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Examples of basic Bayesian inference procedures

We have earlier considered representation and revision of beliefs as the basis of
empirical learning.

Here we shall investigate some simple examples.
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Example 1 Single observation from a normal distribution. Let x have a
normal distribution N(�; v) with unknown mean � and known variance v, and
let the prior distribution for � be N(m;w). Let the precision parameters be
�0 = 1=v and �1 = 1=w. Then,

p(xj�; v) =
1p
2�v

exp(� 1

2v
(x� �)2) (1)

p(�jm;w) =
1p
2�w

exp(� 1

2w
(� �m)2):

By multiplying together the prior and the likelihood, and expanding the squares,
we get the exponential

exp
�
�1
2
�0(x

2 � 2x� + �2)� 1
2
�1(�

2 � 2�m+m2)
�
: (2)
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The exponential can be further written as

�1
2
�0x

2 + �0x� �
1

2
�0�

2 � 1
2
�1�

2 + �1�m� 1
2
�1m

2 (3)

= �1
2
(�0 + �1)�

2 + �(�0x+ �1m)�
1

2
(�0x

2 + �1m
2)

= �1
2
(�0 + �1)

0@� � 2��0x+ �1m

�0 + �1
+

 
�0x+ �1m

�0 + �1

!21A+ c

where c does not depend on �. Since the constants cancel in

p(�jx) = p(xj�)p(�)R
p(xj�)p(�)d�

; (4)

the posterior is recognized as the density function of the normal distribution

N

 
�0x+ �1m

�0 + �1
; �0 + �1

!
; (5)
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where the mean is a weighted average of prior mean m and observation x.

3



'

&

$

%

Therefore the posterior mean (as well as mode and median) is a compromise
between the prior information and the sample information.

We see also that each source of information is weighted proportionately to its
precision.

Consequently, the posterior mean will lie closer to whichever source has the
stronger information.

If, for instance, prior information is very weak, expressed by �1 being close to
zero, then the posterior mean will be close to x.

The posterior precision is the sum of the prior and data precisions, re�ecting
the combination of information from the two sources.

The posterior information is stronger than either source of information alone.
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Example 2 Several observations from a normal distribution. In the pre-
vious example we had only a single observation available for making inference
about the mean of the distribution. However, typically, we would utilize several
observations. Let x1; :::; xn be conditionally independent observations from a
normal distribution N(�; 1) with unknown mean � and known variance 1. Sup-
pose the prior distribution for � is again N(m;w), i.e. the precision parameter
is � = 1=w. The likelihood function can be written as

p(xj�) = (2�)�n=2 exp

0@�n
2
(� � �x)2 � 1

2

nX
i=1

(xi � �x)2

1A ; (6)

where �x = n�1
Pn
i=1 xi is the sample mean. Multiplying the likelihood and

prior together and simplifying yields the following expression for the numerator
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of the posterior formula,

exp

 
�n+ �

2

�
� � �m+ n�x

�+ n

�2!
; (7)

thus, the posterior isN(�m+n�x�+n ; 1=(�+n)). We see that the posterior variance
decreases (i.e. the precision increases) as the sample size increases, and similarly
that the dependence on the prior mean decreases as well.

6



'

&

$

%

Example 3 Predictive distribution of a future observation. Let us continue
analysis of the previous example by considering the predictive density of a future
observation xn+1

p(xn+1jx) (8)

=
Z
p(xn+1j�)p(�jx)d� (9)

=
Z

1p
2�
exp

�
�1
2
(x� �)2

�p
n+ �p
2�

exp

 
�n+ �

2

�
� � �m+ n�x

�+ n

�2!
d�

=

p
n+ �q

2�(n+ �+ 1)
exp

 
� n+ �

2(n+ �+ 1)

�
y � �m+ n�x

�+ n

�2!
;

which is the density of the normal distribution N(�m+n�x�+n ; 1 + 1=(� + n)).
Thus, we see that the excess uncertainty in the predictive distribution, which is
due to the �estimation� of the unknown parameter �, vanishes as the sample
size tends to in�nity. This procedure is in perfect harmony with intuition ;)
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about how information is gathered and utilized.
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Example 4 Observations from a Poisson distribution. Let x have the Pois-
son distribution with unknown mean �;

p(xj�) = �x

x!
e��; (10)

and suppose that the prior density has the Gamma(�; �) form

p(�) =
�����1

�(�)
e���; � > 0: (11)

by combining the prior and the likelihood we enter into the Gamma(�+1; �+x)
posterior. When the likelihood comprises n observations x1; :::; xn

p(xj�) = �
Pn
i=1 xiQn

i=1 xi!
e�n�;

use of the same prior as above, gives us the Gamma(� + n; � +
Pn
i=1 xi)

posterior. The mean of this distribution equals � +
Pn
i=1 xi=(�+ n) and the
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variance � +
Pn
i=1 xi=(�+ n)2.
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Example 5 Bayesian estimation of Shannon entropy. We now consider
a considerably more complicated inference situation than encountered in the
previous examples, taken from Yuan and Kesavan (1997). Recall from the
previous chapter the concept of the entropy for a discrete random quantity x
taking values conveniently labeled by a �nite set of integers f1; :::; sg associated
with a probability distribution p =(p1; :::; ps) satisfying pi > 0; i = 1; :::; s,
and

Ps
i=1 pi = 1. The entropy is de�ned as

h = �
sX
i=1

pi log pi: (12)

Here we use the natural logarithm in the de�nition of entropy, however, other
bases are also often used in the literature. If the true distribution is known, then
the calculation of the entropy is straightforward. In practice, however, we often
have to estimate h from data under no or vague knowledge about the underlying
probability distribution p. Suppose we have frequency data generated from a
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multinomial distribution p, leading to the likelihood� n

n1 � � �ns

�
p
n1
1 � � � pnss (13)

where n =
Ps
i=1 ni and

�
n

n1���ns

�
is the multinomial coe¢ cient. We recall

from earlier that the maximum likelihood estimate p̂i of pi is provided by the
observed relative frequency ni=n; i = 1; :::; s. Apparently, this procedure leads
to the entropy estimate

hn = �
sX
i=1

p̂i log p̂i: (14)

While the above estimate may be deemed satisfactory for large n relative to
s, its properties could be improved upon when the converse is true. From
the de�nition of entropy we see that the values of x having zero observed
frequencies make no contribution to the estimate hn.
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Assume we have a prior guess about the unknown distribution p, say � =

(�1; :::; �s), with
Ps
i=1 �i = 1; �i > 0. We could now use the Dirichlet

D(��1; :::; ��s) distribution to describe our prior beliefs, where the parameter
� is a measure of our con�dence about our guess. A larger value of � implies
more concentration of the prior around (�1; :::; �s). If we do not have any prior
knowledge, a uniform prior D(1; :::; 1) could be used.

Under the above Dirichlet prior we get an explicit expression for the posterior
mean of the entropy, which equals

hB = �
sX
i=1

��i + ni
�+ n

[ (��i + ni + 1)�  (�+ n+ 1)] ; (15)

where  (t) = �0(t)=�(t) is the digamma function. When � is large compared
with n, hB is mainly determined by the prior, and consequently, the contribution
of the data is small. With the increase of n, the behavior of hB is as that of
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hn. When the prior is uniform we get the expression

hB0 = �
sX
i=1

1 + ni
s+ n

[ (ni + 2)�  (s+ n+ 1)] : (16)
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