS?

This way a null distribution is obtained for the amount of admixture 
expected by chance and the resulting p-value is simple to calculate.

Non-significant admixture case. Significant admixture case.

Estimated value of qi for the ”home” population, i.e. the 
population where individual i was assigned in the 
inferred genetic mixture.



An example of admixture estimation results from 

Corander and Marttinen (2006).

We manage to maintain a low level of false positives, as most of THESE 
cases are inferred to be non-significant at 5% level.



How to account for linkage?

• In BAPS one can utilize two distinct dependence
models introduced by Corander and Tang 
(2007).

• Assume data are available from linked loci 
residing in m chromosomes (marker data) or m 
narrow genomic areas (sequences)

• First and second order Markov dependence
structures can be incorporated to the predictive
likelihood p(x(n)|S) conditional on the partition S 
(‘Clustering with linked loci option’).



• Analyses can be spread over multiple 
computers.

• The user has the possibility to use scripts 
to automate the analyses by calling BAPS 
5 from a command line.

• After analyses have been in run separate 
computers, they can be summarized using 
a function in the GUI menu system.

• This enables the investigation of much 
larger data sets.

New possibilities in BAPS 5.1



New possibilities in BAPS 5.1 (ctd)

Discovering alleles with a deviating ancestry using Bayes

factors (‘Mutation plot’ function). An example profile for a 

single admixed (‘green’) individual in the above simulated data.



Example of bringing order into a large-scale chaos (5175 bacterial multi-locus 
DNA sequences). An inferred genetic mixture with 35 clusters. Cluster limits 
shown as horizontal lines, columns are sites of aligned DNA sequences, 
colors represent different bases, rows of the image are the individuals.



• However, given that 35 clusters were discovered, it’s 
not easy to grasp the results in a single screenshot.

• To assist in the exploration of the results, BAPS5 
contains new visualization tools describing cluster 
homogeneity and the genetic relationships between 
them.

• These tools attempt to describe ’currents in the gene 
pool’.

• It took appr. 2 days to run this analysis in BAPS 5.1.
• As a comparison, our experiments tell us that it 

would be extremely time-consuming to run a 
comparable analysis using ordinary Gibbs sampler 
or Reversible-Jump MCMC methods.



Example of a gene pool map
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• My PhD students Pekka Marttinen, Jukka 
Sirén and Jing Tang, who have done a great 
job in the BAPS development process!

• All other collaborators (far too many to be 
listed precisely).

BAPS software can be found at:
http://www.abo.fi/fak/mnf/mate/jc/software/baps.html
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