
1 Subjective probability modeling and its rela-
tion to the likelihood

Handling uncertainty is undoubtedly a major part of all human activities, both
scienti�c and non-scienti�c ones. We have to make decisions and inference in
situations where direct knowledge is not available to us. Particularly important
for science, is the logical process of decision making in situations of uncertainty,
where we face the problem of choosing an action from a set of di¤erent al-
ternatives, each involving uncertain consequences. Our concern is to behave
rationally, thus avoiding an �illogical� choice in such a scenario, which would
typically involve worse expected consequences than other choices. It will be
assumed that in presence of complete information we can always choose the
best alternative, hence we are not dealing primarily here with the sophisticated
mathematical or computational machinery that is often needed for the delivery
of the solution. An example of this type of decision making under certainty is the
following traveling salesman problem (TSP): Given a �nite number of �cities�
along with the cost of travel between each pair of them, �nd the cheapest way
of visiting all the cities and returning to your starting point.
Subjective probability, concerns the judgements of a given person, conve-

niently called You, about uncertain events or propositions. We start our journey
to the �eld of subjective probability by considering a simple problem from the
frequentist point of view (which You are likely to be familiar with).

Example 1 Thumbtack tossing. Consider an old-fashioned thumbtack, which
is of metal with a round curved head, rather than with a colored plastic one. The
thumbtack will be tossed onto a soft surface (in order not damage it), while we
keep track of whether it comes to stop with the point up or point down. In the
absence of any information to distinguish the tosses or to suggest that tosses
occurring close together in time are any more or less likely to be similar to or
di¤erent from each other than those that are far apart in time, it seems rea-
sonable to treat the di¤erent tosses symmetrically. We might also believe that
although we might only toss the thumbtack a few times, if were to toss it many
more times, the same judgement of symmetry would continue to apply to the fu-
ture tosses. Under such conditions, it is traditional to model the outcomes of the
individual tosses as independent and identically distributed (IID) Bernoulli ran-
dom variables with Xi = 1 meaning that toss i is point up and Xi = 0 meaning
that toss i is point down. In the frequentist framework, one invents a parame-
ter, say �, which is assumed to be a �xed value in [0; 1] not yet known to us (see
the remark below). Then one says that the Xi are IID with P (Xi = 1) = �. The
so called likelihood function of a sequence of n tosses will under this assumption
take the form

P (X1 = x1; :::; Xn = xn) =
nY
i=1

�xi(1� �)1�xi (1)

which is the joint distribution of the observed values xi conditional on �. The
value of � maximizing this function is the relative frequency of observing tosses
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point up, that is
Pn

i=1 xi=n. Given an observed sequence, our best guess of the
probability of observing point up in the next toss, equals the relative frequency as
well. You immediately see what happens under scarce information, for instance,
when the only two recorded tosses we have available are point down.
Given the earlier description of our simple thumbtack tossing problem, the

assumptions made in the above frequentist approach (IID and �xed unknown �)
may appear unnecessary stringent. In fact, this is remarkably true. To derive a
subjective probabilistic description of the behavior of the tosses, we need a mini-
mal assumption of symmetry, called exchangeability. Recall that we considered
the information to be obtained from any one toss in exactly the same way we
would consider the information from any other toss. Similarly, we would treat
the information to be obtained from any two tosses in exactly the same way we
would consider the information from any other two tosses, regardless of where
they appear in our sequence of tosses. The same argument continues to apply
to any subsequence of tosses. These remarks of symmetry informally de�ne the
concept of exchangeability, which lies in the heart of the subjective probability
description. The concept and its generalization will be investigated formally
later on. As You might already have guessed, subjective probability description
of the current situation, will require Your probabilistic description about the un-
certainty related to the tosses (this will considered after the introduction of some
formal concepts).

Remark 2 Meaning of the parameter in the thumbtack tossing prob-
lem. A great deal of controversy in statistics arises out of the question of the
meaning of such parameters as in the above example. De Finetti (1974) argues
persuasively that one need not assume the existence of such things. Sometimes
they are just assumed to be unde�ned properties of the experimental setup which
magically make the outcomes behave according to our probability models. Some-
times they are de�ned in terms of the sequence of observations themselves (such
as limits of relative frequencies). The last one is particularly troublesome because
the sequence of observations does not yet exist and hence the limit of relative
frequency cannot be a �xed value yet.

From the above example we see the close connection between frequency prob-
ability and so called classical inference, because the latter requires the data to
be repeatable. An unbiased estimator, for instance, is de�ned to have expected
value equal to the parameter being estimated. Such statement is conditional on
the parameter taking a �xed but unknown value, while the data are imagined
as repeatable. Typically, experimental data is thought to be repeatable, thus
having frequency probability distribution, while parameters governing the data
behavior in such framework are considered unique and unrepeatable.

2 Predictive modeling

In the framework presented below probabilities are always personal degrees of
belief, in that they are a numerical representation of an analyst�s or decision
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maker�s personal uncertainty relation between events. Moreover, probabilities
are always conditional on the information available. It makes thus no sense to
qualify the word probability with adjectives such as �objective�, �correct� or
�unconditional�. The term random quantity is here used to signify a numeri-
cal entity whose value is uncertain. The term probability measure (P ) will be
used in a rather loose manner (to avoid technicalities) to describe the way in
which probability is �distributed� over the possible values of a random quan-
tity. For a real-valued random quantity X, this may e.g. be given in terms of
the distribution function F (x) = P (X � x). When the probability distribu-
tion concentrates on a countable set of values, X is called a discrete random
quantity, and we have the probability mass function p(x) = P (X = x). For con-
tinuous random quantities we have the regular density function representation
P (X 2 B) =

R
B
p(x)dx. Thus, to keep notation simple, p(�) is used both for

mass and density functions.
As clearly stated in de Finetti (1974), to be able to use probability calculus

as a normative tool for the description of the characteristics of interest for ran-
dom quantities, one has to express individual degrees of belief (i.e. subjective
opinions), expressed as probabilities about the uncertainty involved in the con-
sidered situation. That is, phrases such as �I don�t know�, �I can�t�or �I don�t
want to�cannot be accepted as answers to the question concerning what one�s
beliefs are. The failure to express these probabilities will lead us outside the
Bayesian paradigm (in the stringent sense). However, in the literature Bayesian
paradigm is often understood more widely, including even cases where the sub-
jective probabilities are replaced by formally derived functions (this aspect will
be considered more in depth later).
Using generic notation we assume that the subjective degrees of belief cor-

respond to the speci�cation of the joint distribution P (x1; :::; xn) of a set of
random quantities x = x1; :::; xn, represented by the joint density (or mass)
function p(x1; :::; xn). This speci�cation automatically leads, for 1 � m < n, to
the marginal joint density

p(x1; :::; xm) =

Z
p(x1; :::; xn)dxm+1 : : : dxn (2)

and the joint density of y = xm+1; :::; xn (thought as yet unobserved), condi-
tional on having observed the particular values of z = x1; :::; xm, is

p(xm+1; :::; xnjx1; :::; xm) =
p(x1; :::; xn)

p(x1; :::; xm)
(3)

A predictive probability model for random quantities can be de�ned according
to the following.

De�nition 3 Predictive probability model. A predictive model for a se-
quence of random quantities x1; x2; ::: is a probability measure P, which speci�es
the joint belief distribution for any subset of x1; x2; ::: .
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Consider now a sequence x1; x2; ::: under the assumption of a predictive
model stating that for any n the joint density is given by

p(x1; :::; xn) =
nY
i=1

p(xi) (4)

This model thereby states that the uncertain quantities are independent. If we
now consider the conditional density for 1 � m < n; it takes the form

p(xm+1; :::; xnjx1; :::; xm) = p(xm+1; :::; xn) (5)

meaning that we cannot learn from experience within this sequence of interest.
In other words, past data provide us with no additional information about the
possible outcomes of future observations in the sequence.
A predictive model specifying such independence is clearly inappropriate in

contexts where we believe that the successive accumulation of data will pro-
vide increasing information about future events. Thus, in most cases a useful
predictive model, i.e. the structure of p(x1; :::; xm), ought to encapsulate some
form of dependence among the individual random quantities. In general, there
are a vast number of possible subjective assumptions about the form of such
dependencies, and here we are able to consider some commonly used canonical
forms.
Suppose that, in thinking about P (x1; :::; xn), the joint degree of belief dis-

tribution for a sequence of random quantities x1; :::; xm, an individual makes the
judgement that the subscripts or the labels identifying the individual random
quantities, are �uninformative�. The uninformativeness is in the sense that the
same marginal distribution would be speci�ed for all possible singletons, pairs,
triples etc., regardless of which labels were happened to be picked from the orig-
inal sequence (recall the thumbtack tossing in Example 1). This leads us to the
concept of exchangeability, formally de�ned below.

De�nition 4 Exchangeability. Random quantities x1; :::; xn are said to be
(�nitely) exchangeable under a probability measure P when the corresponding
joint belief distribution satis�es

p(x1; :::; xn) = p(x�(1); :::; x�(n))

for an arbitrary permutation � of the labels f1; :::; ng. Further, an in�nite se-
quence x1; x2; ::: is said to be in�nitely exchangeable when every �nite subse-
quence is �nitely exchangeable.

For example, suppose that x1; :::; x100 are exchangeable. It follows from the
above de�nition that they all have the same marginal distribution. Also, (x1; x2)
has the same joint distribution as (x99; x1), and (x5; x2; x48) has the same joint
distribution as (x31; x32; x33); and so on. The notion of exchangeability involves
a judgement of complete symmetry among all the observables x1; :::; xn under
consideration. Clearly, in many situations this might be too restrictive an as-
sumption, even though a partial judgement of symmetry is present, which should
be evident from the following example.
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Example 5 Tossing with di¤ erent thumbtacks. Consider a scenario which
is similar to that of Example 1, except that we make ni, i = 1; :::; k, tosses with
thumbtacks of di¤erent material. For instance, the �rst thumbtack is made
of metal, the second of plastic, the third of kevlar and so on. We might be
involuntary to describe a sequence of observations under this scenario using the
complete symmetry assumption leading to exchangeability. On the other hand,
as before it should be reasonable to treat tosses made with the same thumbtack
as exchangeable.

We now formally treat the subjective modeling problem of an in�nitely ex-
changeable sequence of 0�1 (binary) random quantities (say, thumbtack tosses)
x1; x2; ::: with xi = 0 or xi = 1, for all i = 1; 2; ::: .

Theorem 6 Representation theorem for binary random quantities. If
x1; x2; ::: is an in�nitely exchangeable sequence of binary random quantities with
probability measure P, there exists a distribution function Q such that the joint
mass function p(x1; :::; xn) for x1; :::; xn can be written as

p(x1; :::; xn) =

Z 1

0

nY
i=1

�xi(1� �)1�xidQ(�) (6)

where
Q(�) = lim

n!1
P [yn=n � �]

and yn =
Pn

i=1 xi; � = limn!1 yn=n.

The interpretation of this representation theorem is of profound signi�cance
from the point of view of subjectivist modeling philosophy. It is as if :

� The xi are judged to be independent, Bernoulli random quantities condi-
tional on a random quantity �.

� � is itself assigned a probability distribution Q(�).

� By the strong law of large numbers � = limn!1 yn=n, so that Q may be
interpreted as �beliefs about the limiting frequency of 1�s�.

What the above says is that, under the assumption of exchangeability, we
may act as if, conditional on �, the quantities x1; :::; xn are a random sample
from a Bernoulli distribution with parameter � which corresponds to the joint
sampling distribution (the likelihood)

p(x1; :::; xnj�) =
nY
i=1

p(xij�) =
nY
i=1

�xi(1� �)1�xi (7)

where the parameter � is given a prior distribution Q(�). Notice that under this
interpretation the prior states beliefs about what we would anticipate observing
as the limiting relative frequency. Further, the assumption of exchangeability
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in the current framework considerably limits via Theorem 6 our alternatives in
the speci�cation of a predictive probability model. Any choice must be of the
form given by (6), where we have the freedom of choosing the subjective beliefs
about �. By ranging over all possible choices of the prior Q(�), we build all
possible predictive probability models for the current framework.
We have thus established a justi�cation for the conventional model building

procedure of combining a likelihood and a prior. The likelihood is de�ned in
terms of an assumption of conditional independence of the observations given
a parameter. This, and its associated prior distribution, acquire an operational
interpretation in terms of a limiting average of observables (here limiting fre-
quency).
In many applications involving binary random quantities, we may be more

interested in a summary random quantity, such as yn = x1 + � � � + xn, than in
the individual sequences of xi�s. The representation p(yn) follows easily from
(6), since

p(yn) =

�
n

yn

�
p(x1; :::; xn);

for all x1; :::; xn such that x1 + � � �+ xn = yn. We thus get

p(yn) =

Z 1

0

�
n

yn

�
�yn(1� �)n�yndQ(�)

This provides a justi�cation, when expressing beliefs about yn, for acting as if
we have a binomial likelihood with a prior distribution Q(�) for the binomial
parameter �.
The Bayesian learning process in this simple situation is compactly repre-

sented by the following corollary.

Corollary 7 Corollary to the Representation theorem for binary ran-
dom quantities. If x1; x2; ::: is an in�nitely exchangeable sequence of binary
random quantities with probability measure P, the conditional probability func-
tion p(xm+1; :::; xnjx1; :::; xm) for xm+1; :::; xn given x1; :::; xm, has the formZ 1

0

nY
i=m+1

�xi(1� �)1�xidQ(�jx1; :::; xm) (8)

where

dQ(�jx1; :::; xm) =
Qm
i=1 �

xi(1� �)1�xidQ(�)R 1
0

Qm
i=1 �

xi(1� �)1�xidQ(�)
and

Q(�) = lim
n!1

P [yn=n � �]

and yn =
Pn

i=1 xi; � = limn!1 yn=n.

We thus see that the basic form of representation of beliefs does not change.
All that has happened, expressed in conventional terminology, is that the prior
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distributionQ(�) for � has been revised into the posterior distribution dQ(�jx1; :::; xm).
The conditional probability function p(xm+1; :::; xnjx1; :::; xm) is called the pos-
terior predictive probability function. This provides the basis for deriving the
conditional predictive distribution of any other random quantity de�ned in terms
of the future observations.
In a more general setup the representation theorem states for an in�nitely ex-

changeable sequence of real valued quantities x1; x2; ::: with probability measure
P , that there exists a probability measure Q over the space Q of all distribution
functions for the observable quantity, such that the joint distribution function
of x1; :::; xn can be written as

P (x1; :::; xn) =

Z
Q

nY
i=1

F (xi)dQ(F ) (9)

where
Q(F ) = lim

n!1
P (Fn) (10)

where Fn is the empirical distribution function de�ned by x1; :::; xn. Thus,
we may act as if we have independent observations x1; :::; xn conditional on
F , which is an unknown distribution function playing the role of an in�nite-
dimensional parameter. The belief distribution Q has in this case the interpre-
tation of what we believe the empirical distribution function Fn would look like
for a �large�number of observations. This result can be analogously extended
to a �nite dimensional Euclidean space for vector valued random quantities.
If, in particular, our beliefs are such that the distribution function F can be

de�ned in terms of a �nite-dimensional parameter �, the joint density of our
observations can be written as

p(x1; :::; xn) =

Z
�

nY
i=1

p(xij�)dQ(�) (11)

where p(�j�) is the density function corresponding to the unknown parameter
� 2 �. By taking a step yet further, and letting p(�) correspond to the density
representation of Q(�), we obtain

p(x1; :::; xn) =

Z nY
i=1

p(xij�)p(�)d� (12)

From the above we may deduce that

p(xm+1; :::; xnjx1; :::; xm) =

R Qn
i=1 p(xij�)p(�)d�R Qm
i=1 p(xij�)p(�)d�

(13)

=

R Qn
i=m+1 p(xij�)

Qm
i=1 p(xij�)p(�)d�R Qm

i=1 p(xij�)p(�)d�

where Qm
i=1 p(xij�)p(�)R Qm
i=1 p(xij�)p(�)d�

= p(�jx1; :::; xm) (14)
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so that

p(xm+1; :::; xnjx1; :::; xm) =
Z nY

i=m+1

p(xij�)p(�jx1; :::; xm)d� (15)

The relation in (14) is just Bayes�theorem, which expresses the posterior density
for � in the context of parametric model for x1; :::; xm given �. By using the
more compact notations about the �future�y and the �current� observations
z, we see that

p(x) =

Z
p(xj�)p(�)d� (16)

p(yjz) =

Z
p(yj�)p(�jz)d�

p(�jz) =
p(zj�)p(�)
p(z)

In particular the role of Bayes�theorem is identi�ed as a coherent learning step
about the unobservables when we pass from p(z) to p(yjz).
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