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CHAPTER 7. MARKOV CHAINS

Journal of the Royd

Background

1.1

.

General Summary

ow we apply the steps of Bayesian modelling to a (training) sequence using
i family of Markov models. A Markov model is completely specitied by
ransition matrix and an initial distribution. Probabilistic learning needs:

«

&

i

(1) a Markovian probability distribution which specifies the probability
of any sequence conditioned by the transition matrix and the initial
distribution;

{2) a prior which expresses the uncertainty about the transition
the initial distribution.

matrix and

When (1) is combined in a known fashion with the training
btain the likelihood function of the sequence with respect to a family of
arkov models. The likelihood function is combined with (2) via Bayes' rule
o produce a posterior distribution for the parameters of the family of Markov
models. Using (1) and (2) we may also compute predictive distributions and
fo model comparison by means of Bayes factors. Model family comparison is
specially concerned with finding the order of the Markov chain, as defined

i Chapter 7, a technique appearing in modelling DNA sequences in Chapter

quence we

Fav

o
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8.2 ML for Markov Chains

The corresponding log likelihood function is

n

L(®) = MU In %ﬁais, (2.4)

[=

8.2.1 Preliminaries

Let @ be the transition probability matrix

8.2.2 ML of the Transition Matrix

Q:u %:w Q:.\ . . |
g Ba11 &E T mmt 9 We introduce a notation for the number of times we see a transition from 1
T : : : : 21 tojin x = (JoJi .--Jn). Thus

bo O Oy ni; = the number of I such that 1 <1 < mn, 500 =4, 51 = J. (2.5)

We are concerned with estimating the model 8 in the family of probabilistic

Using the frequency counts n,); we can write the likelihood function as
models p (x|f) for a (training) sequence x of n + 1 symbols in S**! :

J o J
Loy =[111%" (2.6)

Q=1 gl

X = Auc,\w B ..w.:v € rm.z:\:.

It was shown in Chapter 7 that for Markov chains ;Og,wo:m; n,;s are the sufficient statistics for this model family. The log
: A ‘ . = likelihood in (2.4) will be
p Auimv = Nu A\%c = Jo, .fr_ = Jirees 4\M‘,: == .\:Ev = \\.CoAOv m%bslb.
i=1

J J
L) =) nylnby. (2.7)
Then we propose =l g=1
MODEL FAMILY:
Let also
CONDITIONED ON m,(0) AND © = ¢, THE SYMBOLS IN x ARE o AP 98
AN OUTCOME OF A MARKOV CHAIN {X,},.,, WITH STATIONARY n; = the number of ! such that 0 </ <n -1, 31 =1 (2.8)

i NQIVTION PR A . . <
FHARSITION PROBABILITIES € * s0 that n, is equal to the number of times the sequence x visits the state i,

. " - ‘excluding the possible visit at the final time. Then we have
Here we have at most J? — J transition parameters and the J — 1 initial ~ 1 & P

probabilities to estimate using the data x. We make an approximation to
the effect that we omit the initial distribution 7(0) as a part of the estimation
problem. One way to think of this is that we know (or fix at will) the initial
symbol in advance. Moreover, given just one training sequence we have just
one single observation of the initial state. Let us first consider the maximum
likelihood estimate of all of the unknown transition parameters.

As a function of g for fixed x the ensuing approximate or conditional
likelihood function is

s

Wm:.omucmmﬁos 8.2.1 The mazimum likelihood estimate 0;; of 0;); 1s
S~ Ny

Oi; = —, (2.9)

Tl

Proof: Since the constraints

J
T, . 0. >0, S 6, =1 (2.10)
L®) =TT b (23) 520 2




178 CHAPTER 8. LEARNING OF MARKOV CHAIN 3. THE WHITTLE DISTRIBUTION 179
n the preceding the initial distribution py, was not a part of the estimation
roblem. If the chain is stationary then the initial distribution is an invariant
istribution, which contains the unknown parameters, We can, of course,
ill throw away the initial distribution, but this means a loss of information,
hich is asymptotically insignificant.

The full likelihood function L (p,q) = p(x|A) for the stationary model
gven the sequence x turns out to be equal to

hold separately for each row in the transition matrix we can maximize £ (6) i
(2.7), which is a separable sum of the corresponding terms, by an independe
maximization for each row. Thus for each row

B, = A?:, .- .;ﬁtv

we should maximize

J
L(8;) =" ny,nb,,

J=

Y d

pr-(l=p)°-qg° (1—q) o e

L{p,q) = s Q (2.13)
Pty

where, using the notations for the number of state transitions in the sequence

x introduced above,

as a function of G, - .. .8, s0 that the constraints are satisfied. Therefore
we may repeat the computation from Chapter 3. Let us set

-~ 2&3 M40
Q& = T ey ilnlw -

74 n;

= Jo + nop, b= ngp,c=1~ jo+ny, d = n.

Hence there is no longer an explicit solution of the log likelihood equation
obtained by setting the partial derivatives of In L (p,q) equal to zero. In
Bisgaard and Travis 1991) it is shown that this system of equations has a
uique solution which is a maximum.

m:ﬁm.?: + Mg + ...+ nyy = n,, as every transition from ; (possibly bac
to ) Emwmﬁmm necessarily a visit to ¢ and the final time was excluded, W
see that 6, satisfies the constraints. Take now an arbitrary ¢, satisfying the
constraints. Then we get as in Chapter 3 ;

8.3 The Whittle Distribution

For any given x = (joJ1 ... jn) we make the frequency counts (2.5) or

£(8)-c@)=np (916.) =0,

where D A@E&v is the Kullback distance, which has been proved to be non-

negative. Equality holds if and only if @ =0, n,; = the number of [ such that 1 </ < n, j,_, =i, o=
Let us set
J J
8.2.3 An Example of Full Likelihood e =1 T Mh;:% or il and oy

Thus n,. is the frequency count of ¢ in the prefix (joJj; ... jn-1) of x and Ty

Suppose that the model family consists of stationary Markov chains with a-
Jis the frequency count of j in the suffix (j, ... j,) and x. Therefore

binary state space S and with the transition probability matrices

; IL=p p T — Mg = Oyj = 045 (3.2)
A= . i i tja Bins
q 1~q /- (2.12)

where 65 1s Kronecker’s delta (i.e., é,; = 1 if i = j and 0y =0 if 1 # j) and

J J
ML)::. = M:.m = . (3.3)

We wish now to estimate p and g using an observed sequence x of n + 1
symbols in S™+1
X = (Joji - Jn) € "1,
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84 Model Averaging

4.1 Posterior Distributions for Rows in the
, Transition Matrix

assume that our uncertainty about the rows of § in (2.1)

b, = Q%, S quv

Let "y
= ?.?.qvﬂ.wgnu (3.

be any J x J matrix of non-negative integers which satisfy (3.2) and (3.3

Hence the knowledge of F and of Jo determine j, uniquely and F and

determine jg. s

Proposition 8.3.1 (Whittle’s multinomial coefficient) Let F be anJ
J - matriz of non-negative integers ny; such that Muwn, MUM;L Ny = N an

A , n jables that have their respective Dirich-
such that ny. = ny; = 6y — 6, for some u and v in S. Let modeled by independent random variables that have their respecti

ot densities for ¢ = 1,.. ., J see section 3.8 in Chapter 3. These we formulate

z%w (£) = the number of sequences x = (JoJ1 -+ Jn)
having the frequency count F and satisfying jo = u, j, = v I () “—mH AU (4.1)
Dir (000 - qipyy - -y G) = HT Ay L ’ )
Then A s p E?L r AQE%V g1
A () F = :W\FM ::,M ok 35
Ny (F) = =5 P (3 there /
zuizuﬁ Ty 0 ML; |
, o {Ja0, == 1,
where F}, is the (u, v)th cofactor of the matriz F* with components a; >0, Gy = - = s
dij — Ly if n;. >0 len we use as the simultaneous prior density the multivariate Dirichlet
. o ' r :
[y = i density or ; ,,V
Oy, if ny. = 0. Dir Amx QG i, ﬁtv (4.2)
i=1

Proof: A proof is given in (Billingsley 1962, pp. 14-15). The cofactor Fr is
(=1)*** multiplied by the determinant of the matrix obtained obtained b
deleting row u and column u, as defined in any text on matrices.

Then we readily obtain t the probability that x = (jyj; .. .Jn) has F as its

uggested by (Martin 1967, ch. 2), see also (Basawa and Rao 1980 pp. 65 -
i8). Hence the posterior density is in view of (2.3) equal to

X T P |
J I'{ex, ) -y IR AP
MM Y Mww.sw Q»C

' . . . . w=rpdor 1Ghiy (4"
transition count and j, = u and j, = v, denoted by Py (F), is (Whittle p(8]x) = IECT vxw 5 (4.3)
1955) nothing else but : P |

vin

)(x) is the standardization that makes p (#|x) a probability densit

) :,\x; Sz.w A n ;,
Nu««u Akﬁjv preons ,wﬂ.ﬁACV . ,&w,ﬁwﬁ ) M.N\ MRM\ _:; f ) E z QLMC . Awmv
i=x] F=10000 0 gy = ;

A homogeneous Markov chain is thus seen to resemble a set of independent
multinomial processes. .

The Whittle distribution turns out to be useful in computing statisti-
cal properties of occurrences of words, a problem of considerable biologica
interest as shown in Chapter 9.

8.4.2 Predictive Probability

s an obvious extension of the predictive probabilities in Chapter 3 we might

ask what is our probability

ol

P(X.o =1lX, = x),
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;.m MC Order Comparison Using the Bayes
Ratio

In the literature on biological sequence analysis the problem of estimating
he order of a time-homogeneous Markov chain and/or testing against a null
model, the multinomial process with the same state space. We now state
relevant criterion, without restricting ourselves to any specific biological
tuation, using Bayesian model comparison. We compute the Baves ratio

where the notation indicates that the probability is based on a given trainin

sequence X = (Jgji...J,) € S™1! ? In view of our Markov modelling of x i
the preceding subsection one answer could be

PuL (Xps = X, = §x) = m&

plugging in the maximum likelihood estimate of the transition probability.
In a completely observabilistic sense we would consider only the singl
sequence X and ask for P (X, ;; = j|x) and provide the answer as ;

Py (X =

since j, is the last symbol in the sequence.

There are other ways of addressing the stated question. Using the sequenc
X we may take some posterior density for § and then provide a new transitio
matrix by model averaging

here under the model family M the training sequence x is related to the

parameters in a transition matrix § as above and with the multivariate Dirich-

et density (4.2) as prior. Under the model family My the training sequence

v v ° . : x is related to the parameters in a QS@MSQS,M independence model with a

P (X = jlNn = isx) = \ Oi;p (1x) do. (4.4] ¢ Dirichlet prior (cf. Chapter 3). .

. \ " Asin the chapter quoted we obtain

Using (4.2)
[ (a) Zw; Iag +n;)

Qo (X) = J o In+a)

r A:&ﬁ Q?v , ‘

it

. May)
=T ey a

p(x)

PN == = [ 6p () at
:f\

Lbc (r,s)

here n} is equal to the number of times the symbol ¢ appears in x. Note
hat by the definitions valid here n! is equal to n, for some J — 1 svinbols
ud n; + 1 for the remaining of them. In view of the formnulas above we have
that

P

where

. J
N Tl oy -1
Ly (rys) = [ T]0ns00% " ab,.
J=1

) J r . J
. - . an () = : () MM gy
Here the integration is with respect to all of the parameters in 6, which are, . 0 E;. T (i) Joooh % -
however, separated to their respective domains as rows of 0. Using the well d ” - ;,w )
known formulae for evaluating the various Dirichlet integrals (appendix to z [ () [, 1 (rupy + i) (5.3)
rantor o antoar £ ey o : 'y . : = " , Sy g ‘ .
Chapter 3 and Chapter 6) we obtain in (4.4) the expression 1 Ewn_ I (i) I'(ni + )

* ;o - :.,@ 4 (e .
P A\/:;’H = w.w;/s = 5 xv = 27 wNLx, Abww
Ny + :

The idea in (Milosaljevic and Jurka 1993) can be recapitulated as searching
s database for sequences x such that — log B(x) exceeds a threshold. The
threshold can be taken as the length of the codeword for x compressed by a
smitahle alrarithm an annlicatinn of the theare in Chantor 9

The parameters o, and s blay, as before, the role of pseudo counts of
observations or of regularizers.




