Exercises

E1. Let $\theta \in(0,1)$ be a probability relating to a Bernoulli random variable. The logit-transformation is defined as $\phi=g(\theta)=\log \left(\frac{\theta}{1-\theta}\right)$, i.e. this is a re-parametrization in terms of \log-odds for an event. Check how the new parameter depends on the probability θ, e.g. by plotting a graph of their relation. Write down the log-likelihood function for n conditionally independent $X_{i} \sim \operatorname{Bernoulli}(\theta), i=1, \ldots, n$, using the logit parametrization and find out the maximum likelihood estimate of ϕ. Show that ϕ arises as the natural parameter when the probability mass function of a $\operatorname{Bernoulli}(\theta)$ random variable X is presented in the exponential family form. The logit-transformation is widely used to fit models explaining dependence of a success probability on some explanatory variables (logistic regression).

E2. You observe one real number x and wish to compare standard normal distribution to the standard Cauchy distribution. The density function of the latter equals

$$
p(x)=\frac{1}{\pi\left(1+x^{2}\right)},-\infty<x<\infty
$$

How does the Bayes factor behave as a function of x ?
E3. The first six pages of a draft version of the course material contained the following number of typos

$$
3,4,2,1,2,3 .
$$

What would you conclude about the predictive distribution of the number of typos on page seven, e.g. by using a Poisson model with a Gamma prior?

E4. Let $X_{1}, X_{2}, \ldots, X_{n}$ be conditionally independent random variables, such that $X_{i} \sim N\left(\mu, \sigma^{2}\right), i=1, \ldots, n$, where σ^{2} is a known quantity, that is we assume that the random variables are normally distributed with an unknown mean and known variance. Show that $X_{1},\left(X_{3}+X_{n-1}\right) / 2$ and $(1 / n) \sum_{i=1}^{n} X_{i}$ are all unbiased estimators of μ. Compare their mean squared errors (MSE). Remember that MSE of an estimator $g(T)$ of θ is defined as the expectation $E(g(T)-\theta)^{2}$, where $g(T)$ is some function of the data $X_{1}, X_{2}, \ldots, X_{n}$.

E5. In some statistical problems involving a Binomial likelihood, the number of trials is an unknown parameter. Let Y_{1}, \ldots, Y_{m} be conditionally independent random variables, such that $Y_{i} \sim \operatorname{Binomial}(n, \theta), i=1, \ldots, n$, where θ is known and n is unknown. Write down the log-likelihood function and investigate its behavior numerically for the data $y_{1}=16, y_{2}=18, y_{3}=22, y_{4}=25, y_{1}=27$, when θ is assumed to equal $1 / 3$. Investigate also the log-likelihood function behavior when both n and θ are unknown for these data.

