
1 Model comparison

The choice of an appropriate structure to represent features observed in data
is an inherent part of data analysis. In statistical modeling this corresponds to
the choice of an appropriate probability model and necessitates formulation of
the model structure and often also estimation of its dimension.
The question of how one should compare probability models is to a large

extent a philosophical issue. In broad terms a widely accepted Occam�s razor
principle says that unnecessary parts should be eliminated from a scienti�c
theory, i.e. the parts which cannot be empirically veri�ed. In the current
context it is quite natural to restrict ourselves to the empirical veri�cation,
although other forms, such as the use of logic, can be considered in general. We
shall see that the Occam�s razor principle is automatically built in the Bayesian
approach.
In reality, in general, there always exists a discrepancy between models and

observations. Such a discrepancy might already arise from the consideration of
the accuracy of some measurements that are made and give rise to our data.
Second, since all data analysis is performed by computers where any numbers
are represented by �nite precision binary digits, it is natural to view models in-
volving densities for continuous variables as approximations for the data. Nev-
ertheless, to give us guidance in the construction of tools for model comparison,
it is sometimes useful to imagine a �computer game scenario�, where the obser-
vations are generated from a model which belongs to a class of models known
to us. The uncertainty in this situation arises from the fact that we don�t know
which of the models can be seen as responsible for the data. This imaginary
construct enables us to distinguish good ideas (model comparison strategies)
from the less good ones in the ideal world. What one really hopes then, is that
the solutions found to be good in the computer game scenario, would continue
to be good in the real world if our models are su¢ ciently good descriptions of
the regularities involved in the phenomenon under investigation. Conversely, if
a model comparison strategy turns out to be a poor one in the ideal world, we
expect it to be a poor one even in the real world.
From the Bayesian point of view, one could easily say that models exist in

our heads, representing subjective beliefs about some phenomenon. They are
abstract constructs aimed to give perceivable structures to complicated real-
world phenomena that can be communicated with others. The typical statistical
interpretation of models as data generating machines is not very realistic or
elaborate in this respect. Quoting Rissanen (1987, p.223), �As in Bayesian
theory the class of models is not intended to include any �true�distribution for
the data, but rather is only regarded as a language in which the properties of
the data are to be expressed. This is a minimum requirement for any kind of
learning, for how can we �nd regular features in the data unless we can describe
them.�
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2 A decision theoretic framework

We now consider the model comparison issue in the Bayesian framework. To
proceed, assume that all elements in our �nite class of belief models M are
such that the joint density of the observations may be described in terms of a
�nite-dimensional parameter. In this section we use I as the set of values for an
index variable, which corresponds to a unique mapping of the elements of M.
Thus, the predictive distributions for the alternative models are described by

pi(x) = p(xjMi) =

Z
pi(xj�i)pi(�i)d�i; i 2 I (1)

Notice, that each element in I constitutes according to our beliefs a possible
predictive model for the data. In order to proceed coherently in the Bayesian
framework we then have to build an overall belief model for x by assigning
weights to the di¤erent alternatives, so that our subjective beliefs are repre-
sented probabilistically. The overall model takes the form

p(x) =
X
i2I

P (Mi)p(xjMi) (2)

where P (Mi) are the weights of the individual belief models such that
P

i2I P (Mi) =
1. In the literature there has been a considerable amount of discussion about
the interpretation of the weights P (Mi). On one hand, they may be consid-
ered as a priori probabilities that the corresponding models are �true�. On the
other hand, they can simply be regarded as means of representing the degree of
dominance (or perhaps functions of odds) of a subjective belief over another.
We �rst investigate the case where the only action to be taken is a choice

of a model Mi; i 2 I. Let ! be an unknown of interest, such that the utility
function for our decision problem has the form u(Mi; !). Using the decision
theoretic approach we know that the optimal decision is to choose the model
M� which maximizes the expected utility according to

�u(M�jx) = sup
i2I

�u(Mijx) (3)

where

�u(Mijx) =
Z
u(Mi; !)p(!jx)d!; i 2 I (4)

where p(!jx) represents the beliefs about ! having observed x. These have
further the form

p(!jx) =
X
i2I

pi(!jMi;x)P (Mijx) (5)

where

P (Mijx) =
P (Mi)p(xjMi)P
i2I P (Mi)p(xjMi)

(6)

is the posterior predictive weight or subjective posterior probability of the in-
dividual model being the �true�model. Notice that there is certainly nothing
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wrong in the latter de�nition if one restricts the interpretation to an observer�s
narrow (or perhaps naive) perception of the world.
If we let the above unknown of interest ! be simply the �true�model among

those in I, the decision problem is concretized as follows. A natural utility
function takes the form (0-1 loss)

u(Mi; !) =

�
1 if ! =Mi

0 if ! 6=Mi
(7)

It then follows that

pi(!jMi;x) =

�
1 if ! =Mi

0 if ! 6=Mi
(8)

and

p(!jx) =
�
P (Mijx); if ! =Mi

0; if ! 6=Mi
(9)

The expected utility of the choice Mi is

�u(Mijx) =

Z
u(Mi; !)p(!jx)d! (10)

= P (Mijx)

As might be intuitively expected we see that the optimal decision in this case
is to choose the model with the highest posterior probability. It can be shown
that, under the �computer game scenario�mentioned earlier, P (Mijx)! 1 for
the �true�model as n!1, meaning that the Bayes procedure is consistent.
In the case where only two models (say M1 and M2) are available for com-

parison, a measure of plausibility is the Bayes factor speci�ed below.

De�nition 1 Bayes factor. Given two models M1 and M2 for data x, the
Bayes factor in favor of M1 (and against M2) is given as the posterior to prior
odds ratio

B12 =
p(xjM1)

p(xjM2)
=
P (M1jx)
P (M2jx)

=
P (M1)

P (M2)
(11)

Intuitively, the Bayes factor says whether the data have increased (B12 > 1) or
decreased (B12 < 1) the odds on M1. Clearly, if the prior weights are uniform,
the Bayes factor is simply a ratio of the posterior weights. A thorough discussion
about the properties and guidelines for interpretation of the Bayes factor can be
found in Kass and Raftery (1995).

The above described approach as such is not the most sensible solution in all
situations, especially if we are aiming to produce some kind of statements about
observables using our models (e.g. prediction of future values). An optimal
strategy under such circumstances does not even necessitate a choice of a model,
which can be formalized using a di¤erent utility structure.
Let a be an answer relating to the unknown of interest !. The answer can for

instance be a value of a future observation or an estimate of parameter common
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to all models in I. With the utility function u(a; !), the expected utility of an
answer a� becomes

�u(a�jx) =
Z
u(a�; !)p(!jx)d! (12)

and this is indeed the optimal answer if

�u(a�jx) = sup
a
�u(ajx) (13)

Note that p(!jx) still has the posterior weighted mixture form. This type of
a strategy is often called Bayesian model averaging, and its sensibility for the
problem at hand is dependent on whether the chosen utility function re�ects
the relevant issues (which ultimately need to be considered by the modeler).
An important question yet to be stated is that: What happens if all models

in I are poor descriptions of x? It should be clear from the above that we cannot
use the formalism to directly detect this. Notice that the crucial question in
such a situation is not the comparison of models, but the criticism of a model
without suggesting anything to replace it. If one had, for instance, a more general
model in mind than those included in I, the problem would be easily resolved
by taking that model also into consideration and proceeding as before. Indeed,
in many situations a generalization of the �nite-dimensional parametric models
p(xj�) could be obtained by considering models involving directly a probability
measure on the space of distribution functions (these are typically called non-
parametric models in the Bayesian framework), as was discussed in the previous
section. Including such models to the class I and then performing the formal
analysis, can be seen as one promising strategy to check formally the plausibility
of the various parametric assumptions.

3 Asymptotic behavior of statistical model com-
parison: Part I

Here we investigate some central asymptotic concepts of frequentist and Bayesian
statistical analysis in the context of model comparison.
The classical Neyman-Pearson theory for testing models requires pairwise

processing of the elements of a model classM, and therefore, let us concentrate
for a moment on the situation where M contains only two models: M1 and
M2. A generally accepted device for comparing models�appropriateness for a
particular data set x is the likelihood ratio

p(xjM1)

p(xjM2)
; (14)

which is identical to the Bayes factor (Kass and Raftery, 1995) in the case of
completely speci�ed models (no parameters are estimated). Typically, however,
models contain unknown parameters and the frequentist comparison procedure
di¤ers from the Bayes factor.
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Using Neyman-Pearson theory we formulate the null hypothesis H1 : the
observations have arisen from the model M1, and the alternative H2 : the ob-
servations have arisen from the model M2. To be able to formulate a regular
likelihood ratio test (see e.g. Cox and Hinkley, 1974) of H1 against H2, assume
the �nested hypothesis� case where M2 is the full model and M1 a reduced
version of M2 where some parameter(s) have been given �xed values. Let d(�i)
generally denote the number of unrestricted parameters in Mi; i = 1; 2.
The likelihood ratio test is formulated as: reject H1 if

�n =
L(�̂1jx)
L(�̂2jx)

< c < 1 (15)

where c is a priori speci�ed threshold and �̂i is the maximum likelihood esti-
mate of �i; i = 1; 2. We notice the di¤erence with the Bayes factor where the
uncertainty about parameters is accounted for by integrating them out with
respect to the prior distribution, instead of maximization.
Under general regularity conditions on L(�ijx) (e.g. d(�i) remains �xed as

n ! 1), �2 log �n is approximately chi-square distributed with d(�2) � d(�1)
degrees of freedom (denoted by �2d(�2)�d(�1)). As illustrated in Gelfand and Dey
(1994), an inconsistency of this procedure is evident, since

lim
n!1

fP (choose M2jM1 true)g = lim
n!1

fP (�n < cjM1 true)g (16)

= lim
n!1

fP (�2 log �n > �2 log c)g

= P (�2d(�2)�d(�1) > �2 log c) > 0

Thereby, even with unlimited amounts of data the procedure is not guaranteed
to pick out the correct model. A more severe problem associated with the
above testing scenario is that it provides no general yardstick for comparison
of a range of di¤erent models. For instance, when the evidence against each
of the models in M is measured by the p-value according to (15) where the
unrestricted model M2 is the most general model in M, it follows that the
p-value is a decreasing function of the number of restrictions imposed on �.
Thereby, the largest possible model is by de�nition associated with a p-value
equal to unity, while the remaining models attain p-values smaller than or equal
to unity depending on their degree of �t to data with respect to the full model.
Generally, this framework makes especially the comparison of non-nested models
di¢ cult.
Hypothesis tests are designed to detect any discrepancies between a model

and reality. Since models are virtually never exact descriptions of reality, we
know by de�nition that for large enough samples the discrepancies will be de-
tected by (15) and lead to a rejection of M1 even if it is a good model for the
purpose at hand. The point is that rejection of M1 does not necessarily mean
that M2 o¤ers a better description of the data, and hence, one should compare
the two models instead of simply looking at the discrepancy between M1 and
the data. In this respect, a fundamental �aw of the hypothesis test scenario is
that it cannot provide directly evidence for a model but only against it.
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Even some of the advocates of the frequentist approach to statistical infer-
ence have clearly pointed out that such framework is unfortunate in the context
of model selection and suggested that other approaches should preferably be
followed (e.g. see Lindsey, 1996).

4 Asymptotic behavior of statistical model com-
parison: Part II

Consider the parametric case with a model labeled by � 2 � for an exchangeable
sequence of observations. We then have

p(�jx) _ p(�)

nY
i=1

p(xij�) (17)

_ expflog p(�) + log p(xj�)g

Let �̂0 and �̂n denote the respective maxima of the two logarithmic terms in (17),
i.e. the prior mode and the maximum likelihood estimate, respectively. These
are determined by setting r log p(�) = 0 and r log p(xj�) = 0, respectively. By
expanding both logarithmic terms about their respective maxima we obtain

log p(�) = log p(�̂0)�
1

2
(� � �̂0)0H(�̂0)(� � �̂0) +R0 (18)

log p(xj�) = log p(xj�̂n)�
1

2
(� � �̂n)0H(�̂n)(� � �̂n) +Rn

where R0; Rn denote remainder terms and

H(�̂0) =

�
�@

2 log p(�)

@�i@�j

�����
�=�̂0

(19)

H(�̂n) =

�
�@

2 log p(xj�)
@�i@�j

�����
�=�̂n

are the Hessian matrices. Under regularity conditions which ensure that the
remainder terms R0; Rn are small for large n, we get the result

p(�jx) _ exp
�
�1
2
(� � �̂0)0H(�̂0)(� � �̂0)�

1

2
(� � �̂n)0H(�̂n)(� � �̂n)

�
(20)

The Hessian matrix H(�̂n) measures the local curvature of the log-likelihood
function at it maximum �̂n and is typically called the observed information ma-
trix. Further, by ignoring the prior terms (which are swamped by the data as n
grows) we see that the posterior can be approximated by the multivariate nor-
mal distribution with mean �̂n and covariance matrix �̂n = H(�̂n)�1. However,
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asymptotics also reveal that

lim
n!1

�
1

n

�
�@

2 log p(xj�)
@�i@�j

��
= lim

n!1

(
1

n

nX
l=1

�
�@

2 log p(xlj�)
@�i@�j

�)
(21)

=

Z
p(xj�)

�
�@

2 log p(xj�)
@�i@�j

�
dx

so that H(�̂n) ! nI(�̂n), where I(�) is (again) the Fisher information matrix,
de�ned as

(I(�))ij =

Z
p(xj�)

�
�@

2 log p(xj�)
@�i@�j

�
dx (22)

The above results can be utilized in the model comparison framework through
an approximation to the key quantity p(x) =

R
p(xj�)p(�)d�, the marginal like-

lihood. An important assumption concerning the validity of the asymptotic
approximation is that the dimension d(�) of � remains �xed as n!1. Using
the properties of the multivariate normal distribution (i.e. the form of its nor-
malizing constant), an approximation to the marginal likelihood can be written
as

p(x) =

Z
p(xj�)p(�)d� (23)

� (2�)d(�̂n)j�̂nj1=2p(�̂0)p(xj�̂n)

Using this approximation the posterior weights of the di¤erent models in M
can be calculated. Under the assumption that the prior is continuous in �
and bounded at �̂0, an approximate Bayes solution to the model comparison
problem under the 0-1 loss function is to choose the model which maximizes

log p(xj�̂n) +
1

2
log j�̂nj+ d(�̂n) log(2�) (24)

This result is valid under a rather general setting (see Kim, 1998) and de�nes
a consistent model selection procedure. However, a yet simpler and still con-
sistent model comparison criterion is obtained, when terms not depending on
n are ignored, and an asymptotic expansion of log j�̂nj is used. Under certain
conditions (see Kim, 1998) the log-determinant can be written as

log j�̂nj = �2 log

0@d(�̂n)Y
l=1

sl(n)

1A+R0 (25)

where the remainder is bounded in n and the terms sl(n) are the rates of con-
vergence of the maximum likelihood estimate �̂l(n) to the true value of the (l)th
component �l of �. Under regular

p
n-convergence we are led to the criterion

log p(xj�̂n)� log

0@d(�̂n)Y
l=1

n1=2

1A = log p(xj�̂n)�
d(�̂n)

2
log n (26)
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This is precisely the widely-known criterion derived by Schwarz (1978), often
called BIC or SBC (sometimes the above is multiplied by two). In the two model
case, we can more concretely write

logB12 � log p(xj�̂1(n))� log p(xj�̂2(n))�
d(�̂1(n))� d(�̂2(n))

2
log n (27)

Although (26) is a rather rough approximation, it can generally be considered
as guideline for model comparison in a situation where the prior information is
vague and di¢ cult to specify precisely. Notice that also from (26) one can derive
approximate posterior weights for the elements of M. Generally, the criterion
(26) has in various simulation studies shown to be conservative, such that for
small n it may underestimate the true model dimension.
Since the introduction of the model comparison criterion AIC by Akaike

(1974), a considerable interest has been attained in the statistical literature to
criteria of the penalized maximum likelihood type

log p(xj�̂n)� c � d(�̂n) log g(n) (28)

where di¤erent choices of c and g(n) lead to di¤erent suggested criteria. For
instance, c = 1 and g(n) = e1 give rise to the AIC, c = 1 and g(n) = log n
to the criterion of Hannan and Quinn (1979), and c = 1=2 and g(n) = n to
(26). It can be shown that for problems where d(�̂n) is not increasing with n,
any choice of g(n) equal to a constant, will lead to an inconsistent criterion. In
particular, AIC not consistent, and it typically leads to a gross overestimation
of the true dimension of � when n is large.
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