Let x be your guess about \#euros in the jar. Assuming x has normal distribution with mean μ and variance σ^{2}, the expected gain of your guess is approximately (neglecting discreteness of the true number) equals:

$$
\begin{equation*}
x \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right. \tag{1}
\end{equation*}
$$

To maximize this we first calculate the derivative:

$$
\begin{equation*}
\frac{d}{d x} x \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right. \tag{2}
\end{equation*}
$$

which equals

$$
\begin{equation*}
\frac{1}{2} \frac{\sqrt{2}}{\sqrt{\pi} \sigma^{3}} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right)\left(-x^{2}+\mu x+\sigma^{2}\right) \tag{3}
\end{equation*}
$$

Then, we set the expression equal to zero and solve for x, assuming $\sigma>0$:

$$
\begin{equation*}
\frac{1}{2} \frac{\sqrt{2}}{\sqrt{\pi} \sigma^{3}} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right)\left(-x^{2}+\mu x+\sigma^{2}\right)=0 \tag{4}
\end{equation*}
$$

which yields the two roots:

$$
\begin{equation*}
\left\{\frac{1}{2} \mu-\frac{1}{2} \sqrt{4 \sigma^{2}+\mu^{2}}, \frac{1}{2} \mu+\frac{1}{2} \sqrt{4 \sigma^{2}+\mu^{2}}\right\} \tag{5}
\end{equation*}
$$

and since the answer cannot be negative, we end with the optimal answer:

$$
\begin{equation*}
\frac{1}{2} \mu+\frac{1}{2} \sqrt{4 \sigma^{2}+\mu^{2}} \tag{6}
\end{equation*}
$$

For instance, if $\mu=500$ and the standard deviation $\sigma=75$, we get:

$$
\begin{equation*}
x=\frac{1}{2} 500+\frac{1}{2} \sqrt{4 \cdot 75^{2}+500^{2}} \approx 511 . \tag{7}
\end{equation*}
$$

Thus we notice that the optimal answer is higher than the most probable value μ.

