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1 Review

1.1 The Poisson process

The Poisson process is one of the most widely used models of a continuous
time stochastic process. Along with Brownian motion, it can be consid-
ered as a fundamental example of such processes. The Poisson process is a
counting process Nt, t ≥ 0, (a non-decreasing integer-valued process which
counts the number of ‘points’ or ‘events’ up to time t) indexed by the time
parameter t, which will be positive real-valued in most of our examples.

We say that a counting process is a Poisson process of rate (or intensity) λ
if the following hold:

• [1] The random variable Nt+s −Nt is independent of {Nu, 0 ≤ u ≤ t},
for all s, t ≥ 0.

• [2] The random variable Nt+s − Nt has a Poisson distribution with
mean λs, i.e.,

P(Nt+s −Nt = k) =
(λs)k

k!
e−λs, k = 0, 1, 2, . . . (1)

Property 2 above can be equivalently restated in either of the following two
ways:
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• [2a] For all t ≥ 0,

P(Nt+h −Nt = 1) = λh+ o(h)

P(Nt+h −Nt = 0) = 1− λh+ o(h)

P(Nt+h −Nt ≥ 2) = o(h),

where, for a function f , we write f(h) = o(h) if f(h)/h→ 0 as h→ 0.
Loosely speaking, we say a function is o(h) if it tends to zero faster
than h.

• [2b] Let T1, T2, T3, . . . be the increment times of the counting process
(Nt, t ≥ 0), i.e.,

Tn = inf{t ≥ 0 : Nt ≥ n}.

The process (Nt, t ≥ 0) is a Poisson process of rate λ if the random
variables Tn+1 − Tn are independent and identically distributed (iid)
with the Exp(λ) distribution, i.e., P(Tn+1 − Tn ≥ t) = exp(−λt) for
all t ≥ 0.

Recall that a random variable X has the Exp(λ) distribution if P(X > t) =
e−λt. Now, by Bayes’ theorem,

P(X > t+s|X > t) =
P(X > t+ s ∩X > t)

P(X > t)
=

exp(−λ(t+ s))

exp(−λt)
= P(X > s).

If we think of X as the time to occurence of an event, then knowing that the
event hasn’t occured up to time t tells us nothing about how much longer
we need to wait for it to occur; the distribution of the residual time until it
occurs doesn’t depend on how long we have already waited. This is referred
to as the memoryless property of the exponential distribution.

We shall establish the equivalence of [2], [2a] and [2b] by showing that [2]⇒
[2a]⇒ [2b]⇒ [2]. The first implication is obvious by letting s tend to zero.

For the second implication, it suffices to show that T1 has an Exp(λ) distri-
bution since, by [1], T1, T2 − T1, T3 − T2, . . . are iid. Let F denote the cdf
of T1. Observe that

P(T1 ∈ (t, t+ h]) = P(Nt = 0, Nt+h −Nt ≥ 1)

= P(Nt = 0)P(Nt+h −Nt ≥ 1|Nu = 0, 0 ≤ u ≤ t)
= P(Nt = 0)P(Nt+h −Nt ≥ 1)

= (1− λh+ o(h))P(T1 > t),
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where the third equality follows from [1] and the last equality from [2a]. The
above equation implies that

P(T1 ∈ (t, t+ h]|T1 > t) = 1− λh+ o(h),

i.e., that 1 − F (t + h) = (1 − λh + o(h))(1 − F (t)). Letting h tend to zero,
we obtain F ′(t) = −λ(1− F (t)). Solving this differential equation with the
boundary condition F (0) = 0, we get F (t) = 1− exp(−λt), which is the cdf
of an Exp(λ) random variable. Thus, we have shown that T1 has an Exp(λ)
distribution, as required.

To show the last implication, we show (1) by induction on k. Without loss
of generality, let t = 0. For k = 0, (1) reads P(Ns = 0) = e−λs. Since
the event Ns = 0 is the same as T1 > s, this follows from the exponential
distribution of T1. Next, suppose that (1) holds for all j ≤ k. Let f denote
the density function of T1, the time to the first increment. By conditioning
on the time to the first increment, we have

P(Ns = k + 1) =

∫ s

0
f(u)P(Ns = k + 1|Nu = 1)du

=

∫ s

0
f(u)P(Ns−u = k)du

=

∫ s

0
λe−λu

(λ(s− u))k

k!
e−λ(s−u)du

= e−λs
(λs)k+1

(k + 1)!
.

The second equality follows from [1], and the third from [2b] and the induc-
tion hypothesis. Thus, we have shown that [2b] implies [2], completing the
proof of the equivalence of [2], [2a] and [2b].

Remarks.

1. An implication of properties [1] and [2] above is that, if X1 and X2 are
independent Poisson random variables with mean λ1 and λ2 respec-
tively, then X1 +X2 is a Poisson random variable with mean λ1 + λ2.
To see this, consider a Poisson process of unit rate, take X1 to be
Nλ1 and X2 to be Nλ1+λ2 − Nλ1 . You may want to verify, by direct
calculation, that Poisson random variables do indeed have this prop-
erty. (The simplest way to perform this calculation is using generating
functions.)
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2. The definition of a Poisson process can be extended to t ∈ R instead
of just t ≥ 0; to do so, simply use properties [1] and [2]. In this case,
for t < 0, we let −Nt denote the number of points of the Poisson
process in [−t, 0]. With this definition, Nt is still a non-decreasing,
integer-valued process.

3. The Poisson process we defined is ’homogeneous’ in that the intensity
parameter λ is a constant. This can be generalised to allow λ to be a
(measurable) function of t, in which case the Poisson process is said
to be inhomogeneous. Property [1] still holds, while property [2] is
modified to say that the number of points in an interval (s, t] is a
Poisson random variable with mean

∫ t
s λ(x)dx.

4. Finally, the definition of a Poisson process can also be extended to
“spatial point processes”. In this general setting, property [2] gener-
alises to say that if A is a measurable subset of Rd, then the number
of points of the Poisson process in A is a Poisson random variable
with mean λ (the intensity) times the Lebesgue measure (area or vol-
ume) of A. Property 1 generalises to say that if A1, A2, . . . are disjoint
subsets of Rd, then the number of points in these sets are mutually
independent random variables.

We now state two key properties of Poisson processes that we shall make
use of repeatedly throughout the course.

Lemma 1 Suppose N1
t , t ≥ 0 and N2

t , t ≥ 0 are independent Poisson pro-
cesses, of rate λ1 and λ2 respectively. Define Nt = N1

t + N2
t to be the

superposition of the two Poisson processes (i.e., it counts points of both).
Then, Nt, t ≥ 0 is a Poisson process of rate λ = λ1 + λ2.

Lemma 2 Suppose Nt, t ≥ 0 is a Poisson process of rate λ, and that
X1, X2, X3, . . . is a sequence of iid Bernoulli(p) random variables (i.e., P(Xi =
1) = p = 1− P(Xi = 0), i = 1, 2, 3, . . .) independent of Nt, t ≥ 0. Define

N1
t =

Nt∑
k=0

Xk, N2
t = Nt −N1

t .

Then, N1
t , t ≥ 0 and N2

t , t ≥ 0 are independent Poisson processes, of rate
λp and λ(1− p) respectively.
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The proof of these lemmas isn’t difficult, so we shall only sketch an outline.
For the proof of Lemma 1, observe that Nt inherits property [1] of a Poisson
process from N1

t and N2
t and their independence, while property [2] holds

because the sum of two independent Poisson random variables is Poisson,
as noted above. For Lemma 2, property [1] follows from the fact that Nt is
a Poisson process, and that the Xi are an iid sequence independent of the
Poisson process Nt. The independence of N1

t and N2
t also follows from these

facts. Property 2 is most easily checked in the form of [2a]; for the process
N1
t to have an increment in the interval [s, s+ h], the process Nt must also

have an increment, and the corresponding Bernoulli random variable should
take the value 1. (In fact, we should consider the possibility of Nt having
multiple increments during [s, s + h], and exactly one of the corresponding
Bernoulli random variables taking value 1, but the probability of two or
more increments is o(h), which is negligible.)

1.2 Continuous time Markov chains

Consider a continuous time stochastic process Xt, t ≥ 0 on a discrete (finite
or countable) state space S. The process is called a continuous time Markov
chain (CTMC) or a Markov process on this state space if

P(Xt+s = y|{Xu, u ≤ s}) = P(Xt+s = u|Xs), (2)

for all states y and all s, t ≥ 0. In words, this says that the future of the
process Xt, t ≥ 0 is conditionally independent of the past given the present.

If the above probability only depends on t and Xs but not on s, then we say
that the Markov chain is time homogeneous. In that case, we can represent
the conditional probabilities in (2) in the form of a matrix P (t) with entries

Pxy(t) = P(Xt+s = y|X(s) = x) = P(Xt = y|X0 = x).

The matrices {P (t), t ≥ 0} satisfy the following properties:

P (0) = I, P (t+ s) = P (t)P (s). (3)

(Why?)

It should be clear that the Poisson process introduced in the last section
has the above independence property, and hence is a Markov process. It
turns out that the Poisson process already possesses many of the features of
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general continuous-time Markov processes, as we shall see below, and hence
serves as a template for them.

Let us return to such a process Xt, t ≥ 0on a countable state space S, with
transition probability matrices {P (t), t ≥ 0}. We saw earlier that these
matrices obeyed equation (3). Thus,

P (t+ δ)− P (t) = P (t)(P (δ)− I) = (P (δ)− I)P (t).

This suggests that, if 1
δ (P (δ)−I) converges to some matrix Q as δ decreases

to zero, then
P ′(t) = QP (t) = P (t)Q. (4)

This is correct if the Markov process is finite-state, as will generally be the
case in this course; in this case, the matrices P (t) are finite-dimensional. For
countable state chains, the first equality still holds but the second may not.
The two equalities are known, respectively, as the Chapman-Kolmogorov
backward and forward equations. The equations have the solution

P (t) = eQt = I +Qt+
(Qt)2

2!
+ . . .

What does the matrix Q look like? Since P (δ) and I both have all their row
sums equal to 1, it follows that the row sums of P (δ) − I, and hence of Q
must all be zero. Morever, all off-diagonal terms in P (δ) are non-negative
and those in I are zero, so Q must have non-negative off-diagonal terms.
Thus, in general, we must have

qij ≥ 0 ∀ i 6= j; qii = −
∑
j 6=i

qij ,

where qij denotes the ijth term of Q. Define qi = −qii, so qi ≥ 0. In fact,
qi > 0 unless i is an absorbing state. (Why?)

The matrix Q is called the generator (or infinitesimal generator) of the
Markov chain. The evolution of a Markov chain can be described in terms
of its Q matrix as follows. Suppose the Markov chain is currently in state
i. Then it remains in state i for a random time which is exponentially
distributed with parameter qi. In particular, knowing how long the Markov
chain has been in this state gives us no information about how much longer
it will do so (memoryless property of the exponential distribution). At the
end of this time, the chain jumps to one of the other states; the probability
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of jumping to state j is given by qij/
∑

k 6=i qik = qij/qi, and is independent of
how long the Markov chain spent in this state, and of everything else in the
past. The Poisson process is a special case where the exponential random
time spent in a state has the same mean for all states, and the only possible
jump from a state n ∈ N ∪ {0} is to state n+ 1.

If we observed a CTMC only at its jump times, we’d get a discrete time
Markov chain (DTMC) on the same state space, with transition probabilities
pij = qij/qi. Conversely, we can think of a CTMC as a DTMC which spends
random, exponentially distributed times (instead of unit time) in each state
before transiting to another state.

If we know the state of a Markov process at time 0 and its infinitesimal
generator, then we can work out its probability distribution at any future
time. Specifically, if we let µ(t) denote the probability distribution on S at
time t, then, by the discussion above,

µ(t) = µ(0)P (t) = µ(0)eQt.

We shall be interested in particular in the long-term behaviour of the Markov
process, i.e., in the behaviour of µ(t) as t tends to infinite.

In the following, we shall restrict our attention to finite state Markov pro-
cesses as we shall only be dealing with these in this course, and it avoids
certain technicalities that can arise in countable state chains.

Classification of states

Consider a Markov process {Xt, t ≥ 0} on a finite state space S. A state
x ∈ S is said to be recurrent if, starting from this state, the process returns
to it with probability 1, i.e.,

P(∃t ≥ 1 : Xt = x|X0 = x) = 1.

It is called transient if this return probability is strictly smaller than 1.

State j is said to be accessible from state i if it is possible to go from i
to j, i.e., Pij(t) > 0 for some t ≥ 0. In particular, each state is accessible
from itself since Pii(0) = 1. States i and j are said to communicate if i is
accessible from j and j from i. Note that this defines an equivalence relation.
(A relation R is said to be an equivalence relation if it is (a) symmetric: xRy
implies yRx for all x and y, (b) reflexive: xRx for all x, and (c) transitive:
xRy and yRz together imply xRz for all x, y and z.) Hence, it partitions
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the state space into equivalence classes, which are called communicating
classes. (Sets A1, A2, . . . are said to form a partition of A if ∪∞i=1Ai = A and
Ai∩Aj = ∅ for all i 6= j.) Note that states in the same communicating class
have to all be transient or all be recurrent.

A finite state Markov process eventually has to leave the set of transient
states and end up in one or other recurrent communicating class. A Markov
process is said to be irreducible it it consists of a single communicating class.
In that case, for a finite-state process, that class has to be recurrent.

Invariant distributions

Suppose we observe a finite-state Markov chain over a long period of time.
What can we say about its behaviour? If it starts in a transient state, it
will spend some time in a transient communicating class before entering one
or another recurrent class, where it will remain from then on. Thus, as far
as long-term behaviour is concerned, it is enough to look at the recurrent
classes. Moreover, each such communicating class can be studied in isolation
since the Markov chain never leaves such a class upon entering it. Finally,
the Markov chain within a single class is irreducible.

Hence, we restrict our attention in what follows to irreducible Markov chains.
Consider such a chain on a finite state space S, and let Q denote its generator
matrix. We have:

Theorem 1 There is a unique probability distribution π on the state space
S such that πQ = 0, where 0 denotes the all-zero vector.

It is easy to see that Q has the all-1 vector as a right eigenvector correspond-
ing to the eigenvalue 0, since all its row sums are zero. The above theorem
says that the corresponding left eigenvector is also non-negative, and that
there is only such eigenvector corresponding to an eigenvalue of 0 if the gen-
erator corresponds to an irreducible chain. The assumption of irreducibility
is necessary for uniqueness. We won’t give a proof of this theorem, but
one way is to use the Perron-Frobenius theorem for non-negative matrices
(applied to the stochastic matrix P (t) = eQt for an arbitrary t > 0).

The probability distribution π solving πQ = 0 is called the invariant distri-
bution or stationary distribution of the Markov chain. The reason is that, if
the chain is started in this distribution, then it remains in this distribution
forever. This is because the probability distribution µ(t) at any time t is
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given by

µ(t) = µ(0)eQt = π
(
I +Qt+

Q2t2

2!
+ . . .

)
= π.

The invariant distribution describes the long-run behaviour of the Markov
chain in the following sense.

Theorem 2 (Ergodic theorem for Markov chains) If {Xt, t ≥ 0} is a
Markov process on the state space S with unique invariant distribution π,
then

lim
t→∞

1

t

∫ t

0
1(X(t) = j)dt = πj ,

irrespective of the initial condition. The convergence holds almost surely.

The above theorem holds for both finite and countable state spaces, assum-
ing the invariant distribution exists (which it may fail to do in the countable
case, even if the Markov chain is irreducible). The theorem says that πj spec-
ifies the fraction of time that the Markov chain spends in state j in the long
run.

1.3 Graphs and networks

We shall use the terms graph and network interchangeably to refer to a
finite set of nodes or vertices, some of which may be connected by edges
or arcs. We write G = (V,E) to denote a graph G with vertex set V and
edge set E. An edge is a pair of vertices. Thus, E is a subset of V × V ,
the Cartesian product of the vertex set with itself. An edge (i, j), i, j ∈ V
is called undirected if the order of the vertices doesn’t matter, i.e., if (i, j)
and (j, i) are the same, and is called directed otherwise. If (i, j) ∈ E is a
directed edge, we say it is directed from i to j. A graph is called directed
or undirected if all its edges are directed or undirected respectively. In this
course, all graphs will be either one or the other. If (i, j) ∈ E, then j is called
a neighbour of i. If the graph is undirected, the degree of i is defined as the
number of neighbours it has. If it is directed, we use the terms in-degree
and out-degree, with the obvious meanings (number of edges directed to i
and from i respectively).

A path is a sequence v1, v2, . . . , vk of nodes such that (vi, vi+1) ∈ E or
(vi+1, vi) ∈ E for each i between 1 and k− 1. If v1 = vk, the path is called a
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cycle. The path or cycle is called directed if the underlying graph is directed
and (vi, vi+1) ∈ E for each i between 1 and k − 1. We use the term simple
path and simple cycle to mean that the path (cycle) does not contain a
proper subset which is itself a cycle.

A graph which contains no cycles is called acyclic. A graph is said to be
connected if, for any two nodes u, v ∈ V , there is a path between u and v
(i.e., ∃n and v1, v2, . . . , vn such that v1 = u, vn = v and (vi, vi+1) ∈ E or
(vi+1, vi) ∈ E for all i between 1 and n − 1). A connected, acylic graph is
called a tree. Observe that if a tree has k nodes, it must have exactly k− 1
edges. (Show this by induction on k.) An undirected graph G = (V,E) is
called a complete graph if E = V × V , i.e., there is an edge between every
pair of nodes.

Let G = (V,E) be a graph and let V ′ ⊆ V . The subgraph induced by the
nodes in V ′ is defined as the graph G′ = (V ′, E′) where E′ = {(i, j) ∈ E :
i, j ∈ V ′}. In other words, it is the graph consisting of the nodes in V ′ as
well as those edge in the original graph which connect these nodes. If a
subgraph is a complete graph (on its node set), then it is called a clique. A
set of nodes V ′ ⊆ V is called an independent set if, for any two nodes in V ′,
the edge between them is absent (whereas in a clique, for any two nodes,
the edge between them is present).

1.4 Probability Inequalities

What can we say about the probability of a random variable taking values
in a certain set if we only know its moments, for instance, or its generating
function? It turns out that they give us some bounds on the probability of
the random variable taking values in certain specific sets. We now look at
some examples.

Let X be a non-negative random variable with finite mean EX. Then, for
all c > 0, we have

Markov’s inequality: P(X ≥ c) ≤ EX
c
.

The proof is straightforward. Suppose X has a density, and denote it by f .
Then

EX =

∫ ∞
0

xf(x)dx ≥
∫ ∞
c

xf(x)dx ≥
∫ ∞
c

cf(x)dx = cP(X ≥ c).
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Re-arranging this gives us Markov’s inequality. (Why does X have to be
non-negative?)

Next, let X be a random-variable, not necessarily non-negative, with finite
mean EX and finite variance Var(X). Then, for all c > 0, we have

Chebyshev’s inequality: P(|X − EX| ≥ c) ≤ Var(X)

c2
.

The proof is an easy consequence of Markov’s inequality. Note that the
event |X − EX| ≥ c is the same as the event (X − EX)2 ≥ c2, and apply
Markov’s inequality to the non-negative random variable Y = (X − EX)2.
Note that EY = Var(X).

Finally, let X be a random-variable, not necessarily non-negative, and sup-
pose that its moment-generating function E[eθX ] is finite for all θ. Then, for
all c ∈ R, we have

Chernoff’s inequality: P(X ≥ c) ≤ inf
θ>0

e−θcE[eθX ].

The proof follows by noting that the event X ≥ c is identical to the event
eθX ≥ eθc for all θ > 0 (the inequality gets reversed for θ < 0), applying
Markov’s inequality to the non-negative random variable Y = eθX , and
taking the best bound over all possible θ.

2 Rumour spreading on the complete graph

Consider the following model of rumour spreading on a complete graph.
There are n nodes, a single one of which initially knows the rumour. There
are n independent unit rate Poisson processes, one associated with each
node. At a time when there is a jump of the Poisson process Ni(t) associated
with node i, this node becomes active, and chooses another node j uniformly
at random with which to communicate. If node i knows the rumour at this
time and node j doesn’t, then i informs j of the rumour; otherwise there is
no change. This is called the “push” model as information is pushed from i
to j. It should be obvious what is meant by the pull and push-pull models.
Start time at 0 and let T denote the first time that all nodes know the
rumour. Then T is a random time and we can ask about its expected value
or its distribution, and how this depends on n, the size of the graph.

The model description above takes a node-centred perspective. But it is
equivalent to a description where the clocks sit on the edges rather than
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the nodes. Let’s consider a node i and ask what the probability is that it
chooses to communicate with node j during the time interval ([t, t + dt).
For this to happen, node i should become active during this time interval,
and it should choose node j to communicate with. The first of these events
corresponds to Ni(t + dt) − Ni(t) = 1 (the Poisson process at node i has
an increment during this time period), which has probability 1 · dt (since
the Poisson process has unit rate) independent of the past at all nodes. The
second event has probability 1

n−1 , independent of everything else, since node
i chooses another node to communicate with uniformly at random. Hence,
the probability that the time period [t, t + dt) sees a communication event
from i to j is 1

n−1dt, independent of the past. In other words, the model
can be recast as follows: there are n(n−1) independent Poisson processes of
rate 1/(n− 1), one associated with each directed edge (i, j) in the complete
graph on n nodes. When there is a jump in the Poisson process on edge
(i, j), the rumour is pushed from node i to node j if node i is informed at
this time. Otherwise, nothing happens.

Remarks

1. Note that, in both models above, the Poisson processes on all nodes
and edges start at time zero. Would it not be more natural to start
the process at node i only when this node first learns of the rumour?
Indeed it would, but it makes no difference. Can you see why?

2. A discrete-time version of the model was studied by Boris Pittel (On
spreading a rumor, SIAM J. Appl. Math., 1987, pp. 213–223). In
this version, time proceeds in rounds. In each round, each informed
node picks another node uniformly at random and pushes the rumour
to it. The models are very similar. We have chosen to work with the
continuous time model because it is somewhat easier to analyse.

We now want to analyse the model described above, and find out how long it
takes for all nodes to learn the rumour. Observe from the verbal description
that, if we let St denote the set of informed nodes at time t, then St, t ≥ 0
evolves as a continuous time Markov chain. The state space of this Markov
chain is the set of all subsets of the node set {1, 2, . . . , n}, which is of size 2n.
This is a rather large state space. In fact, from the symmetry in the problem,
we can see that it is enough to keep track of the number of informed nodes,
rather than of exactly which nodes are informed. Even for this reduced state
descriptor, the evolution is Markovian. This reduces the size of the state
space to n, and makes the problem more tractable.
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Let Ti denote the first time that exactly i nodes are informed, so that T1 = 0
and Tn = 1. Then, Ti+1 − Ti is the random additional time it takes for the
(i + 1)th node to be informed, after the ith node has been. Let STi denote
the set of nodes that are informed at time Ti. There are i nodes in this set,
and n− i nodes in its complement, so that there are i(n− i) edges between
STi and ScTi . There are independent Poisson processes of rate 1/(n − 1)
associated with each of these edges, according to which some node in STi
contacts some node in ScTi and informs it of the rumour. (Communications
taking place on edges with STi or ScTi have no effect.)

Now, using the fact that the superposition of independent Poisson processes
is a Poisson process with the sum of their rates, we conclude that the time
to inform a new node is the time to the first jump in a Poisson process of
rate i(n − i)/(n − 1). In other words, Ti+1 − Ti is an Exp( i(n−i)n−1 ) random
variable, independent of Ti, and of the past of the rumour spreading process.
Hence, recalling the formulas for the mean and variance of an exponential
random variable, we have,

E[Ti+1 − Ti] =
n− 1

i(n− i)
, Var(Ti+1 − Ti) =

( n− 1

i(n− i)

)2
. (5)

Using a partial fraction expansion, we can rewrite the above as

E[Ti+1 − Ti] =
n− 1

n

(1

i
+

1

n− i

)
,

Var(Ti+1 − Ti) =
(n− 1

n

)2( 1

i2
+

1

(n− i)2
+

2

n

(1

i
+

1

n− i
))
. (6)

Next, we note that the time until all nodes know the rumour is given by
Tn =

∑n−1
i=1 (Ti+1 − Ti) since T1 = 0. Hence, by (6) and the linearity of

expectation, we have

E[Tn] =
n−1∑
i=1

E[Ti+1 − Ti] =
n− 1

n

n−1∑
i=1

(1

i
+

1

n− i

)
= 2

n− 1

n

n−1∑
i=1

1

i
∼ 2 log n. (7)

Notation: For two sequences fn and gn, we write fn ∼ gn (read fn is
asymptotically equivalent to gn) to mean that limn→∞ fn/gn = 1.
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To show that
∑n

i=1
1
i ∼ log n, note that the sum is bounded below by∫ n

0
1

x+1dx and above by 1 +
∫ n
1

1
xdx.

Thus, we have shown that the mean time needed for the rumour to spread
to all nodes in a population of size n scales as 2 log n. We shall show that, in
fact, the random time concentrates closely around this value. In order to do
so, we first need to compute its variance. Recall that the random variables
Ti+1 − Ti for successive i are mutually independent. Hence, Var(Tn) =∑n−1

i=1 Var(Ti+1 − Ti), and we obtain using (6) that

Var(Tn) =
(n− 1

n

)2 n−1∑
i=1

( 1

i2
+

1

(n− i)2
+

2

n

(1

i
+

1

n− i
))
∼ π2

3
. (8)

We have used the fact that
∑∞

i=1 1/i2 = π2/6 to obtain the last equivalence.

Now, let’s apply Chebyshev’s inequality to the random variable Tn, the time
for the rumour to reach all nodes. Using the estimates for the mean and
variance of Tn in (7) and (8), we find that the statement

P(|Tn − 2 log n| ≥ c) ≤ π2

3c2

is approximately true for large n. More precisely, for every ε > 0, it holds
for all n sufficiently large that

P(|Tn − 2 log n| ≥ c) ≤ (1 + ε)π2

3c2
,

which tends to zero as c tends to infinity. In words, what this says is that
the random variable Tn grows roughly like 2 log n. The fluctuation around
this mean value does not grow unboundedly with n, but remains bounded.

3 Rumour spreading on general graphs

In the last section, we saw that the time it takes for a rumour to spread on
the complete graph (for the specific model considered) grows logarithmically
in the population size. What can we say more generally? How does the shape
of a graph affect the spreading time?

Let G = (V,E) be a directed graph on n nodes, and let P be an n × n
stochastic matrix with the property that pij = 0 if (i, j) /∈ E (i.e., the
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non-zero entries in P correspond to edges in the graph G). We consider
the following rumour spreading model. There are n independent unit rate
Poisson processes, one associated with each node. At an increment time
of the Poisson process at node i, this node becomes active and picks a
neighbour j with probability pij , the ijth element of the matrix P . If i
knows the rumour at this time and j doesn’t, then i pushes the rumour to
j. Otherwise, nothing happens. Note that if G is the complete graph, and
P is the matrix with zero diagonal elements and all off-diagonal elements
equal to 1/(n− 1), then we recover the model of the previous section.

Again, we start with a single node s (called the source node) which is initially
informed of the rumour, and are interested in the random time T until all
nodes become informed. The dynamics can be modelled as a Markov process
if we take the state to be the set of informed nodes at that time. It is
not enough to keep track of the number of informed nodes, as the future
dynamics depend on where in the network these nodes are located. Likewise,
the distribution of the random variable T may well depend on which node
we start with as the source of the rumour. As mentioned in the last section,
the state space becomes very large (of size 2n) if we have to use the subset
of infected nodes as the state variable. This makes it a lot harder to obtain
estimates of the mean and the variance that are sharp. What we shall do in
this section instead is derive an upper bound on the rumour spreading time
T based on some simple properties of the graph G and the matrix P that
determines the choice of communication contacts.

As in the previous section, it is helpful to go from a node-centric to an edge-
centric description. Pick a directed edge (i, j) ∈ E. What is the probability
that i attempts to push the rumour to j in some infinitesimal time interval
dt? Two things need to happen for this: node i has to be activated, and
it has to choose j as its contact. The first event has probability 1 · dt (as
the Poisson process at node i is of unit rate), the second has probability pij ,
and they are independent of each other and of the past of all processes. In
other words, the process of communications along the directed edge (i, j) is
a Poisson process of rate pij , and communications along different edges are
mutually independent. We shall make use of the following definition in our
analysis of the rumour spreading time.

Definition. The conductance of the non-negative matrix P is defined as

Φ(P ) = min
S⊂V,S 6=∅

∑
i∈S,j∈Sc pij
1
n |S| · |Sc|

. (9)
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The minimum is taken over all non-empty proper subsets S of the vertex
set V , Sc denotes the complement of S, and |S| denotes the size of the set
S.

As in the analysis for the complete graph, let Tk denote the first time that
exactly k nodes are informed of the rumour. Thus, T1 = 0 and Tn is the
time that all nodes are informed. Let Sk denote the (random) subset of
nodes that are informed at time Tk. What can we say about Tk+1−Tk? For
each node i ∈ Sk and j ∈ Sck, the events of i contacting j occur according to
a Poisson process of rate pij . Moreover, these are mutually independent for
distinct ordered pairs of nodes. Thus, using the fact that the superposition
of independent Poisson processes is a Poisson process with the sum of their
rates, we see that the total rate at which an informed node contacts an
uninformed node and informs it of the rumour is given by

∑
i∈Sk,j∈Sc

k
pij .

(Contacts between nodes within Sk, or within Sck, result in no change of
the system state, so we can ignore them.) Hence, conditional on Sk, the
time Tk+1 − Tk until an additional node becomes informed is exponentially
distributed with parameter

∑
i∈Sk,j∈Sc

k
pij . Consequently,

E[Tk+1 − Tk|Sk] =
1∑

i∈Sk,j∈Sc
k
pij
. (10)

In order to compute E[Tn] exactly, we would have to consider every possible
sequence of intermediate sets along which the system can go from just the
source being informed to all nodes being informed, computing the probabil-
ity of the sequence and using the conditional expectation estimate above.
This is impractical for most large networks. Instead, we shall use the con-
ductance to bound the conditional expectation of Tk+1 − Tk. Observe from
(9) and (10) that

E[Tk+1 − Tk|Sk] ≤
1

Φ(P )

n

k(n− k)
=

1

Φ(P )

(1

k
+

1

n− k

)
. (11)

We have used the fact that |Sk| = k by definition, and so |Sck| = n − k.
Note that while the exact conditional expectation of Tk+1 − Tk depends on
the actual set Sk of informed nodes at time Tk, the bound does not; it only
depends on k, the number of informed nodes at this time.

We can use this bound to easily obtain a bound on the expected time to
inform all nodes, following the same steps as in the analysis of the complete
graph. First, write Tn =

∑n−1
i=1 Ti+1−Ti since T1 = 0. Next, use the linearity
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of expectation, and the bound in (11), to get

E[Tn] ≤
n−1∑
k=1

1

Φ(P )

(1

k
+

1

n− k

)
=

2

Φ(P )

n−1∑
k=1

1

k
∼ 2 log n

Φ(P )
. (12)

The above expression is a bound on the expected value of the random vari-
able Tn. Can we also something about the distribution of the random vari-
able. Using Markov’s inequality, we obtain

P
(
Tn >

c log n

Φ(P )

)
≤ Φ(P )E[Tn]

c log n
≤ 2

c
,

which tends to zero as c tends to infinity. In other words, the random
variable Tn is of order log n/Φ(P ) in probability.

Example. Let G = (V,E) be the complete graph, and suppose pij = 1/(n−1)
for every ordered pair (i, j), i 6= j. This is exactly the model of rumour
spreading on a complete graph that we first analysed. What does the bound
tell us in this case? To answer that, we need to compute the conductance
Φ(P ) for this example. Fix a subset S of the node set consisting of k nodes,
where k is not equal to zero or n. For each node in this set, there are n− k
edges to nodes in Sc. The communication rate on each of these edges is
1/(n− 1). Hence, we get ∑

i∈S,j∈Sc

pij =
k(n− k)

n− 1
,

and so ∑
i∈S,j∈Sc pij
1
n |S| · |Sc|

=
n

n− 1
,

irrespective of the choice of S. Hence, taking the minimum over S gives us
Φ(P ) = n

n−1 . Substituting this in (12), we obtain that E[Tn] is bounded by
a quantity that is asymptotic to 2 log n, which is precisely the same as the
exact analysis gave us. Thus, the bound is tight in this example. In general,
of course, it won’t be tight, but in many examples, it may be good enough
to be useful, and yield at least the right scaling in n of the rumour spreading
time, though not the exact constants.
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4 Consensus on complete graphs: the classical voter
model

Consider a population of n individuals, each of whom has a preference for
one of two political parties, which we shall denote by 0 and 1. They interact
in some way, and change their opinion as a result of the interaction. In
practice, their opinion would also be influenced by external factors, such as
the policies or performance of the parties, but we don’t consider that in our
models. We want to know how the interaction alone influences the evolution
of preferences over time.

There are many possible ways to model interactions. It may be that indi-
viduals change their opinion if some fraction of their friends or family have a
different opinion and influence them. Individuals may differ in how big this
fraction needs to be before they change their mind, and also in the relative
weights they ascribe to the opinions of different people in their social circle.
While it is possible to build models incorporating many of these features,
we shall consider a much simpler model, described below.

We can think of the n individuals as the nodes of a complete graph, Kn.
The nodes are started in an arbitrary initial state X(0) = {Xv(0), v ∈ V },
where Xv(0) ∈ {0, 1} specifies the initial preference of node v. There are n
independent unit rate Poisson processes, one associated with each node. At
every time that there is an increment of the Poisson process associated with
node v, node v becomes active, chooses a node w uniformly at random from
the set of all nodes (including itself), and copies the preference of node w at
that time. Thus, individuals in this model are easily persuaded and show no
resistance to changing their mind, which is obviously unrealistic. However,
it leads to tractable models.

It should be clear from the description above that X(t), t ≥ 0 is a continuous-
time Markov process as, given the state X(t) at time t, both the time to the
next jump, and the state reached after that jump are independent of the
past of the process before time t. Letting ev denote the unit vector with a 1
corresponding to node v and zeros for all other elements, we can write the
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transition rates for this Markov process as follows:

q(x,x + ev) =
1

n
(1− xv)

∑
w∈V

xw,

q(x,x− ev) =
1

n
xv
∑
w∈V

(1− xw).

The 1 − xv term in the first equation says that an increment in the vth

element of x is possible only if this element is 0. In that case, it changes to
1 at rate 1/n, the contact rate between any two nodes, times the number
of nodes which are in state 1, which is given by

∑
w∈V xw. Likewise, the

second equation gives the rate for node v to move from state 1 to state 0.

The state space of the Markov process X(t), t ≥ 0 is {0, 1}V , the set of 0−1
valued vectors indexed by the vertex set. Clearly, the all-0 and all-1 vectors,
which we’ll denote 0 and 1 are absorbing states; no vertex can change state
if the system has reached either of these states. Moreover, all other states
form a single communicating class as it is possible to move from any of them
to any other. Hence, the Markov process eventually hits one of these two
absorbing states, and becomes absorbed. We say that consensus is reached,
either on the value 0 or the value 1, which is adopted by all nodes. The
questions we want to address are:

• How likely are we to reach consensus on, say, the value 1, given the
initial state?

• How long does it take to reach consensus?

These are the questions we shall address in the remainder of this section.

4.1 Hitting probabilities

We begin by observing that the process representation above yields a Markov
chain on 2n states, where n = |V | is the number of nodes. This is unneces-
sarily large. Given the symmetry in the model, it suffices to keep track of
the number of nodes in each state. If we let Y (t) =

∑
v∈V Xv(t) denote the

number of nodes in state 1 at time t, then Y (t), t ≥ 0 is a Markov process on
the much smaller state space {0, 1, 2, . . . , n}. The states 0 and n are absorb-
ing, and our questions above reduce to determining the htting probabilities
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of each of these states, as well as the absorption time. First, note that the
transition rates for the new Markov process Y (t) are given by

q(k, k + 1) =
(n− k)k

n
, q(k, k − 1) =

k(n− k)

n
. (13)

To see this, note that a transition from k to k+1 happens if any of the n−k
nodes in state 0 becomes active (which happens at a total rate of n − k)
and chooses one of the nodes in state 1 to contact (which has probability
k/n). Likewise, the second term corresponds to one of the k nodes in state
1 becoming active and choosing a node in state 0 as its random contact. In
order to compute the hitting probabilities of the two absorbing states 0 and
n, starting from an arbitrary initial state, we shall make use of results from
the theory of martingales, which we now introduce, first in discrete time and
then in continuous time.

Definition A stochastic process Xt, t ∈ N ∪ {0} is called a martingale if
E[Xt+1|Xt, Xt−1, . . . , X0] = Xt for all t.

Note that this is different from the Markov property. It doesn’t say that the
probability distribution of Xt+1 given the past depends only on Xt; it only
says that the mean only depends on Xt. However, it is very restrictive about
the form of this dependence, as it says that the mean has to be equal to Xt.
Intuitively, we think of a martingale as representing one’s fortune in a fair
game of chance. The fortune after the next play (next roll of dice or spin
of the rouletter wheel or whatever) is random, but is equal in expectation
to the current fortune. An example would be a game of dice in which you
win five times your bet (plus your stake) if the die comes up 6, and lose
your stake otherwise. Note that this game would be a martingale whatever
fraction of your wealth you decided to stake each time.

It is clear, by induction, that E[Xt+s|Xt, Xt−1, . . . , X0] = Xt for all s ≥ 1.
Taking t = 0, E[Xs] = E[X0] for all s ≥ 1. In fact, it turns out this
relationship not all holds for all fixed (deterministic) times s, but also for
random times satisfying certain conditions.

Definition A random time T is called a stopping time for a stochastic
process Xt, t ∈ N ∪ {0} if the event T = t is measurable with respect to
{Xs, s ≤ t}.

In less measure-theoretic language, the random T is a stopping time if you
can decide whether T = t just by observing Xs, s ≤ t. In other words, T is
a function of the past and present, not of the future.
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Example. Let Xt be the fortune after t time steps in a game where you bet
1 pound repeatedly on rolls of a die where you get 6 pounds (including your
stake) if the die comes up 6. Suppose your initial fortune X0 is 10 pounds.
Let T1 be the first time that your fortune is either 20 pounds or zero. Let
T2 be the time one time step before your fortune hits zero. Then T1 is a
stopping time, whereas T2 is not. (Both are perfectly well-defined random
variables on the sample space of infinite sequences of outcomes of rolls of
the die.)

Theorem 3 (Optional Stopping Theorem) Let Xt, t ∈ N∪{0} be a bounded
martingale (i.e., there is a finite constant M such that |Xt| ≤ M for all
t ≥ 0), and let T be a stopping time for it. Then E[XT ] = E[X0].

The requirement that the martingale be bounded can be relaxed, but needs
to be replaced with conditions that are more complicated to state, and to
check in applications. It will suffice for us to confine ourselves to the bounded
case.

The definitions and theorem above extend to continuous time martingales.
We won’t restate the theorem, or the definition of a stopping time, which
are identical, but just the definition of a martingale, which extends in the
obvious way.

Definition A continuous-time stochastic process Xt, t ≥ 0 is called a mar-
tingale if E[Xt+s|(Xu, u ≤ t)] = Xt for all s, t ≥ 0.

Let us now go back to the continuous-time Markov process Yt, t ≥ 0 repre-
senting the number of nodes in state 1. We saw in equation (13) that the
rates for going from k to k+1 and k−1 are equal. Hence, it is equally likely
that the first jump from state k is to either of these states, which implies
the following lemma.

Lemma 3 The stochastic process Yt, t ≥ 0 is a martingale.

Proof. Fix t ≥ 0. If Yt = 0 or Yt = n, then Yt remains constants at all
subsequent times, and hence E[Ys|(Yu, u ≤ t)] = Yt for all s ≥ t. Hence, it
only remains to verify this equality if Yt = k for some k ∈ {1, 2, . . . , n− 1}.
We suppose from now that this is the case.

Clearly, Ys is constant and equal to Yt for all s ∈ (t, τ) where τ is the
random time of the first jump after time t. Hence E[Ys|(Yu, u ≤ t)] = Yt for
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all s ∈ (t, τ). Moreover,

E[Yτ |(Yu, u ≤ t)] =
1

2
(Yt + 1) +

1

2
(Yt − 1) = Yt.

Thus, the equality E[Ys|(Yu, u ≤ t)] = Yt holds for all s up to and including
the first jump time after t. By induction on the sequence of jump times, it
holds for all s ≥ t.

This way of proving that Yt is a martingale basically reduces the continuous-
time process to a discrete-time process watched at the jump times. Another
approach is to look at the change over infinitesimal time intervals. Observe
from equation (13) that

E[Yt+dt − Yt|(Yu, u ≤ t)] = (+1) · (n− k)k

n
dt+ (−1) · (n− k)k

n
dt = 0,

since the possible values of Yt+dt − Yt are +1 or −1, and we multiply them
by the corresponding rates and take the average. (Jumps of 2 or more have
probability o(dt), which we ignore.) The fact that the change in condi-
tional expectation is zero over infinitesimal time intervals implies that the
conditional expectation is constant, and hence that Yt is a martingale. �

It is now straighforward to compute the hitting probability of each of the
absorbing states starting from any given initial state k. Let T = inf{t ≥ 0 :
Yt = 0 or n} denote the random time to absorption. Then, T is clearly a
stopping time, and we have by the Optional Stopping Theorem that

E[YT ] = E[Y0] = k.

But
E[YT ] = nP(YT = n) + 0P(YT = 0),

and so

P(YT = n) =
E[YT ]

n
=
k

n
.

This gives us the probability of hitting n before 0 as a function of the initial
state k.

4.2 Hitting times

We shall derive bounds on the time to consensus by establishing a duality
with coalescing random walks. Suppose we want to know whether, on a
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specific sample path of the random process, consensus has been reached by
a given time, τ . We can determine this by following the evolution of the
process, given its initial condition, from time 0 to time τ . Alternatively, we
can do so by following the evolution backwards from τ . Imagine that, at
time τ , each node is occupied by a single particle.

Let τ − T1 denote the last time before τ (first time looking backwards) that
there is a contact between any two nodes. Suppose that, at time τ − T1, a
node denoted v1 copies a node denoted u1. As v1 is involved in no further
communications after time τ − T1, and neither is any other node, it is clear
that the state of v1 at time τ , and consequently the state of all nodes at
time τ , is fully determined by the state of all nodes other than v1 at time
τ − T1. We represent this by saying that the particle at v1 has moved to u1
and coalesced with the particle there at time τ − T1.

As we continue following the process backwards from time τ − T1, there
may be a time τ − T2 at which some node v2 6= v1 copies some other node,
denoted u2. We are not interested in times before τ − T1 at which v1 copies
some other node, because that won’t affect the final state of v1. Again,
we represent this by the particle at v2 moving to u2. If u2 6= v1, then the
moving particle coalesces with the one occupying u2. If u2 = v1, then the
particle at u2 moves to v1 but there is no particle there to coalesce with.

The above is a verbal description of the process, looking backwards in time
from τ , but we would like a probabilistic model. What can we say about
the random time T1, which is the first time looking back from τ that a
contact occured between two nodes? Nodes becomes active at the points of
independent unit rate Poisson processes. It is worth noting that the time
reversal of a Poisson process is also a Poisson process of the same rate.
Hence, looking back from τ , node activation times are again independent
unit rate Poisson processes. When a node v becomes active, it contacts
a node u chosen uniformly at random (again, time reversal doesn’t change
this) and copies its state. In our description, this corresponds to the particle
at v moving to u, and coalescing with the particle already there, if any.
Thus, the process backwards from τ corresponds to particles performing
independent continuous time random walks on the complete graph until
they meet another particle and coalesce. Coalesced particles behave just
like any other particle. We thus arrive at the following probabilistic model
for the process looking back from τ .

Initially, there are n particles, one at each node of the complete graph.
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Particles move independently of each other. Each particle waits for a random
time exponentially distributed with unit mean, then moves to a node chosen
uniformly at random (including itself). If there is a particle at that node, the
two particles coalesce, and henceforth behave as a single particle obeying the
same rules. It is clear from this description that the process can be modelled
as a Markov chain Zt, t ≥ 0 on the state space P(V ), the set of all subsets
of the vertex set. The state at time t denotes the set of nodes occupied by a
particle. The event that consensus has occured by time τ is then equivalent
to the event that the set Zτ of occupied nodes at time τ of the backwards-
time process is a set of nodes which all have the same initial condition in
the forward-time process. Thus, this event depends on the initial condition
in general. We would like to obtain a bound on the consensus time that
doesn’t depend on the initial condition. The only way to ensure that all
nodes in Zτ have the same initial state, irrespective of the initial condition,
is if Zτ is a singleton set, i.e., consists of a single node. This is the case if
all n particles have coalesced into a single particle. We will now analyse the
distribution of the random time for this event to occur.

In a general graph, we would have to keep track of the locations of all
extant particles, but as we are working on the complete graph, all nodes are
identical. Hence, we only need to keep track of the number of particles at
any time t, which we shall denote by Wt. Let Tk denote the first time that
Wt = k. We have Tn = 0 as we start with n particles. We want to estimate
T1, the random time that all particles have coalesced to a single one. Now,
what can we say about Tk−1 − Tk? Each of the k particles alive at time
Tk becomes active according to a unit-rate Poisson process, and moves to
a node chosen uniformly at random from all n nodes (including its current
location). Using the fact that Bernoulli splittings of Poisson processes are
Poisson, we can model this by associating independent Poisson processes of
rate 1/n with each directed edge of a complete directed graph on n nodes.
If the Poisson clock on the directed edge (u, v) goes off, then the particle at
u moves to v and coalesces with the particle there, if any. As we are only
interested in coalescences, it is enough to look at those directed edges which
link occupied nodes. As there are k occupied nodes, there are k(k− 1) such
edges. Each of these has an independent rate 1/n Poisson clock associated
with it. Using the fact that superpositions of independent Poisson processes
are Poisson, the time until the clock on some edge between occupied nodes
rings is given by an Exp(k(k − 1)/n random variable. When this happens,
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two particles coalesce. Hence,

Tk−1 − Tk ∼ Exp
(k(k − 1)

n

)
, E[Tk−1 − Tk] =

n

k(k − 1)
= n

( 1

k − 1
− 1k

)
.

Recalling that Tn = 0, we obtain that

E[T1] =
n∑
k=2

E[Tk−1 − Tk] = n.

As we argued above, the random time T1 is an upper bound on the time to
consensus. Thus, the above result tells us that the mean time to consensus is
bounded above by n, the number of nodes. While we did not derive a lower
bound, this is in fact the correct scaling relationship. A more detailed but
tedious calculation shows that the mean time to consensus, starting from
an initial condition in which a fraction α of nodes are in state 0, is given
by nh(α), where h(α) = −α logα − (1 − α) log(1 − α) denotes the binary
entropy function evaluated at α. Thus, the time to reach consensus on the
complete graph scales linearly in the number of nodes. This is in contrast to
the rumour spreading time, which is much smaller, scaling logarithmically
in the number of nodes.

5 Consensus on general graphs

Let G = (V,E) be a directed graph. Each node v ∈ V can be in one of two
states, 0 or 1. We denote by Xv(t) the state of node v at time t, and by X(t)
the vector, (Xv(t), v ∈ V ). The process by which nodes change their state
is as follows. Associated with each directed edge (v, w) ∈ E is a Poisson
process of rate qvw > 0, at the points of which node v copies the state of
node w. The Poisson processes associated with distinct edges are mutually
independent. It follows from this description that X(t) is a Markov process.

We assume that the graph G is strongly connected, i.e., that there is a
directed path from v to w for every pair of nodes v, w. If there is such
a directed path, then node w can influence node v. Clearly, the all-0 and
all-1 states, which we denote by 0 and 1 respectively, are absorbing. The
assumption says that every node can influence every other node, and hence
that all states other than 0 and 1 form a single communicating class, from
which both these states are accessible. Hence, the Markov chain eventually
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reaches one of these absorbing states, and we want to know the probability
of reaching 0 and 1 starting from an arbitrary initially state.

Note that the assumption of strong connectivity is essential for absorption
in one of these two states to be guaranteed. To see this, we consider a
counterexample. First, consider a graph consisting of 3 nodes: V = {u, v, w}
and E = {(vu), (v, w)}. Consider the initial state, Xu(0) = 0, Xw(0) = 1,
and arbitrary Xv(0). In this graph, both u and w can influence v but
they can’t influence each other and neither can influence the other. Hence,
Xu(t) = 0 for all t ≥ 0, Xw(t) = 1 for all t ≥ 0, while Xv(t) keeps oscillating
between 0 and 1. Hence, there is no absorption in this example. Equally,
if the graph is disconnected, there may be multiple absorbing states; for
example, it is posssible that all nodes in one strongly connected component
converge to the 0 state, while those in another converge to the 1 state.

Let Q be a rate matrix (infinitesimal generator matrix) with off-diagonal
elements qvw as specified above; the diagonal elements are then given by
the requirement that the row sums should all be zero. Since Q is the rate
matrix of a finite state Markov chain on the state space V , it has an invari-
ant distribution π, namely a probability vector on the vertex set V which
solves the global balance equations πQ = 0. Under the assumption that
the graph is strongly connected, the invariant distribution is unique, and
strictly positive (i.e., πv is not zerofor any v ∈ V ). Define M(t) = πX(t),
the product of the row vector π and the column vector X(t). We now claim
the following.

Lemma 4 The stochastic process M(t) is a martingale.

Proof. Observe that

E[M(t+ dt)−M(t)|(X(u), u ≤ t)] =
∑

v∈V :Xv(t)=0

πvP(Xv(t+ dt) = 1|X(t))

−
∑

v∈V :Xv(t)=1

πvP(Xv(t+ dt) = 0|X(t)) + o(dt), (14)

since the possible changes in the state X(t) over an infinitesimal time interval
dt are the change in state of some single node from 0 to 1 or 1 to 0; by the
definition of M(t), a change in state of Xv from 0 to 1 increases M(t) by
πv, while a change from 1 to 0 decreases it by πv. Now, by the description
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of the model,

P(Xv(t+ dt) = 1|X(t)) = (1−Xv(t))
∑

w:(v,w)∈E

qvwXw(t),

P(Xv(t+ dt) = 0|X(t)) = Xv(t)
∑

w:(v,w)∈E

qvw(1−Xw(t));

in each case, we add up the rates qvw of contacting nodes w in the opposite
state to node v. Substituting these transition probabilities in (14), we get

E[M(t+ dt)−M(t)|(X(u), u ≤ t)]
=

∑
v∈V :Xv(t)=0

πv(1−Xv(t))
∑

w:(v,w)∈E

qvwXw(t)

−
∑

v∈V :Xv(t)=1

πvXv(t)
∑

w:(v,w)∈E

qvw(1−Xw(t)) + o(dt).

We can extend both sums on the RHS above to all v ∈ V since the restriction
is effectively imposed by the terms (1 −Xv(t)) and Xv(t) inside the sums.
Moreover, we can also extend the sum over w to all w ∈ V if we define qvw to
be zero whenever (v, w) /∈ E. Dropping the o(dt) term as well for simplicity,
we can rewrite the above in a less notationally cumbersome way as

E[M(t+ dt)−M(t)|(X(u), u ≤ t)] =∑
v,w∈V

πvqvw(1−Xv(t))Xw(t)dt−
∑
v,w∈V

πvqvwXv(t)(1−Xw(t))dt

=
∑
v,w∈V

πvqvw(Xw(t)−Xv(t))dt. (15)

In fact, we should have been able to write down this expression directly.
Changes in state may occur at points of the Poisson processes on the edges
of the graph. These occur at rate qvw on edge (v, w). If nodes v and w
are in the same state, i.e., Xw(t) − Xv(t) = 0, then there is no change. If
Xw(t) −Xv(t) = 1, i.e., node w is in state 1 and node v is in state 0, then
Xv(t) changes from 0 to 1, and Mt increases by πv. Conversely, if Xw(t) = 0
and Xv(t) = 1, then Xv(t) changes from 1 to 0, and M(t) decreases by πv.
Now, ∑

v,w∈V
πvqvwXv(t) =

∑
v∈V

Xv(t)πv
∑
w∈V

qvw = 0,

since the row sums of the Q matrix are 0, whereas∑
v,w∈V

πvqvwXw(t) =
∑
w∈V

Xw(t)
∑
v∈V

πvqvw = 0,
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since π satisfies the global balance equations πQ = 0. Substituting in (15),
we conclude that

E[M(t+ dt)−M(t)|(X(u), u ≤ t)] = 0,

which implies that M(t) is a martingale, as claimed. �

It is now straightforward to compute the hitting probability of the all-zero
and all-one states, starting from an arbitrary initial condition X(0). Let
M(0) = πX(0) denote the value of the martingale corresponding to this ini-
tial condition. Let T denote the absorption time in one of the two absorbing
states, and note that it is a stopping time. Hence, by the Optional Stopping
Theorem, E[M(T )] = M(0) = πX(0). But

E[MT ] = P(X(T ) = 1) · π1 + P(X(T ) = 0) · π0

= P(X(T ) = 1) · 1 + P(X(T ) = 0) · 0.

It follows that

P(X(T ) = 1) = E[M(T )] = M(0) = πX(0).

We do not consider the problem of estimating the consensus time on a
general graph. While the duality with coalescing random walks holds just
as on the complete graph, the resulting process is much more difficult to
analyse as it requires keeping track of the locations of all the particles, and
not just their number.

6 The contact process on a general graph

Let G = (V,E) be an undirected graph with vertex set V and edge set E.
The contact process, or SIS epidemic, on G, is described as follows. Each
node can be in one of two states, infected (I) or healthy and susceptible to
infection (S). Healthy nodes may become infected by infected neighbours
in the graph, and infected nodes may spontaneously recover, but are then
susceptible to re-infection. Let us denote by St the set of infected nodes at
time t. The infection and recovery processes are described as follows. Each
susceptible node j becomes infected at rate α|{i ∈ St : (i, j) ∈ E}|. The
parameter α is called the infection rate, and the set {i ∈ St : (i, j) ∈ E}
denotes the set of infected neighbours of the node j. Thus, each infected
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neighbour can pass on infection at rate α. More formally, you can associate
independent Poisson processes of rate α with each edge in the graph; if
there is an increment of the Poisson process on edge (i, j) at time t, and
one of these nodes is infected and the other susceptible at time t, then
the other node also becomes infected. Next, every infected node recovers
spontaneously at rate β, independent of everything else. Again, formally,
associate independent Poisson processes of rate β with each node. If the
Poisson process at node i has an increment at time t and this node is infected,
then it becomes susceptible at time t. Otherwise, nothing happens.

It should be clear from the description that the set of infected nodes, St,
evolves as a continuous time Markov chain. Its state space is P(V ), the
power set of V , namely the set of all subsets of the vertex set. The null
set is absorbing, i.e., if St = ∅, then Su = ∅ for all u > t; once all nodes
are susceptible, no node can subsequently become infected. Since the graph
G is connected, you should also be able to see that the Markov process
St, t ≥ 0 has to communicating classes, the null set ∅, and the set of all
other subsets of V . The null set is recurrent, and the other communicating
class is transient, so eventually the Markov chain hits the null set. In other
words, eventually the infection dies out from the population. Starting with
an arbitrary initial set S0 of infected nodes, we would like to say something
about the random time T until the infection dies out. Exact analysis doesn’t
seem feasible, but can we obtain bounds on the expectation of T or some
other properties of its distribution?

In order to obtain such bounds, we shall first provide a different represen-
tation of the epidemic process, and then define an auxiliary Markov process
that dominates it stochastically. We shall denote the state of the epidemic
at time t by a vector X(t) = (Xv(t), v ∈ V ) taking values in the state space
{0, 1}V . Here, Xv(t) = 1 denotes that node v is infected at time t, and
Xv(t) = 0 denotes that it is healthy, and hence susceptible to infection.
Then X(t), t ≥ 0 is a Markov process with the following transition rates:

q(x,x + ev) = α(1− xv)
∑

w:(w,v)∈E

xw

q(x,x− ev) = βxv. (16)

Here, ev denotes the unit vector with a 1 in the vth position and zeros
elsewhere. The first equation above says that infection propagates at rate
α from each infected neighbour of v, namely each neighbour w such that
xw = 1; however, node v can only become infected if it is susceptible, i.e.,
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xv = 0. The second equation says that node v can be cured at rate β, but
only if it is infected, i.e., xv = 1.

We shall now define an auxiliary Markov process Y(t), t ≥ 0, coupled with
the process X(t), such that Y(t) ≥ X(t) for all t ≥ 0, where the inequal-
ity holds coordinate-wise. The state space for this dominating process is
{0, 1, 2, . . .}V . We first give a verbal description of this process, then write
down its transition rates, and then describe the coupling of the two pro-
cesses.

We can think of Y(t) as an epidemic process also, but imagine that there
is an infinite susceptible population at each node. We think of Yv(t) as
denoting the number of infected individuals at node v at time t. Each of
these individuals transmits infection to each neighbouring node at rate α,
i.e., at the points of a rate α Poisson process, with the Poisson processes
corresponding to distinct individuals or edges being mutually independent.
Recall that the superposition of independent Poisson processes is a Poisson
process with the sum of their rates. Since each infected individual at a node
w neighbouring v transmits infection to v at rate α, the total rate at which
infection passes along the edge (w, v) at time t is given by αYw(t). Thus, we
think of there being independent Poisson processes of rate αYw(t) on each
directed edge (w, v) incident on node v. (The graph is undirected but we
think of each undirected edge as corresponding to two directed edges, one
in each direction, as the rates of transmission of infection may be different
in the two direction.) Now, at the first time that there is an increment in
any one of these Poisson processes, we see it as giving rise to an infection
event at node v, resulting in one more individual becoming infected at this
node. Conversely, each infected individual at node v becomes cured at rate
β, independent of everything else, and so the number of infected individuals
at node v decreases by one at rate βYv. It follows from the description above
that the process Y(t), t ≥ 0 is Markovian, with the following transition rates:

q̃(y,y + ev) = α
∑

w:(w,v)∈E

yw

q̃(y,y − ev) = βyv. (17)

The main difference to note from the transition rates q(·, ·) for the original
epidemic process is that there is no 1− yv term; even if infection is already
present at a node, new infections can pass to it, causing additional infections
at that node. The effect of this change is that the transition rates q̃(·, ·)
are now linear functions of the state. This makes the Y(t) process more
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tractable analytically, as we shall see.

The Y(t) process is called a branching random walk; you can think of each
infectious individual as giving birth to a random number of infectious indi-
viduals at neighbouring nodes before dying, each of which does the same. If
you trace the descendants of an infected individual keeping track of where
they are born, these look like a random walk on the graph.

We want to couple the X and Y processes in such a way that X(t) ≤ Y(t)
(in the coordinate-wise sense) for all t ≥ 0 provided this inequality holds for
t = 0. Formally, we say that two or more random variables, or stochastic
processes, are coupled if they are defined on the same probability space. If
that is too abstract, an operational definition is that two random variables
or stochastic processes are coupled if we simulate them using a computer
program that draws upon the output of the same random number generator
(i.e., uses a common sequence of random numbers). It doesn’t have to use
exactly the same random numbers to simulate both random variables - it
may use overlapping subsets, in which case they will be dependent in some
way, or it may use disjoint subsets, in which case they will be independent.

Example 1. Let X and Y be exponential random variables with parameters
λ and µ respectively, and suppose λ > µ. We could simulate X and Y in-
dependently, in which case there is non-zero probability for both the events
X ≥ Y and X ≤ Y . However, can we simulate them in such a way that
the inequality X ≤ Y holds deterministically? We can achieve this by first
simulating two independent random variables, X1 from an Exp(µ) distri-
bution and X2 from an Exp(λ − µ) distribution, and then taking Y = X1,
X = min{X1, X2}. Then X and Y have the desired distributions, but
X ≤ Y deterministically.

Example 2. In the last example, we coupled two random variables. Now
we consider a more complicated example, where we couple two random pro-
cesses. Let Xt, t ≥ 0 be a Poisson process of rate λ, and Yt, t ≥ 0 a Poisson
process of rate µ < λ. Can we construct the processes Xt and Yt in such
a way that Xb − Xa ≥ Yb − Ya for arbitrary intervals [a, b]? If we are to
do this, then the set of points/events of the Yt process (the times at which
this process increases by 1) must deterministically be a subset of the set of
points of the Xt process. We now show how this can be done.

Let TX1 and T Y1 denote the time of the first jump of the Xt and Yt process
respectively. Then, TX1 and TX2 are exponentially distributed with param-
eter λ and µ respectively. Since λ > µ, we simulate two random variables
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Z ∼ Exp(λ) and W ∼ Exp(µ) as in Example 1, such that Z ≤W determin-
istically. If Z = W , we set TX1 = T Y1 = Z, i.e., both the Xt and Yt process
have a point at the random time Z, which is their first point after time 0.
We can then simulate the future of these two processes as if starting afresh
at this time.

If Z < W , then we set TX1 = Z, and defer the simulation of T Y1 . Thus, the
Xt process has its first jump at the random time Z, but this is not a jump
time of the Yt process. But, by the memoryless property of the exponential
distribution, the residual time until the first jump of the Yt process has an
Exp(µ) distribution. So, we can again restart the simulation of the Xt and
Yt processes from the random time Z (where we put down a point for X,
but not for Y in this case.)

By repeating this construction, we simulate a sequence of random times,
some of which are increment times for both the X and Y process, while
some are only increment times for the X process; there are no times which
are only increment times for Y process. This gives a simultaneous (coupled)
construction of the Xt and Yt processes which has the property we wanted.
This construction is similar in spirit to the way we shall construct the Markov
processes X(t) and Y(t) (the epidemic process and the branching random
walk) so that X(t) is dominated by Y(t) deterministically for all t.

Exercise. Explain a different way to simulate the Poisson processes Xt and
Yt of rates λ and µ simultaneously, so that Xb−Xa ≥ Yb−Ya for all intervals
[a, b] if λ ≥ µ. For your construction, you have available to you a random
number generator that can generate a sequence of iid exponential random
variables (of any specified parameter) and an independent sequence of iid
Bernoulli random variables (also of any specified parameter).

We now describe briefly how to couple the epidemic process and the branch-
ing random walk in such a way that X(t) ≤ Y(t) for all t ≥ 0. We assume
that X(0) ≤ Y(0), which is a necessary condition for such a coupling to
be possible. We shall describe the coupling by induction on the sequence
of jump times. We begin by generating the first jump time of the Y(t)
process. To do this, for each node v, we need to sample the time to the
first infection at that node from an exponential distribution with parameter∑

w:(w,v)∈E αYw(0). Independent of this, we sample an exponential with pa-
rameter βYv(0) for the first cure time at this node (the first time at which
one of the Yv(0) infected agents at this node becomes healthy). Similarly, we
sample exponential infection and recovery times at each node, all mutually
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independent of each other. The time to the first jump is then the minimum
of all these exponential random variables, and it specifies what transition
is going to take place at the first jump time. Based on this, we specify the
corresponding transition in the X(t) process as described below.

Suppose that the first jump happens at the random time τ and corresponds
to the transition Yv(τ) = Yv(0)+1, i.e., the number of infectious individuals
at node v increases by 1. The rate of this transition was

∑
w:(w,v)∈E αYw(0)

in the Y process. In the X process, the corresponding possible transition is
from node v susceptible to node v infected. If node v was already infected
at time 0, Xv(0) = 1, then nothing happens in the X process at time τ .
If node v was healthy at time 0, then we set it to infected at time τ with
probability ∑

w:(w,v)∈E αXw(0)∑
w:(w,v)∈E αYw(0)

,

and leave it susceptible with the residual probability. This construction
ensures that this transition happens with the correct rate in the X process. It
is feasible because the fraction above lies in the range [0, 1] by the assumption
that X(0) ≤ Y(0), and hence is indeed a probability. The point to note is
that, Yv increases by 1 at the random time τ , while Xv may or may not
increase. Hence, Yv(τ) ≥ Xv(τ) if Yv(0) ≥ Xv(0). The inequality holds for
all other nodes w as well, because both Xw and Yw remain unchanged at
time τ .

Next, what if the transition sampled (minimum of exponential random vari-
ables sampled) corresponded to a decrease from Yv(0) to Yv(0) − 1 at the
random time τ? For this to happen, we must have had Yv(0) ≥ 1, and the
rate of this transition is βYv(0). With probability (βXv(0))/(βYv(0)), which
is positive only if Xv(0) = 1 and corresponds to the ratios of the rates in the
two processes, we force a transition from 1 to 0 in the X process at time τ .
With the residual probability, the X process remains unchanged. Thus, it is
possible for Yv to decrease, while Xv remains unchanged. Could this result
in Yv(τ) being smaller than Xv(τ), even though Yv(0) was at least as big as
Xv(0)? It turns out this is impossible by our construction above. Indeed, if
Yv decreases by 1 at time τ , then the probability that Xv also decreases is
Xv(τ−)/Yv(τ−) (which denote the values just before time τ). Hence, either
both had the same value just before time τ , in which case both decreased,
or Yv had a strictly bigger value, in which case the inequality Xv(τ) ≤ Yv(τ)
still holds.
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Thus, we have coupled the construction of the first jump in the X and Y
processes in such a way that the inequality X(t) ≤ Y(t) is preserved at all
times up to and including the first jump, if it was true at time zero. By
the Markov property, we can simulate both processes after the first jump
time based only on the state at the first jump time. Hence, by induction,
the inequality X(t) ≤ Y(t) holds for all t ≥ 0 under the coupling described
above. (Warning: Strictly speaking, the proof only works for all time if the
number of jumps in any finite time remains finite. If infinitely many jumps
happen within some finite, possibly random, time T ∗, then the description
of the process from one jump to the next doesn’t tell us what happens after
T ∗ - the process is undefined after T ∗. The property that, with probability
one, only finitely many jumps happen in finite time is called non-explosivity
of the Markov process. Non-explosivity is automatic if all the diagonal terms
in the rate matrix Q are uniformly bounded, as is the case in finite-state
chains like the X process for instance, but is not the case for the Y process.
Nevertheless, the Y process is also non-explosive.)

Starting from an arbitrary initial condition X(0) for the epidemic process,
we want to obtain a bound on the random variable T = min{t ≥ 0 : X(t) =
0, which denotes the time for the Markov process X(t) to hit the unique
absorbing state 0 in which all nodes are susceptible, i.e., for the epidemic
to die out. We shall obtain this bound by considering the Markov process
Y(t) started in the same initial state X(0), and using the fact that X(t)
remains bounded by Y(t) at all subsequent times. We first state our bound
as a theorem, and then give a proof of it. In order to state the result, we
need to introduce some terminology.

The adjacency matrix of a graph G = (V,E) on n nodes is an n× n matrix
A with {0, 1}-valued entries; the element aij is 1 if (i, j) is an edge, and 0
if it is not. If the graph G is undirected, then its adjacency matrix A is
symmetric. Hence, all its eigenvalues are real. Denote the eigenvalues by
λ1 ≤ λ2 ≤ . . . ≤ λn. The spectral radius ρ of the matrix A is defined as
the maximum modulus of all its eigenvalues. Therefore ρ = max{|λ1|, |λn|}
for an undirected graph. We now have the following upper bound on the
epidemic survival time on an undirected graph.

Theorem 4 Let G = (V,E) be an undirected graph on n nodes, and let ρ
denote the spectral radius of its adjacency matrix. Consider the SIS epidemic
or contact process on G with pairwise infection rate α and cure rate β, and
with arbitrary initial condition. If αρ < β, then the random time T for the
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epidemic to die out satisfies

P(T > t) ≤ ne−(β−αρ)t

for all t ≥ 0, and consequently

E[T ] ≤ log n+ 1

β − αρ
.

Proof. We shall use the equations (17) to derive a differential equation
for E[Y(t)], where Y(t) denotes the branching random walk bounding the
epidemic process X(t) as described above. Observe from (17) that

E[Yv(t+ dt)− Yv(t)|Y(t)] = αdt
∑

w:(w,v)∈E

Yw(t)− βYv(t)dt+ o(dt),

and so, taking expectations on both sides, dividing by dt and taking limits,
we get

d

dt
E[Y(t)] = (αA− βI)E[Y(t)].

This is a linear differential equation, and has the solution

E[Y(t)] = e(αA−βI)tY(0) = e(αA−βI)tX(0),

since we assume that the Y process is started in the same initial state
as the X process. Now, since X(t) ≤ Y(t) for all t ≥ 0, it follows that
E[X(t)] ≤ e(αA−βI)tX(0) for all t ≥ 0. If we let Nt denote the total number
of infected nodes at time t, then Nt =

∑
v∈V Xv(t) = 1TX(t), where 1

denotes the all-1 vector of length n. Thus, we obtain that

E[Nt] ≤ 1T e(αA−βI)tX(0) ∀ t ≥ 0. (18)

Let λ1 ≤ λ2 ≤ . . . ≤ λn denote the eigenvalues of A (which can be ordered
as they are real, since A is symmetric). It is straightforward to verify that
the eigenvalues of e(αA−βI)t are given by e(αλi−β)t, i = 1, 2, . . . , n. Hence,
the spectral radius of this matrix is e(αρ−β)t, which decays exponentially in
t by the assumption that αρ < β in the statement of the theorem. We shall
now use the fact that if a symmetric n × n matrix B has spectral radius
η, then ‖Bx‖ ≤ η‖x‖ for arbitrary vectors x ∈ Rn, where ‖ · ‖ denotes the
usual Euclidean norm of a vector. We will say a proof of this fact later in
the course. Combining this fact with the Cauchy-Schwarz inequality, which
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states that |xTy| ≤ ‖x‖‖y‖ for arbitrary vectors x,y ∈ Rn, we obtain from
(18) that

E[Nt] ≤ ‖1‖e−(β−αρ)t‖X(0)‖ = e−(β−αρ)t
√
n
√
N0 ≤ ne−(β−αρ)t. (19)

Next, observe that the event {Nt ≥ 1} is the same as the event {T > t}, as
both say that the epidemic has not died out by time t; there is at least one
infected node at time t. Hence, we obtain using Markov’s inequality that

P(T > t) = P(Nt ≥ 1) ≤ E[N(t)]

1
,

which, together with (19) yields the first claim of the theorem. To obtain
the second claim, we use the fact that for any non-negative random variable
X (i.e., a random variable which has zero probability of taking negative
values), we can write E[X] =

∫∞
0 P (X > x)dx, which you can verify by

integrating by parts. Hence, combining the above bound on P (T > t) with
the trivial bound that probabilities are no bigger than 1, we get

E[T ] =

∫ ∞
0

P(T > t)dt ≤
∫ ∞
0

min{1, ne−(β−αρ)t}dt

=

∫ logn/(β−αρ)

0
1dt+

∫ ∞
logn/(β−αρ)

ne−(β−αρ)tdt

=
log n

β − αρ
+

∫ ∞
0

e−(β−αρ)sds =
log n+ 1

β − αρ
.

We made the change of variables s = t − logn
β−αρ to obtain the penultimate

equality. This completes the proof of the theorem. �

36


