Highest kidney cancer death rates

Figure 2.7 The countics of the United States with the highest 10% age-standardized
denth rates for cancer of kidn y/ureter for U.S. white males. 1980--1989. Why are
most of the shaded counties in the middle of the country? See Section 2.8 for dis-
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cach based on different data but with a common prior distribution. In addi-
tion to illustrating the role of the prior distribution. this example introduce:
hicrarchical modeling. to which we return in Chapter 5.

1 puzzling pattern in o map

Figure 2.7 shows the connties in the United States with the highest kidne
cancer death vates during the 1980s.* The most noticeable pattern in the map
is that many of the counties in the Great Plains in the middle of the country
but relatively few counties near the coasts. are shaded.

When shown the map. people come up with many theories to explain the
disproportionate shading in the Great Plains: perhaps the air or the water
is polluted, or the people tend not to seek medical care so the cancers get
detected too lnte to treat, or perhaps their diet is unhealthy ... These conjec-
tares may all be true but thev are not a tually needed to explain the patterns
in Figure 2.7, To see this. Jook at Figure 2.8, which plots the 10% of counties
with the lowest kidney cancer death rates. These are also mostly in the middle
of the country. So now we need to explain why these areas have the lowest. as
well as the highe

The dssue is sample size. Consider a countyv of population 1000. Kidney
cancer is a rare disease. and. in any ten-vear period. a county of 1000 will
probably have zero kidnev cancer deaths. so that it will be tied for the lowest
te in the conntry and will be shaded in Figure 2.8, However. there is a chance

t. rates.

he rates are a icted to white males, issues which need not concern

¢ adinsted and res
ns here.

Lowest kidney cancer death rates

Figure 2.8 The counties of the United Siates with the lowest 107 age-standardized
death rates for cancer of kidney/urcter for U8 white males. 1080 1989,
ingly. the pattern is somewhal similar to the map of the high
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Figure 2.7.

the county will have one kidney cancer death during the decade. 1 so, 1 will
have a rate of 1 per 10.000 per vear. which is high enough to put it in the
top 10% so that it will be shaded in Figure 2.7. The Great Plains has many
low-population counties. and so it is disproportionately represented in both
maps. There is no evidence from these maps that cancer rates are particnlarhy

high there.

Bayesian inference for the cancer death ral

The misleading patterns in the maps of raw rates sugeest that a model-based
approach to estimating the true underlving rates might be helpful, Tn partice
ular, it is natural to estimate the underlvi
7 using the model

neer death rate jn each connty

1y~ Poisson{10n,0,). (2

‘here y; is the number of kidnev cancer deaths in county j from 1980 |
ny is the population of the conntv. and 8
deaths per person per vear. (Here we are ignoring the age-standardization.
although a generalization of the model to allow for this wonld be ]

This model differs from (2.14) in that . varies beiween connties. so 1 hat
(2.16) is a separate model for cach of the counties in the 178, We nse the
subseript j (rather than i) in (2.16) to emphasize that these are separato
parameters, cach being estimated from its own data. Were we performing in-

ference for just one of the counties. we wonld sim ply write y

is the nonderlving rate in anire of

To perform Bayesian inference. we need a prior distribution for 11

rate ;. For convenience we use a samma distribution. which is conjugate to

Poisson( 1007,
w nnknown
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the Polsson. As we shall disenss later. a vgamima distribution with parameters
a o= 20 and 9 430,000 is a reasonable prior distribution for underlving
kidney cancer death rates in the counties of the U.S. du ring this period. This
prior distri 7:::: rm,, a mean of /3 = 165 % 1077 and standard deviation
07,

istribution of 5 is then.

W”‘

Al ~ Gamma( 20 - Yy 430000 + 10n;).

which has mean and variance,
20 4y,
430.000 + 10m
20+ g,

ho= (430.000 + 10m,)2°
J

E0ly) =

var{#;

a ﬁimrri average of the raw rate,
. (For a similar calculation.

The posterior mean ean be viewed as
y;/{10n;). and the prior mean. /3 = 4.65
see Exercise 2.5.)

Relative importance of the local duta and the prior distribution

@ small county.  The relative weighting of prior information and
- For example. consider a small count

Inference fo

data depends on the population size n

with ny = 1000

o For this county., if y, = :. then the raw death rate is O but the posterior

0,000 = 455 % 1075,

o Ify; = | then the raw ;2,; rate is T per 1000 per 10 vears. or 1074 per
person-vear {about twice as high as the national mean). but the posterior

140,000 = 4.77 x 1079

o I y; = 2. then the raw death rate is an extreme

. but the posterior mean is still only 22/440.0

mean is 20

mean s only 21,

v high 2 x 104 per
)00 = 5.00 x 1077,
With sneh a small population size. the data are lominated by the prior dis-
tribution.

But how likelv, @ priori. is it that gy will equal 0, 1. 2, and so forth. for
this county with n, = 10007 This is determined by the predictive A,:ﬁe:,_::c:.
the marginal distribution of ¥, averaging over the prior distribution of O;. As
discussed in Section 2.7, the Poisson model with gamma prior %L:T::c: has

Person-ver

a negative binomial predictive distribution:

bin { o 2
g-bmf{ a. - -]
° 10n;

It i< perhaps even simpler to simnlate diree tlv the predictive distribution of 15
as follows: (1) draw 500 (sav) vahies of #; from the Gamma(20.430000) distri-

bution: (2) for each of these. draw one ;i:e ¥, from the Poisson distribution

with parameter 100008, Of 500 simulations of y; produced in this way. 319
3 were 2

cand 5 were 3s,

s 141 were |

were ()
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Figure 2.9 (a) Kidney cancer death rat s 4y U0 Y
plotted on the scale of log y popmlation o see the data more clearly. The potier
come from the diseretenoss of the data (), ,

populalion size w,. b fo-

death rate (per 100,000}

log10 (population)

digure 2,10 (a) \581«;:3«:& poxstLrior mean

ddney cancer  death rates

= \ 20} « Y, . A
Elily,) = :mﬂﬂff«f < Aogarithm of population siz L the 30T counties on the

U.8. (b) Posterior medians and 50% aantervals for 8, for o semple of 100 counties
The scoles on the y-ures differ from the plots in w:\.::

Inference for a large cou
How many cancer deaths y; might we oxpect to see in g ten-year poriod;
Again we can nse the m,,?:::iw:,,3:3:3 and Poisson( 107 ) distributione
to simulate 500 values of y; from the predictive %,;:?EE:. Doing this w
found a median of 473 and a 509 interval of 1393, 5451
then as likely or not to fall between 3.94 « 107 ane
What about the Bavesianly estimated or ,M,W.,x%zi:M,?,f:i, de
example, if y; takes on the low ﬁ;:ﬁ of

3
07" and the posterior mean of f; s (20 -
1

ty. Now consider a large county with 1, =~ 1 million.
3

:wt raw death rate s

ps

5. then the raw des
A3t = 306 >« 1070,
;:i he posterior moean
It this large county. the data dominate the prior distribntion

and if y; = 545, then the raw rate is
5.41 x 1077

Comparing counties of different size
ance of y; is inversely proportional to the exposure parameter n,. which can
thus be considered a sample size” for county j. Figure 2.0 shows how the
raw kidney cancer death rates vary by population. The extreme elv high and

In the Poisson model (2.16). the vari.




extremely low rates are all in low- population counties. By comparison, Figure
2.10a shows that the Baves-estimated rates are much less ariable. Finally
Figure 2.10h displays 50% interval estimates for a sample of counties (chosen
because it would be hard to display all 3071 in a single plot}. The smaller
cotnties supply less informati

o and thus have wider posterior inter als.

Constructing a prior distribution

We now step back and discuss where we got the Gamma(20. 430000} prior
distribution for the underlying rates. As we discussed when introducing the
model, we picked the gamma distri hution for mathematical convenience. We
now explain how the 5: parameters a. F can be estimated from data to match
the distribution of the observed cancer death rates y, /(10 1), It might seem
mappropriate to use the data to sot the prior distribution. but we view this
as a usefnl approximation to our preferred approach of hierarchical modeling
{introduced in Chapter ). in which distributional parameters such as . 3 in
this example are treated as unknowns to he estimated.

Under the model, the observed ¢ count y; for any county 7 comes from
the predictive distribition, ply;) = \NVT\% Ip(0;)d0;. which in this case ic

Neg-bin(a. 3/(1( ;). From Appendix A, we can find the mean and variance
of this distribution:

5 3

«M.:;AWQVNV e + Amcz v

These can also be derived directly nsing the mean and variance formulas (1.7)
and (1.8} see Exercise 2.6,

Matching the observed mean and variance to their expectations and
ing for a and 3 vields the parameters of th
computation is more complicated becans
and variance of the rate

SOlv-
prior distribution. The actual
e 1t is better to deal with the mean
s 443/ (1005} than the Yy and we must also deal with
the age adjustment. but the basic id ea of matching moments presented here
ilnstrates that the information is present to estimate o and 3 from the data
of the 3071 counties.

Figure 2.11 shows the empirical distribution of the raw cancer rates, along
with the ci::;:i Gamma(20.430000) prior distribution f or the underlying
cancer rates f;. The distribution of the raw ratos is much broader. which
makes sense sinee they include the Poisson variability as well as the variation
hetween commties.

Our prior distribution is reasonable in this example. but this method of
onstructing it - by matching moments-— is somewhat sloppy and can be dif-
5. we diseuss how to estimate this and

ficult to apply in general. In Chapter 5.
other prior distributions in a more direct Bayesian manner. in the context of

S

hierarchical models
A more important way this model conld be improved is by inchiding infor-
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Figure 211 Empirical distribution of the age-edjusted kidney rancer &i% rates
yi/(10n,)). for the 3071 counties in the 175, along with the Camomal 20, 130000)
ﬁwﬁf:, distribution for the underlying coneer rafes a,

mation at the county level that could predict variation in the eaneer rafes,

i wi nove the model toward a hicrarchical Poisson regrossion of the
This would move the mode
sort discussed in Chapter 16.

2.9 Noninformative prior distribution

thev can be difficult to

When prior distributions have no population basi
construct, and there has long been a desire for prior distributions that can he
guaranteed to play a minimal role in the posterior distribution. Sneh dist w:«:-
tions are sometimes called ‘reference prior distributions.” and the prior doensity
is described as vague. flat. diffuse or noninformative. The rationale for nsing
noninformative prior distributions is often said to be to et the dats oapenk
for themselves.” so that iuferences are unafforted by information external to
the current data.

Proper and improper prior distributions

We return to the problem of %::S::m the mean 6 of a normnd model with
known variance o, with a N{pg. 72) prior distribution on 0. If the prior pre-
N;

cision. 1/72. is small relative to 3% data precision. nfo®. then the posterior

distribution is approximately :

»{ Goort /).
Putting this another way. the posterior distribution is %:}:z; telv that
which would result from assuming p(#) is proportional to o constant for 0 ¢

ble. sinee the integral of :?

(=00, o). Such a distribution is not strictly po
; f,i::i p(0) is infinity. which violates the assumption that prohabilities sum
to 1. In general. we call a prior density p(#) proper if it does not depend on

data and integrates to 1. (If p(#) 33»&2:5 to any positive finite ealue. it




