
Modeling and estimation of stationary and

nonstationary long memory

Donatas Surgailis

Vilnius University

Plan of the lectures:

1. The notion of long memory (LM). Partial sums and

self-similarity

2. Modeling of LM processes

2.1 Linear models and fractional integration

2.2 Time-varying fractionally integrated processes

2.3 Nonlinear functions of linear LM processes

2.4 ARCH and stochastic volatility LM processes

2.5 ON/OFF and duration based LM models

3. Estimation of LM

3.1 Local Whittle estimator

3.2 Increment Ratio estimator

3.3 Testing for a change of memory parameter



1. The notion of long memory (LM)

1.1 Covariance LM

A 2nd order discrete time process X = {Xt, t ∈ Z := {· · · ,−1,0,1, · · ·}}

is said covariance stationary if EXt = µ = const and the covariance

cov(Xt, Xs) = cov(X0, Xt−s) =: γ(t − s)

depends on t − s only.

The decay rate of γ(j) as j → ∞ characterizes the dependence in X

[the dependence between lagged variables Xt and Xs as |t − s| → ∞].

Equivalently, the dependence in stationary process X can be charac-

terized by the behavior of spectral density f(x) as x → 0

γ(k) =

∫ π

−π

eikxf(x)dx, k ∈ Z.

Definition 1.1 A covariance stationary process {Xj} with is said:

covariance short memory (SM) if

∑

k∈Z

|γ(k)| < ∞ and
∑

k∈Z

γ(k) > 0;

covariance long memory (LM) if there exist 0 < d < 1/2, cγ > 0 s.t.

γ(k) ∼ cγ|k|
2d−1, k → ∞;

covariance negative memory (NM), or antipersistence, if there exist

−1/2 < d < 0, cγ < 0 s.t.

γ(k) ∼ cγ|k|
2d−1, k → ∞, and

∑

k∈Z

γ(k) = 0.



• covariance LM ⇒
∑

k∈Z
|γ(k)| = ∞ (d ∈ (0,1/2))

• covariance NM ⇒
∑

k∈Z
|γ(k)| < ∞ (d ∈ (−1/2,0))

• d ∈ (−1/2,1/2) is called the memory parameter

• covariance SM: d := 0

• “Almost equivalent” (spectral domain) definition of SM, LM, and

NM:

f(x) ∼ cf |x|
−2d, x → 0, for some − 1

2
< d < 1

2
, cf > 0

d > 0: spectral density grows to ∞ at x = 0: LM

d < 0: spectral density decays to 0 at x = 0: NM

d = 0: spectral density is continuous at x = 0 with f(0) > 0: SM

• for each spectral density f , ∃ a corresponding Gaussian process X.

⇒ Gaussian LM, SM and NM processes exist

• sample mean X̄ := n−1
∑n

t=1
Xi

var(X̄) ∼ s2
dn2d−1 (−1/2 < d < 1/2), s2

d :=
cγ

d(1 + d)
(1)

• convergence rate n2d−1 under LM is much worse than the “classi-

cal” rate n−1 corresponding to d = 0

• 2nd moment analysis is important but not sufficient for making

inferences on LM processes



Proof of (1): use

var(X̄) = n−1

n
∑

j=−n

(1 −
|j|

n
)γ(j)

which follows from

var(X̄) = n−2E(

n
∑

i=1

(Xj − µ))2

= n−2

n
∑

i=1

n
∑

j=1

cov(Xi, Xj) = n−2

n
∑

i=1

n
∑

j=1

γ(i − j)

In the SM case,

nvar(X̄) =

n
∑

j=−n

(1 −
|j|

n
)γ(j) →

∞
∑

j=−∞

γ(j) = s2
0.

In the LM case,

n1−2dvar(X̄) = n−2d

n
∑

j=−n

(1 −
|j|

n
)γ(j) ∼ cγn

−1

n
∑

j=−n

(1 −
|j|

n
)|

j

n
|−(1−2d)

∼ 2cγ

∫ 1

0

(1 − x)x−(1−2d)dx =
cγ

2d(1 + 2d)
= s2

d .

In the NM case,

n1−2dvar(X̄) = n−2d

n
∑

j=−n

γ(j) − n−2d

n
∑

j=−n

|j|

n
γ(j)

= −n−2d
∑

|j|>n

γ(j) − n−2d

n
∑

j=−n

|j|

n
γ(j)

∼ cγn
−1

∑

|j|>n

|
j

n
|−(1−2d) − cγn

−1

n
∑

j=−n

|j|

n
|
j

n
|−(1−2d)

∼ 2cγ

∫ ∞

1

x−(1−2d)dx − 2cγ

∫ 1

0

x2ddx =
cγ

2d(1 + 2d)
= s2

d .



1.2 Distributional LM

Definition 1.2 Let {Xj} be a stationary process. Assume there exist

normalizing constants An → ∞ and Bn s.t. the normalized partial

sums process converges:

A−1
n

[nt]
∑

j=1

(Xj − Bn) →FDD Z(t), t ≥ 0,

where Z(t) 6≡ 0. We say that {Xj} has:

distributional long memory (LM) if {Z(t)} has dependent increments

distributional short memory (SM) if {Z(t)} has independent incre-

ments

• Def. 1.2 is due to Cox (1984): a clear boundary between SM and

LM

• Under weak additional conditions, the normalizing constants An

are regularly varying with index H > 0 (in particular, An = nH), and

the limit process {Z(t)} is H−self-similar with stationary increments

(H−sssi) (Lamperti theorem), i.e.

c−HZ(ct) =FDD Z(t), ∀c > 0.

• H−sssi + independent increments ⇒ {Z(t)} is Lévy stable + finite

variance ⇒ {Z(t)} is Brownian motion



• H−sssi + dependent increments: a rich class + Gaussianity ⇒

{Z(t)} is a fractional Brownian motion (fBM) with Hurst parameter

0 < H < 1, H 6= 1/2:

E[Z(t)Z(s)] =
σ2

2
(t2H + s2H − |t − s|2H), t, s ≥ 0.

• H = 1/2 corresponds to usual BM with independent increments

• Covariance LM and distributional LM are related but different

notions

• In “good” cases, {Xj} may have both covariance LM with param-

eter d ∈ (0,1/2) and distributional LM with An = nH , H = 0.5 + d,

{Z(t)}= fBM

• However, there are simple examples of covariance LM processes

whose partial sums tend to a α−stable Lévy process and therefore

such process has distributional SM

1.3 Nonstationary LM

Arises in several contexts:

• Stationary increments. A discrete time series {Xj} is said d−integrated

with parameter 1/2 < d < 3/2 ( {Xj} ∈ I(d)) if the differenced process

ξj := Xj − Xj−1

is covariance stationary and has LM with memory parameter dξ :=

d − 1 ∈ (−1/2,1/2).



{Xj} behaves as partial sums process of {ξj} and var(Xj) → ∞ as

j → ∞

• Stationary + trend model: Xj = ξj+gn(j), {ξj}: stationary LM/SM,

gn(j): deterministic trend, e.g.

gn(j) :=

{

µ1, 1 ≤ j ≤ n/2,
µ2, n/2 < j ≤ n

A change of the mean can be confused with LM (“spurious LM”)

• changing memory parameter (time-varying FARIMA)

• continuous time/spatial data

1.4 Examples of data sets with LM

• Hydrology: “Hurst effect” of Nile river annual minima (Hurst,

1951): yearly minimal water levels of the Nile river measured near

Cairo for the years 622-1281

• Finance: “Phenomenon of LM in asset returns”: while daily returns

rt (on SP500 and other market indices, stocks, foreign exchange rates

etc) are almost uncorrelated, absolute |rt| and squared r2
t returns have

autocorrelations which decay very slowly (nonnegligible for ≈ 500

lags)

• Geophysics: Hasslet and Raftery (1989): wind speed measure-

ments on Ireland coast



• Global warming: Smith (1991)

• Measurements of 1 kg standard weight by the US National Bu-

reau of Standards: correlations of these measurements were found to

decay as |k|−0.8

Other examples and discussion: Beran (1992, 1994), Baillie (1996)

1.5 Statistical application: testing for long memory and

breaks in the mean

In applications it is important to differentiate the given data between

SM and LM, or between LM and breaks in the mean (which can be

confused with LM)

Hypothesis H0 (stationarity) X1, · · · , Xn is a sample from a stationary

process {Xj = µ+ ξj} having distributional SM/LM, in the sense that

for some d ∈ (−1/2,1/2)

1

nd+.5
S[nt] →FDD sd Bd+.5(t), t ∈ [0,1], Sn :=

n
∑

j=1

ξj, (2)

where sd > 0 is some constant and Bd+.5 is fBM with Hurst parameter

H = d + .5.

The V/S statistic V/S(q) [V = Variance, S = Scale] is defined as a

ratio

V/S(q) :=
Vn

ŝ2
q

,



where

Vn := n−2

n
∑

k=1

(Sk − S̄)2, S̄ := n−1

n
∑

k=1

Sk

is the empirical variance of centered partial sums

Sk :=

k
∑

j=1

(Xj − X̄), X̄ := n−1

n
∑

j=1

Xj

and ŝ2
q is the Newey-West estimator of the long-run variance

s2
d = limn→∞ var(Sn)/n1+2d:

ŝ2
q := q−1

∑

|i−j|≤q

γ̂(i − j), γ̂(j) := n−1

n−j
∑

i=1

(Xi − X̄)(Xi+j − X̄)

• q = 0,1, · · · is the bandwidth parameter, q = qn → ∞, q = o(n)

• Assumption (2) + weak additional assumptions imply

(q/n)2dV/S(q) →law Zd :=

∫ 1

0

(B0
d+.5(t))

2dt −
(

∫ 1

0

B0
d+.5(t)dt

)2

where B0
d+.5(t) := Bd+.5(t) − tBd+.5(1) is fractional Brownian bridge

(fBB).

• The distribution of r.v. Zd depends on a single parameter d. Let

cd(α) be the upper α−quantile of Zd:

P(Zd > cd(α)) = α.

• The decision rule of α−level V/S test for testing the stationarity

hypothesis H0: Reject H0 if

V/S(q) > (n/q)2d̂cd̂(α), (3)



where d̂ is a o(1/ log(n))−consistent estimator of unknown memory

parameter d

• The test (3) can be used to test the null (stationarity) hypothesis

H0 against several types of alternatives:

- Alternative HT (deterministic trend): Xj = µ + gn(j) + ξj, where

{ξj} is the same as in H0 and gn(j) is a deterministic trend (e.g.,

gn(j) = g(j/n) or gn(j) = cjβ + o(jβ));

- Alternative HU (unit root): Xj − Xj−1 = µ + ξj

• The V/S test was developed in Giraitis et al. (2003, 2006). It

is a version of the R/S test of Hurst (1951) modified by Lo (1991),

and KPSS test of Kwiatkowski et al. (1992)

1.6 Some conclusions

• LM inference requires new methods and approaches

• Nonstandard limit distributions and worse convergence rates

• There is no general estimation theory for all LM models

• New probabilistic models of LM processes are of interest

• Studying partial sums limits for concrete LM models is important

(and sometimes difficult)



• Tests and inferential procedures often require an approximate

knowledge of the memory parameter d which must be estimated
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2. Modeling of long memory (LM) processes

2.1 Linear process

A linear, or moving average (MA(∞)) process is given by

Xj =

∞∑
i=0

aiζj−i, j ∈ Z, (1)

where {ζj} ∼ IID(0, σ2) (i.i.d. with zero mean and variance

σ2) and ai, i = 0,1, · · · are deterministic MA coefficients. The

series (1) converges in L2 and a.s. if and only if
∑∞

i=0
a2

i <

∞ and defines a strictly stationary and covariance stationary

process with zero mean EXj = 0, covariance

γ(k) = E[X0Xk] = σ2

∞∑
i=0

aiai+k

and spectral density

f(x) =
σ2

2π
|
∞∑

j=0

aje
−ijx|2, x ∈ Π := [−π, π].

• Any stationary Gaussian process with
∫
Π
log f(x)dx > −∞

admits the MA representation (1) (Wold Decomposition)



• The linear model (1) is mathematically tractable and has

simple structure

• LM/SM is essentially due to slow/fast decay of MA coef-

ficients ai as i →∞

Proposition 2.1 (i) (Case d = 0) Let
∞∑

k=0

|ak| < ∞,

∞∑
k=0

ak 6= 0.

Then
∑∞

k=0
|γ(k)| < ∞,

∑∞
k=0

γ(k) > 0, i.e. {Xj} of (1) has

covariance short memory (SM).

(ii) (Case 0 < d < 1/2) Let

ak ∼ cak
d−1, k →∞

for some 0 < d < 1/2, ca 6= 0. Then γ(k) ∼ cγ|k|2d−1, k →
∞, cγ := σ2c2

aB(d,1− 2d), i.e. {Xj} of (1) has covariance long

memory LM.

(iii) (Case −1/2 < d < 0) Let

ak = caj
d−1(1 + O(k−1)), k →∞,

∞∑
k=0

ak = 0



for some −1/2 < d < 0, ca 6= 0. Then γ(k) ∼ cγ|k|2d−1, k →
∞, cγ := σ2c2

aB(d,1− 2d),
∑

k∈Z γ(k) = 0, i.e. {Xj} of (1) has

covariance negative memory (NM).

(iv) In all three cases (i) - (iii),

n−d−1/2

[nt]∑
j=1

Xj →FDD sdBd+.5(t), (2)

where Bd+.5 is fBM with H = d + .5.

(v) In addition to (i) - (iii) assume

E|ζ0|p < ∞ for some p > 1
H

= 1
.5+d

.

Then the convergence in (2) holds in the Skorohod space

D[0,1] with the sup-topology.

• Stationary ARMA(p, q) processes are SM and have MA(∞)

representation with exponentially decaying coefficients aj

• (iii)-(iv) go back to Ibragimov (1959) and Davydov (1970).

The first paper showed that for linear process, σ2
n := var(Sn) →



∞, Sn =
∑n

j=1
Xj implies σ−1

n Sn →law N (0,1). The second

paper showed that (2) follows from regular variation of σ2
n

• [GKS]: various extensions of the above CLT for weighted

sums
∑n

j=1
wnjXj of linear process

• tightness in D[0,1] is easy from the Kolmogorov criterion

2.2 Fractional integration

Lxt := xt−1 shift

(1− L)xt = ∆xt = xt − xt−1 discrete derivative

(1− L)−1xt = ∆−1xt =
∑t

j=−∞ xj discrete integral (sum)

∆d, −1 ≤ d ≤ 1: a family of interpolating operators between

∆ and ∆−1

∆d =





discrete fractional derivative, 0 < d < 1,

usual discrete derivative, d = 1,

identity, d = 0,

discrete fractional integral, −1 < d < 0,

discrete usual integral, d = −1



group property: ∆d1∆d2 = ∆d1+d2

Definition of ∆d:

∆dxt := (1− L)dxt

=

∞∑
j=0

ψj(d)L
jxt

=

∞∑
j=0

ψj(d)xt−j,

where for |z| < 1

(1− z)d =

∞∑
j=0

ψj(d)z
j Taylor expansion,

ψj(−d) = (
d

1
)(

d + 1

2
) · · · (d + j − 1

j
) =

Γ(d + j)

j!Γ(d)

From Stirling formula

ψj(−d) =
1

Γ(d)
jd−1(1 + O(j−1)) ∼ 1

Γ(d)
jd−1, j →∞.

We have

∑∞

j=0
|ψj(−d)| = ∞, 0 < d < 1,



∑∞

j=0
ψ2

j (−d) < ∞, −1 < d < 1/2,

∑∞

j=0
|ψj(−d)| < ∞, −1 < d < 0,

∑∞

j=0
ψj(−d) = 0, −1 < d < 0,

where the last equality follows from

0 = (1− 1)d =

∞∑
j=0

ψj(d), 0 < d < 1.

ARFIMA(0, d,0) [AutoRegressive Fractional Integrated Mov-

ing Average] is defined as stationary solution of

∆dXt = (1− L)dXt = ζt, {ζt} ∼ IID(0, σ2)

The solution is given by

Xt = ∆−dζt =

∞∑
j=0

ψj(−d)ζt−j (3)



• (3) is well-defined for d < 1/2

• (3) is invertible for d > −1/2

• for any −1/2 < d < 1/2 ARFIMA(0, d,0) of (3) satisfies the

assumptions (i) - (iii) of Proposition 2.1

• the last conclusion applies also to ARFIMA(p, d, q) process

which is defined as a stationary solution of the difference equa-

tion

φ(L)(1− L)dXt = θ(L)ζt,

where

φ(z) = 1− φ1z − · · · − φqz
q, θ(z) = 1 + θ1z + · · ·+ θpz

p

are polynomials of degrees p ≥ 0, q ≥ 0 which have no common

zeros and which have no zeros on the complex unit disc {|z| ≤
1}

• spectral density of ARFIMA(p, d, q):

f(x) =
σ2

2π
|1− e−ix|−2d|θ(e

−ix)

φ(e−ix)
|2

∼ σ2

2π
|θ(1)

φ(1)
|2|x|−2d, x → 0.



2.3 Nonhomogeneous fractional integration

Aim: to define “ARFIMA with changing memory parameter

d = dt

• nonstationary LM

• mathematically interesting

• different approaches possible

• Want to understand how can dt control the memory

• straightforward approach of plugging d → dt in ARFIMA(0, d,0)

MA representation is not good

D = {d := (dt, t ∈ Z) : |dt| < C(∃C < ∞), dt 6∈ {−1,−2, · · ·}} =

a class of ”infinite dimensional memory parameters” d

−d := (−dt, t ∈ Z)



For any d ∈ D define two operators (time-varying filters)

A(d), B(d)

A(d)xt :=

∞∑
j=0

aj(t)xt−j, B(d)xt :=

∞∑
j=0

bj(t)xt−j,

such that

B(−d)A(d) = A(−d)B(d) = I (identity), (4)

and

A(d) = B(d) = (1− L)−d if dt ≡ d = constant(5)

Definition of A(d), B(d). Put: a0(t) = b0(t) := 1,

aj(t) :=
dt−1

1
· dt−2 + 1

2
· dt−3 + 2

3
· · · dt−j + j − 1

j
,

bj(t) :=
dt−1

1
· dt−j + 1

2
· dt−j−1 + 2

3
· · · dt−2 + j − 1

j
.

• aj(t) and bj(t) are obtained from each other by permutation

(”reflection”):
t− j t− j + 1 . . . t− 3 t− 2 | t− 1

dt−j dt−j+1 . . . dt−3 dt−2 | dt−1 : aj(t)

dt−2 dt−3 . . . dt−j+1 dt−j | dt−1 : bj(t)



• Property (5) is immediate from the definitions

• Property (4) reduces to infinite system of equations:
n∑

j=0

b−j (t)an−j(t− j) = 0, (6)

n∑
j=0

a−j (t)bn−j(t− j) = 0, ∀n, t,

where a−j (t;d) = aj(t;−d), b−j (t;d) = bj(t;−d)

• In turn, (6) reduces to the following polynomial identity (by

putting xk = dt−k+1 − n + k): for any 1 ≤ k < n

Pn,k(x1, · · · , xk) :=

n∑
j=0

(−1)n−j
(n

j

)
(j + x1) · · · (j + xk)

≡ 0 (7)

• (7) is not true for k ≥ n: 1
n!

Pn,k(0, · · · ,0) =
{

k
n

}
is the

Stirling number [= the number of ways k different object can

be placed into n boxes]



• In view of (4),

B(−d)−1 := A(d), A(−d)−1 =: B(d)

• We are interested in (nonstationary “tv-ARFIMA”) pro-

cesses defined as L2−bounded solutions of equations

A(−d)Xt = ζt, B(−d)Yt = ζt, t ∈ Z,

where {ζt} ∼ IID(0, σ2) and d ∈ D is a given infinite dimen-

sional memory parameter.

• The above processes are defined as

Xt = A(−d)−1ζt = B(d)ζt =

∞∑
j=0

bj(t)ζt−j, (8)

Yt = B(−d)−1ζt = A(d)ζt =

∞∑
j=0

aj(t)ζt−j (9)

• Natural questions: When {Xt}, {Yt} in (8), (9) are well-

defined? What is the covariance decay of {Xt}, {Yt}? Partial

sums limits?



• The answers to above questions clearly depend on the mem-

ory sequence d

• For illustration consider the particular case when d is pe-

riodic with period T = 100, say, and such that the maximal

value

dmax := max
t∈Z

dt > d̄ :=
1

100

100∑
t=1

dt

is attained at points t = 0,100,200,300 etc

• Consider also the nonstationary ARFIMA(0, dt,0) process

with the same d, defined by

Zt :=

∞∑
j=0

ψj(−dt)ζt−j, (10)

where ψj(d) are ARFIMA(0, d,0) coefficients.

Let d̄ ∈ (0,1/2). Then

n−d̄−.5

[nt]∑
j=1

Xt →FDD cXBd̄+.5(t),



n−d̄−.5

[nt]∑
j=1

Yt →FDD cY Bd̄+.5(t).

Let dmax ∈ (0,1/2). Then

n−dmax−.5

[nt]∑
j=1

Zt = n−dmax−.5

[nt/100]∑
k=1

Z100k + op(1)

→FDD cZBdmax+.5(t).

• {Zt}: memory changes abruptly with t. The parameter dt

necessarily satisfies dt < 1/2. Only moments t with dt = dmax

contribute to partial sums limit

• {Xt}, {Yt}: memory changes smoothly with t. The parameter

dt may take arbitrary large values provided the Cesaro mean

d̄ < 1/2. All moments t = 1, · · · , n contribute to partial sums

limit

Partial sums limits for general memory sequences d

Definition 2.1 A sequence d = (dt, t ∈ Z) is said almost peri-

odic at +∞ (denoted by d ∈ AP (+∞)) if for any ε > 0 there



exist Tε > 0 and a periodic sequence dε = (dε,t, t ∈ Z) such that

supt>Tε
|dt − dε,t| < ε.

A sequence d = (dt, t ∈ Z) is said almost periodic at −∞ (de-

noted by d ∈ AP (−∞)) if the sequence (d−t, t ∈ Z) ∈ AP (+∞).

• For any d ∈ AP (+∞) there exists its mean value d̄+ at

t = +∞, viz.

d̄+ := lim
n→∞

1

n

s+n∑
t=s

dt uniformly in s ≥ 0.

• If limt→∞ dt = d+ exists then d ∈ AP (+∞) and d̄+ = d+

• If d is almost periodic then d ∈ AP (+∞)

Theorem 2.1 Let d ∈ AP (+∞)∩AP (−∞) and d̄± ∈ (0,1/2).

Then

n−d̄+−.5

[nt]∑
j=1

Yj →D[0,1] cY (Jd̄+
(t) + Ud̄+,d̄−(t)),



where cY > 0 is some constant and Jd̄+
(t), Ud̄+,d̄−(t) are Gaus-

sian processes defined as stochastic integrals w.r.t. Gaussian

white noise W (dx) with variance dx:

Jd̄+
(t) :=

∫ t

0

W (dx)

∫ t

x

(y − x)d̄+−1dy,

Ud̄+,d̄−(t) :=

∫ 0

−∞
W (dx)

∫ t

0

(y − x)d̄−−1yd̄+−d̄−dy.

• If d̄+ = d̄− =: d the process Jd(t) + Ud,d(t) is a fBM with

H = d + .5

• The process Jd(t), t ≥ 0 is called type II fBM (Robinson and

Marinucci, 1999) (the rough part of fBM)

• The process Ud̄+,d̄−(t) has a.s. infinitely differentiable tra-

jectories on (0,∞)

• All three processes {Jd̄+
(t)}, {Ud̄+,d̄−(t)} and {Jd̄+

(t)+Ud̄+,d̄−(t)}
are H−self-similar with H = d̄+ + 0.5



• {Ud̄+,d̄−(t)} has asymptotically vanishing increments:

Ud̄+,d̄−(t + T )− Ud̄+,d̄−(T ) →FDD 0, T →∞.

• {Jd̄+
(t)} has asymptotically stationary increments tending

to those of fBM

• Similar results hold for Xt = B(d)ζt; however there are

some differences between the limit processes for filters A(d)

and B(d)

• The mean value d̄+ = limn→∞ 1
n

∑n

t=1
dt can be interpreted as

the memory intensity of filters A(d) ir B(d) at “distant future”

t = +∞, while d̄− = limn→∞ 1
n

∑−n

t=−1
dt - as the corresponding

memory intensity at “distant past” t = −∞. The limit distri-

bution of partial sums of Yt = A(d)ζt depends on both d̄+ and

d̄− but the normalization depends on d̄+ only. For Xt = B(d)ζt

the normalization of partial sums is by nmax(d̄+,d̄−)+0.5



• The case when −1/2 < d̄+ < 0 or −1/2 < d̄− < 0 (negative

memory) is open

• An interesting case is when the sequence d = (dt, t ∈ Z) is

random (i.i.d.) In this case partial sums of Xt = B(d)ζt and

Yt = A(d)ζt tend to fBM with H = Ed0 + 0.5.

2.4 Partial sums under slowly changing memory

• Theorem 2.1 refers to the case of fast changing memory

parameter d = (dt, t ∈ Z)

• It is of interest to obtain partial sums limit of the nonsta-

tionary LM processes {Xt}, {Yt}, {Zt} of (8) - (10) when the

memory parameter d = (dt, t ∈ Z) changes slowly in the sense

that

dt = d(t/n), t = 1, · · · , n

where d(x), x ∈ [0,1] is piece wise monotone function on the

interval [0,1] (we call d(x) the memory function)



• In fact of importance is the behavior of d(x) near the max-

imum point xmax = argmax(d(x), x ∈ [0,1]) only

Assumption 2.1 The function d(x), x ∈ [0,1] is a measurable

function taking values in the interval (0,1/2) and having a

unique supremum d(xmax) =: dmax ∈ (0,1/2) at some point

xmax ∈ (0,1). Moreover, for some γ > 0, the exist the limits

lim
u↓0

u−γ(d(xmax)− d(xmax ± u)) =: ∆± > 0.

• Assumption 2.1 means that d(x) behaves like a power func-

tion with exponent γ near the maximum point: d(xmax ± u) =

d(xmax)− uγ(∆± + o(1)), u ↓ 0

For {Xt}, {Yt}, {Zt} of (8) - (10), denote

SX
n (t) :=

[nt]∑
j=1

Xj, SY
n (t) :=

[nt]∑
j=1

Yj, SZ
n (t) :=

[nt]∑
j=1

Zj, t ∈ [0,1]

Theorem 2.2 Let d(·) satisfy Assumption 2.1. Then



( log1/γ n

n

)dmax+1/2
SY

n

(
xmax +

u

log1/γ n

)
→D(R) V (u),

where the limit process

V (u) :=
1

Γ(dmax)

∫ u

−∞
η(dw)

∫ u

w

(v − w)dmax−1e−∆sgn(v)|v|γdv, u ∈ R

is well-defined as a stochastic integral with respect to a Gaus-

sian white noise η(dw) on the real line, with zero mean and

variance E(η(dw))2 = dw.

• Time is rescaled by factor log1/γ n in the vicinity of xmax

• {V (u)} has a.s. continuous trajectories and finite limits

limu→±∞ V (u) =: V (±∞), V (−∞) = 0

• For ∆+ = ∆− = 0, the process {V (u) − V (0), u ∈ R} is a

fBM with H = dmax + 0.5

• Theorem 2.1 holds for SZ
n but not for SX

n [the limit appar-

ently is different]



• Theorem 2.1 implies

( log1/β n

n

)dmax+1/2
SY

n (t) →FDD





0, t < xmax,

V (0), t = xmax,

V (+∞), t > xmax,



2.5 Continuous time nonhomogeneous fractional

integration and multifractional processes

• from discrete time to continuous time

• motivation: “statistics of nanoscience”

• modeling of fractal processes with time-varying Hurst pa-

rameter

• Tool: nonhomogeneous fractional integration with contin-

uous time t ∈ R

Classical (homogeneous) Liouville fractional operators Dα, Iα (0 <

α < 1):

Dα interpolates between D0 and D1 = D

Iα interpolates between I0 and I1 = I

Here:



D = differentiation: (Df)(t) := df(t)
dt

I = integration: (If)(t) :=
∫ t

−∞ f(s)ds

I0 = D0 = identity: (I0f)(t) = (D0f)(t) := f(t)

Definition:

Iαf(t) :=
1

Γ(α)

∫ t

−∞
f(s)(t− s)α−1ds,

Dαf(t) :=
d

dt

1

Γ(1− α)

∫ t

−∞
f(s)(t− s)−αds

Basic property:

DαIαf = f (∀ f ∈ L1 ∩ L∞). (11)

Proof: By definition, the l.h.s. of (11) equals

d

dt

1

Γ(1− α)

∫ t

−∞
(t− s)−αds

1

Γ(α)

∫ s

−∞
f(u)(s− u)α−1du

=
d

dt

∫ t

−∞
f(u)du

1

Γ(α)Γ(1− α)

∫ t

u

(t− s)−α(s− u)α−1ds

︸ ︷︷ ︸
≡1

=
d

dt

∫ t

−∞
f(u)du

= f(t).



• fBM = integral of fractionally integrated (differentiated)

white noise Ḃ(t) := dB(t)
dt

• B(t) =
∫ t

0
Ḃ(s)ds

• Let 0 < α < 1/2. Then

X(t) :=

∫ t

0

(IαḂ)(s)ds

=

∫ t

0

{ 1

Γ(α)

∫ s

−∞
Ḃ(u)(s− u)α−1du

}
ds

=

∫ t

−∞
Ḃ(u)

{ 1

Γ(α)

∫ t

0

(s− u)α−1
+ ds

}
du

=
1

Γ(1 + α)

∫ t

−∞

(
(t− u)α − (−u)α

+

)
dB(u)

= fBM with H = α + 0.5.

• Similarly, let −1/2 < α < 0. Then

X(t) :=

∫ t

0

(D−αḂ)(s)ds

= · · ·

=
1

Γ(1 + α)

∫ t

−∞

(
(t− u)α − (−u)α

+

)
dB(u)

= fBM with H = α + 0.5.



Nonhomogeneous fractional integration in cont. time:

Want to define linear operators

(Dα(·)f)(t) and (Iα(·)f)(t)

depending on “functional parameter”

α(·) = {α(t), t ∈ R}, α(t) ∈ (0,1)

and such that

Dα(·)Iα(·)f(t) = f(t), for f ∈ L1 ∩ L∞, say,(12)

Dα(·) = Dα, Iα(·) = Iα if α(·) ≡ α = constant(13)

• unusual: differentiation order α(t) changes with point t

Definition:

(Iα(·)f)(t) :=
1

Γ(α(t))

∫ t

−∞
f(s)(t− s)α(t)−1eA−(s,t)ds,

(Dα(·)f)(t) :=
d

dt

∫ t

−∞

1

Γ(1− α(s))
f(s)(t− s)−α(s)eA+(s,t)ds



where for s < t

A−(s, t) :=

∫ t

s

α(u)− α(t)

t− u
du, A+(s, t) :=

∫ t

s

α(s)− α(v)

v − s
dv

• For α(·) ≡ α = const., A±(s, t) ≡ 0 ⇒ (13) immediate

• Proof of (12): plug g(t) := Iα(·)f(t) into Dα(·)g(t) and use

Fubini as in the case of constant α. Then (12) follows from

the integral identity:

∫ t

s

(x− s)α(x)−1(t− x)−α(x) exp
{∫ t

s

α(v)− α(x)

x− v
dv

}

×sin(πα(x))

π
dx ≡ 1 (14)

• No elementary proof of (14) available

• The proof of (14) as well as the form of Iα(·) and Dα(·):

via discrete time approximations and orthogonality relation

A(d)B(−d) = I0 for discrete time nonhomogeneous fractional

operators with slowly changing memory parameter dt = α(t/n)



• Sufficient condition for (14): 0 < inf t∈R α(t) ≤ supt∈R α(t) <

1. Moreover, α(·) may have a finite number of discontinuity

points on each finite interval. Between those points, α(·) is a

δ−Hölder function with some δ > 0.

Multifractional Gaussian processes

Recall Ḃ(t) := dB(t)
dt

: Gaussian WN (= derivative of BM)

For given function H(t) = α(t)+1/2, introduce Gaussian pro-

cesses

Xt :=

∫ t

0

(Iα(·)Ḃ)(s)ds, Yt :=

∫ t

0

(D−α(·)Ḃ)(s)ds

Less formally:

Xt =

∫ t

−∞

{∫ t

0

1

Γ(α(s))
(s− u)α(s)−1eA−(u,s)ds

}
dB(u),

Yt =

∫ t

−∞

1

Γ(1 + α(u))

(
(t− u)α(u)eA+(u,t) − (−u)α(u)

+ eA+(u,0)
)
dB(u)

Also introduce

Zt :=

∫ t

−∞

1

Γ(1 + α(t))

(
(t− u)α(t) − (−u)α(t)

+

)
dB(u)



• For α(t) ≡ α = const., {Xt}, {Yt} and {Zt} coincide with

fBM with H = α + 0.5

• {Zt} is called multifractional Brownian motion (mBM) (Peltier

and Lévy Véhél (1995), Benassi, Jaffard and Roux (1997)).

mBM is one of the main statistical models of multifractional

processes

• Under some boundedness and regularity conditions on α(·),
{Xt}, {Yt}, {Zt} are locally self-similar at each point t ∈ R and

admit a fBM as a tangent process:

λ−α(t)−.5





Xt+hλ −Xt

Yt+hλ − Yt

Zt+hλ − Zt





→FDD Bα(t)+.5(h), λ → 0

• The main advantage of {Xt} and {Yt} vs. mBM {Zt} is

that α(·) in the former processes can be very rough (logarith-

mic modulus of continuity); for {Zt} the natural condition is

H(t) = α(t) + 1/2 < min(1, δ), for α(·) ∈ Cδ



• We expect that increments {Xt} and {Yt} have better decor-

relation rates than increments of {Zt}
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3. Modeling of long memory (LM) processes:

nonlinear models

3.1 Nonlinear functions of linear LM processes

Let

Xj =

∞∑
i=0

aiζj−i, j ∈ Z, (1)

ai ∼ cai
dX−1, i →∞, ∃ 0 < dX < 1/2, ca 6= 0

be a linear LM process as in Lecture 2, {ζt} ∼ IID(0,1).

Let g(x), x ∈ R be a nonlinear function s.t. Eg2(X0) < ∞.

Then

Yj := g(Xj), j ∈ Z

is a stationary and covariance stationary process. The natural

question are:

• Does {Yj} has SM or LM?

• What is the memory parameter of {Yj}?



• What is partial sums limit of {Yj}?

• The above questions are of interest for modeling of LM

processes, but even more important in statistical inference of

LM processes

• Linear Gaussian process {Xj} is often used as the first ap-

proximation to real data, while many statistics are expressed

as a sum
∑n

j=1
g(Xj) of some nonlinear function g of obser-

vations

• Particular examples of g: g(x) = 1(x ≤ y) (empirical d.f.),

g(x) = x2 (empirical variance), g(x) = ex (stochastic volatility

model)

3.1.1 Gaussian {Xj}: Hermite expansion

Let Φ be the standard normal d.f. of r.v. Z ∼ N(0,1)

Any function g ∈ L2(R,Φ) can be expanded in Hermite poly-

nomials Hk(x) := (−1)kex2/2dke−x2/2/dxk:

g(x) =

∞∑
k=0

Jk

k!
Hk(x), Jk = Eg(Z)Hk(Z)



The Hermite rank of g ∈ L2(R,Φ) is the index of the first

nonzero Hermite coefficient of g − J0:

H-rank(g) := min{k ≥ 1 : Jk 6= 0}

The Hermite polynomials have the following remarkable or-

thogonality property. Let (X, Y ) be a Gaussian vector with

zero means EX = EY = 0, unit variances EX2 = EY 2 = 1

and correlation coefficient ρ = EXY ∈ [−1,1]. Then

EXk(X)Hj(Y ) = 0, k 6= j,

= ρkk!, k = j

For any two g1, g2 ∈ L2(R,Φ)

Eg1(X)g2(Y ) =

∞∑
k,j=0

J1kJ2j

k!j!
EHk(X)Hj(Y ) =

∞∑
k=0

J1kJ2k

k!
ρk

Let κ := max(H-rank(g1),H-rank(g2)). Then

|cov(g1(X), g2(Y ))| ≤ |ρ|κ
∞∑

k=κ

|J1kJ2k|
k!



≤ |ρ|κ
( ∞∑

k=κ

J2
1k

k!

)1/2( ∞∑
k=κ

J2
2k

k!

)1/2

= |ρ|κ
√

var(g1(X))
√

var(g2(Y )) (2)

Let {Xj} be a LM stationary Gaussian process with zero mean,

unit variance and covariance

γX(j) ∼ cXj2dX−1, j →∞, ∃ cX > 0, 0 < dX < 1/2.

Let g ∈ L2(R,Φ), k∗ := H-rank(g) ≥ 1 and

Yj := g(Xj), γY (j) := cov(Y0, Yj).

We have the decomposition of the Gaussian subordinated pro-

cess {Yj}:

Yj − EYj =

∞∑
k=k∗

Jk

k!
Hk(Xj) = Y 0

j + Rj, (3)

Y 0
j :=

Jk∗

k∗!
Hk∗(Xj), Rj :=

∑
k>k∗

Jk

k!
Hk(Xj)

In (3), {Y 0
j } is the main term and {Rj} the remainder term

which are orthogonal: EY 0
j Rk = 0 (∀ k, j ∈ Z) and



γY (j) ∼ γY 0(j) =
J2

k∗

k∗!γ
k∗
X (j) ∼ cY j−k∗(1−2dX),

γR(j) = O(j−(k∗+1)(1−2dX)), j →∞

• If k∗(1 − 2dX) < 1 then {Yj = g(Xj)} has covariance LM

with memory parameter 1− 2dY = k∗(1− 2dX), or

dY :=
1

2
− k∗(

1

2
− dX) ∈ (0,1/2)

= dX , if k∗ = 1,

< dX , if k∗ > 1

• Particularly, if 0 < dX < 1/2, h ∈ L2(R,Φ) and k∗ :=

H-rank(g) = 1 then

n−dX−.5

[nt]∑
j=1

(g(Xj)− Eg(Xj)) →FDD J1sd,X BdX+.5(t)

• In the general case 0 < dX < 1/2, g ∈ L2(R,Φ), k∗ :=

H-rank(g) ≥ 1 and k∗(1− 2dX) < 1,

n−dY−.5

[nt]∑
j=1

(Yj − EYj) →FDD
Jk∗c

k∗
a

k∗!
Hk∗(t) (4)



where

Hk(t) :=

∫

Rk

{∫ t

0

k∏
i=1

(v − ui)
dX−1
+ dv

}
W (du1) · · ·W (duk)(5)

is k−th order Hermite process defined as multiple Wiener-Itô

integral w.r.t. Gaussian white noise W (dx) with zero mean

and variance dx

• Hk(t) is well-defined for 1 ≤ k < 1/(1 − 2dX), is H−sssi

with H = 1 − k(1
2
− dX). H1(t) is a fBM and Hk(t), k ≥ 2 are

non-Gaussian

• Proof of non-CLT in (4): write the l.h.s. as “discrete

multiple integrals” with respect to “discrete noise” Wn(A) :=

n−1/2
∑

(i/n)∈A
ζi and then prove the L2(Rk)−convergence of

the corresponding integrands towards the integrand
∫ t

0

∏k

i=1
(v−

ui)
dX−1
+ dv of the limiting multiple Wiener-Itô integral

• Dobrushin and Major (1979), Taqqu (1979)



The case k∗(1− 2dX) > 1: CLT

• If k∗(1−2dX) > 1, the Gaussian subordinated process {Yj =

g(Xj)} has covariance SM. Indeed, by (2) inequality,

|γY (j)| = |cov(g(X0), g(Xj))| ≤ |γX(j)|k∗Eg2(X0)

≤ const.|j|−k∗(1−2dX)

hence
∑

j∈Z |γY (j)| < ∞.

• A remarkable property of instantenuous Gaussian subordi-

nated functionals is that their covariance SM implies distribu-

tional LM

Theorem 3.1 (Breuer and Major, 1983) Let {Yj = h(Xj)} be

Gaussian subordinated process, g ∈ L2(R,Φ), k∗ := H-rank(g) ≥
1. Assume that

∑
j∈Z

|γY (j)| < ∞. (6)

Then

n−1/2

[nt]∑
j=1

(Yj − EYj) →FDD σB(t), σ2 :=
∑
k∈Z

γY (k),



where {B(t)} is a standard BM. Condition (6) is equivalent to

∑
j∈Z

|γX(j)|k∗ < ∞. (7)

• Theorem 3.1 was generalized/extended by several authors:

Arcones (1994), Soulier (2001), Nourdin, Peccati and Podol-

skij (2010), Bardet and Surgailis (2010)

• The “classical” method of the proof: method of moments

(cumulants): it suffices to show for Sn :=
∑n

j=1
(Yj−EYj), Z ∼

N(0,1) that for any k = 2,3, · · ·

n−k/2ESk
n → σkEZk =

{
σk(k − 1)!!, k even,
0, k odd,

or

n−k/2cumk(Sn) → σkcumk(Z) =
{

σ2, k = 2,
0, k ≥ 3,

• Using the orthogonality of Hermite polynomials, the proof

of the CLT can be reduced to the case when g is a finite



sum of Hermite polynomials, or Sn =
∑K

k=1
akS

(k)
n , S(k)

n :=
∑n

j=1
Hk(Xj), or

cum(S(k1)
n , · · · , S(kp)

n ) =

n∑
j1,···,jp=1

cum(Hk1(Xj1), · · · , Hkp(Xjp))

= o(np/2),

for any p ≥ 3 and k1 ≥ k∗, · · · , kp ≥ k∗

• The last relation is proved using the diagram formula for

joint cumulants of Hermite polynomials of Gaussian r.v.’s

• [GKS]: a simpler proof of the CLT for
∑n

j=1
Hk(Xj) which

does not use diagrams but uses approximation by m−dependent

processes [applies to Gaussian MA processes {Xj} of (1)]



3.1.2 Nongaussian underlying linear process {Xj}
Let

Xj =

∞∑
i=0

aiζj−i, j ∈ Z, (8)

ai ∼ cai
dX−1, i →∞, ∃ 0 < dX < 1/2, ca 6= 0

where {ζj} ∼ IID(0,1) are nongaussian r.v.’s, so that {Xj} is

also a nongaussian stationary process.

Let g(x), x ∈ R be a nonlinear function s.t. Eg2(X0) < ∞.

Again, we are interested in LM properties of the subordinated

process

Yj := g(Xj), j ∈ Z

• The situation is roughly similar as in the Gaussian case but

more complex and technically involved

• The role of Hermite rank now is played by the Appell rank

of g:

k∗A = A-rank(g) := min{k ≥ 1 : gk 6= 0},

gk :=
∂kEg(X0 + y)

∂yk

∣∣
y=0



• For X0 ∼ N(0,1), A-rank(g) = H-rank(g) follows from the

properties of Hermite polynomials:

H ′
k(x) = kHk−1(x), EHk(X0) = 0 (k ≥ 1)

• The above properties are shared by Appell polynomials

Ak(x) := (−i)k ∂k

∂yk(e
iyx/EeiyX0)|y=0

• If k∗A(1 − 2dX) < 1 (+ ... some additional assumptions)

then {Yj = g(Xj)} has LM and normalized partial sums of {Yj}
tend to a Hermite process of order k∗A [similarly as in the case

of Gaussian {Xj}]

• If k∗A(1 − 2dX) < 1 (+ ... some additional assumptions)

then {Yj = g(Xj)} has SM and CLT holds

• ... some additional assumptions include Eζ4
0 < ∞. If Eζ2

0 <

∞, Eζ4
0 = ∞ and the d.f. of ζ2

0 has α−regularly tail with

1 < α < 2 then partial sums of {Yj = g(Xj)} may converge

to a 2α(1− dX)− stable distribution for bounded g (Surgailis,

2004)



• More precise moment condition: E|ζ0|r < ∞ for

r > max
(
2,

1 + k∗A(1− 2dX)

1− dX

)
[mom]

Condition ([mom]) is satisfied for any 1 ≤ k∗A < 1/(1 − 2dX)

if r = 4 or Eζ4
0 < ∞. Condition ([mom]) is always satisfied if

k∗A = 1 and r > 2.

• In particular, for bounded g with k∗A = A-rank(g) = 1 and

E|ζ0|2+δ < ∞, the limit distribution of partial sums process is

Gaussian:

n−dX−.5

[nt]∑
j=1

(g(Xj)− Eg(Xj)) = n−dX−.5g1

[nt]∑
j=1

Xj + op(1)

→FDD g1sd,X BdX+.5(t)

where

g1 := −
∫

R
g(x)f ′(x)dx

is the first Appell coefficient and f(x) = dF (x)/dx is the

marginal p.d. of X0, F (x) := P(X0 ≤ x), which exists and



belongs to C∞ under very mild regularity assumption on the

noise distribution

• The above result in important for the study of the centered

empirical process:

F̂n(y)− F (y) := n−1

n∑
j=1

[1(Xj ≤ y)− E1(Xj ≤ y)],

which corresponds to g(x) = 1(x ≤ y). Then

g1 = −
∫ y

−∞
f ′(x)dx = −f(y)

and

n−dX+.5(F̂n(y)− F (y)) = −f(y)n−dx+.5X̄ (9)

→D(R̄) sd,Xf(y)Z,

where X̄ = n−1
∑n

j=1
Xj, Z ∼ N(0,1)

• (9) is known as the Uniform Reduction Principle (Dehling

and Taqqu, 1988). The URP is fundamental to many infer-

ences under long memory (estimation of unknown mean and



regression coefficients, hypothesis testing about the form of

the marginal distribution).

• The URP implies that the empirical process under LM is

asymptotically degenerated: it behaves like a random constant

sd,XZ times a deterministic process f(y) (= the marginal

p.d.). This fact is in complete contrast to what is known

when the observations {Xj} are i.i.d. or weakly dependent.

• A complete description of limit laws of partial sums of

{Yj = g(Xj)} is open

• Proofs are based on martingale decomposition (Ho and

Hsing, 1996)



3.2 ARCH and stochastic volatility LM processes

3.2.1 Motivation: modeling financial returns

Stylized facts of financial (daily) returns:

• returns Xt = log(pt/pt−1) are uncorrelated: corr(Xt, Xs)

≈ 0 (t 6= s)

• squared and absolute returns have long memory: corr(X2
t , X2

s )

6= 0, corr(|Xt|, |Xs|) 6= 0 (|t− s| = 100÷ 500)

• heavy tails: EX4
t = ∞

• conditional mean µt = E[Xt|Ft−1] ≈ 0, conditional vari-

ance σ2
t = E

[
X2

t |Ft−1

]
“randomly varying” (conditional het-

eroskedasticity)

• leverage effect: past returns and future volatilities negatively

correlated: corr
(
Xs, σ2

t

)
< 0 (s < t)



• volatility clustering

3.2.2 GARCH, ARCH(∞) and Linear ARCH (LARCH)

GARCH(p, q) :

Xt = σtζt, σ2
t = ω +

p∑
i=1

βiσ
2
t−i +

q∑
i=1

αiX
2
t−i,

ω ≥ 0, αi ≥ 0, βi ≥ 0, p, q = 0,1, · · · , {ζt} i.i.d., Eζt = 0,

Eζ2
t = 1

ARCH(∞):

Xt = σtζt, σ2
t = ω +

∞∑
i=1

αiX
2
t−i,

• GARCH(p, q) : Engle (1982), Bollerslev (1986), Bougerol

and Pickard (1992), ..., Teräsvirta (2010, review)

• ARCH(∞): Giraitis, Kokoszka and Leipus (2000), Kaza-

kevičius and Leipus (2002, 2003), ..., Giraitis et al. (2010,

review)



• ∃ stationary solution of ARCH(∞) with EX2
t < ∞ ⇔

∑∞
i=1

αi < 1

• ARCH(∞) does not allow for long memory in (X2
t )

• {ζt} symmetric ⇒ no leverage

• Linear ARCH (LARCH)(∞) (Robinson (1991), Giraitis et al.

(2000, 2004), Berkes and Horváth (2003), Schützner (2009)):

Xt = σtζt, σt = ω +

∞∑
i=1

aiXt−i, (10)

∑∞
i=1

a2
i < 1, ω 6= 0, ai ∈ R, {ζt} ∼ IID(0,1)

• ai ∼ cid−1 (i →∞, ∃ c 6= 0, d ∈ (0,1/2) (e.g., ARFIMA(0, d,0))

• LARCH model allows for LM in {X2
t } and the leverage

effect

• stationary solution of LARCH(∞):

σt = ω +

∞∑
i=1

aiXt−i



= ω +

∞∑
i=1

aiζt−iσt−i

= ω + ω

∞∑
i=1

aiζt−i +

∞∑
i1,i2=1

ai1ai2ζt−i1ζt−i1−i2σt−i1−i2

= ω + ω

∞∑
i=1

aiζt−i + ω

∞∑
i1,i2=1

ai1ai2ζt−i1ζt−i1−i2 + · · ·

= ω
(
1 +

∞∑
k=1

∑
sk<...<s1<t

at−s1as1−s2 · · · ask−1−skζs1 · · · ζsk

)

= ω
∑

S

aS
t ζS (11)

where

S := {sk, · · · , s1} ⊂ Z, aS
t := at−s1as1−s2 · · · ask−1−sk, ζS := ζs1 · · · ζsk

Note that

EζS1ζS2 =

{
0, S1 6= S2,

1, S1 = S2,
, ∀S1, S2 ⊂ Z.

Therefore

Eσ2
t = ω2

∑
S⊂Z

(aS
t )

2



= ω2
(
1 +

∞∑
k=1

( ∞∑
i=1

a2
i

)k)

=
ω2

1−A2
, A2 :=

∞∑
i=1

a2
i < 1 (12)

• Condition A < 1 of (12) is necessary and sufficient for the

existence of covariance stationary causal solution of LARCH

equations (10). Moreover, with Ft := σ{ζs, s ≤ t} = “historic

information set”,

E[Xt|Ft−1] = 0, E[X2
t |Ft−1] = σ2

t = var(Xt|Ft−1)

• (11) is an orthogonal Volterra expansion in ζs, s < t con-

vergent in L2. Whence it easily follows

cov(σ0, σt) = ω2
∑
∅6=S⊂Z

aS
0aS

t

=
ω2

1−A2

∞∑
i=1

aiat+i

∼ cσt2d−1, (t →∞), (13)

provided

ai ∼ cai
d−1, 0 < d < 0.5, A2 =

∑∞

i=1
a2

i < 1, (14)



where cσ := c2
aω2B(d,1−2d)

1−A2 .

• (13) means that volatility {σt} has covariance LM.

• Under (14), {σt} has distributional LM and its normalized

partial sums converge to a fBM

Indeed, from the LARCH equations (10) it follows E[Xt|Ft−1] =

σtE[ζt|Ft−1] = 0, Ft := σ{ζs, s ≤ t}, i.e. {Xt,Ft} is a square in-

tegrable martingale difference sequence. Then ω = Eσt and

σt − ω = σt − Eσt =

∞∑
i=1

aiXt−i

is a linear (moving average) process in martingale differences

with regularly decaying weights ai. Hence,

n−d−.5

[nt]∑
j=1

(σj − Eσj) →FDD sdBd+.5(t)

• However, volatility is not directly observable. LM is empir-

ically observed in absolute powers of return series: {|Xj|δ, j ∈
Z}, for δ > 0.



Theorem 3.1 Let, for integer ` = 2,3, · · · ,

(4` − 2`− 1)µ1/`
2` A2 < 1, A2 =

∑∞

i=1
a2

i , µr := Eζr
0.

Let {Xt, σt} be stationary solution to the LARCH equations

(10), with coefficients

ai ∼ cai
d−1, 0 < d < 1/2, ca > 0.

Then EX2`
j < ∞ and

cov(X`
0, X

`
t ) ∼ c2

` t2d−1 (t →∞)

where

c` := caω
−1`EX`

0 = ca
∂EX`

0

∂ω
.

Moreover,

n−d−.5

[nt]∑
j=1

X`
j →FDD c`sdBd+.5(t) (= fBM)

• Theorem 3.1 holds trivially for ` = 1 since c1 = 0

• Integer powers {X`
j , j ∈ Z}, l = 2,3, · · · have both covariance

and distributional LM



• Similar results: bilinear models characterized by conditional

mean and conditional variance

E[Xt|Ft−1] = µ +
∑∞

j=1
bjXt−j, (15)

var(Xt|Ft−1) = ν2 +
(
ω +

∑∞

j=1
ajXt−j

)2
. (16)

• (15)-(16) nests MA(∞) (case ω = aj ≡ 0, LARCH (case

µ = bj ≡ 0) but also ARCH(∞) and GARCH(p, q) (Giraitis and

Surgailis, 2002)

• (15)-(16) allows for modeling of LM in conditional mean and

LM in conditional variance, with distinct memory parameters

(“double LM”)

• If µ = bj ≡ 0 then

E[Xt|Ft−1] = 0, σ2
t = var(Xt|Ft−1) = ν2 +

(
ω +

∑∞

j=1
ajXt−j

)2
.(17)

(17): important generalization of LARCH: ν > 0, implying

strict positivity of conditional variance (volatility): σ2
t ≥ ν2 > 0

a.s.



• Leverage effect (“past returns and future volatilities are

negatively correlated”): E[X0σ2
t ] < 0 (t > 0) reduces to ωaj <

0, j ≥ 1

3.2.3 Method of the proof of Thm 3.1

• Case ` = 2 only: cov(X2
0 , X2

t ) ∼ c2
` t2d−1

• Since X2
t = ζ2

t σ2
t , EX2

t = Eζ2
t Eσ2

t = Eσ2
t , reduces to

cov(σ2
0, σ2

t ) ∼ c2
` t2d−1 (t →∞).

• Take ω = 1 and recall the Volterra representation

σt =
∑

S⊂(−∞,t)

aS
t ζS

S := {sk, · · · , s1} ⊂ Z, aS
t := at−s1as1−s2 · · · ask−1−sk, ζS := ζs1 · · · ζsk

Hence

cov(σ2
t , σ2

0) =
∑

S1,···,S4

aS1
t aS2

t aS3

0 aS4

0 cov(ζS1ζS2, ζS3ζS4) (18)



• cov(ζS1ζS2, ζS3ζS4) = 0 unless sets S1, · · · , S4 are “matched”:

each s ∈ Si is matched by an element from ∪j 6=i Sj, i = 1,2,3,4,

at least one s ∈ S1 ∪ S2 is matched by an element fromS3 ∪ S4.

Fig. 1

• diagram = “pattern of matching (summation)”

Definition 3.1 Let be given a table I = (I1, · · · , I4) consisting

of four rows I1, · · · , I4 having k1 = |I1|, · · · , k4 = |I4| elements,

respectively. We write I = I(k)4, (k)4 = (k1, · · · , k4).

A diagram γ = (V1, · · · , Vp) is a partition of I such that:

1. Each Vq intersects at most 1 element of each row: |Vq ∩
Ij| ≤ 1, q = 1, · · · , p, j = 1, · · · ,4

2. V1, · · · , Vq are ordered from the left;

3. 2 ≤ |Vq| ≤ 4, ∀ q = 1, · · · , p



The class of all diagrams over table I is denoted by ΓI.

• The sum in (18) can be rewritten by first, choosing a table

I(k)4 with some k1 = |I1|, · · · , k4 = |I4|, then, second, choosing

a “matching pattern” γ ∈ ΓI(k)4
and, third, summing over all

quadruplets (S)4 = (S1, · · · , S4) ⊂ Z4, |S1| = k1, · · · , |S4| = k4

which follow this “matching pattern” γ (denoted (S)4 ∼ γ):

cov(σ2
t , σ2

0) =
∑
(k)4

∑
γ∈I(k)4

µγ

∑
(S)4∼γ

aS1
t aS2

t aS3

0 aS4

0 , (19)

where

µγ := cov(ζS1ζS2, ζS3ζS4) for (S)4 ∼ γ depends only on γ

• The problem reduces to the study of the asymptotics of

wγ(t) :=
∑

(S)4∼γ
aS1

t aS2
t aS3

0 aS4

0 as t →∞.

• Two classes of diagrams: regular and irregular: ΓI = Γreg
I ∪

Γirreg
I

• The main contribution to the asymptotics of cov(σ2
t , σ2

0)

comes from regular diagrams:

wγ(t) ∼ c2(γ)t2d−1 (γ ∈ Γreg
I ), wγ(t) = o(t2d−1) (γ ∈ Γirreg

I )



and

∑
(k)4

∑reg

γ∈I(k)4
µγwγ(t) ∼ c2t2d−1,

∑
(k)4

∑irreg

γ∈I(k)4
µγwγ(t) = o(t2d−1)

• Regular diagrams have a simple graphical structure:

Fig. 2

• The proof is rather technical

3.2.4 Stochastic volatility model: EGARCH

• General SV:

Xt = σtζt, {ζt} ∼ IID(0,1), 0 < σt ∼ Ft−1

where Ft−1 is the “past information set” (a sigma-field s.t.

Xs, ζs, s ≤ t− 1 are Ft−1−measurable and ζs, s ≥ t are indepen-

dent of Ft−1)

• Note E[Xt|Ft−1] = 0, var[Xt|Ft−1) = σt

• It is often assumed

σt = f(ηt)



where f is a (nonlinear) function and {ηt} is a stationary pro-

cess (linear or Gaussian)

• LM SV model (Harvey, 1998), (Breidt et al., 1998):

σt = eηt, ηt = a +

∞∑
j=1

ajξt−j, {(ζt, ξt)} ∼ IID,

aj ∼ caj
d−1, j →∞, ca > 0, 0 < d < 1/2

• Case ξj = g(ζj) corresponds to the Exponential Generalized

ARCH (EGARCH) model of Nelson (1991)

• The natural decomposition:

|Xt|δ = [|ζt|δ − E|ζt|δ]eδηt︸ ︷︷ ︸
mart. differ.

+ cδe
δηt, cδ := E|ζt|δ

• Reduces studying LM properties of {|Xt|δ} to those of the

exponential process {eδηt}

• For {ζt} = {ηt} ∼ N(0,1) [Gaussian case, Harvey (1998)],

cov(|X0|δ, ‖Xt|δ = (E|X0|δ)2(eδ2cov(η0,ηt) − 1)

∼ const. cov(η0, ηt) ∼ const. t2d−1, t →∞



• Similar result when {ηt} is a linear process (Surgailis and

Viano, 2002)

• Normalized partial sums of {|Xt|δ} tend to fBM

3.3 ON/OFF and other duration based LM models

• LM can arise in duration based queueing and traffic models

when inter-arrival times are heavy tailed

• There is an extensive probabilistic and engineering literature

dealing with the phenomenon of self-similarity and long-range

dependence in network traffic. See the monograph (Park and

Willinger, 2000) and the references herein

• The simplest models: ON/OFF model and the infinite

source Poisson model



3.3.1 ON/OFF model

ON/OFF model: stationary process {Xt, t ≥ 0} alternates be-

tween two states: ON state: Xt = 1 and OFF state: Xt = 0.

The durations

Uon
i > 0, Uoff

i > 0, i = 1,2, · · ·

are all independent, have tail distribution functions

F̄ on(x) := P(Uon > x), F̄ off(x) := P(Uoff > x), x > 0.

and finite means µon = EUon, µoff = EUoff.

Stationary version. Define the initial times Uon
0 , Uoff

0 ≥ 0 inde-

pendent of {Uon
i , Uoff

i , i ≥ 1} by

P(Uon
0 ≥ x) := µ−1

∫ ∞

x

F̄ on(y)dy,

P(Uoff
0 ≥ x) := µ−1

∫ ∞

x

F̄ off(y)dy, µ := µon + µoff

and define the alternating point process

0 ≤ Uon
0 < T0 < T0 + Uon

1 < T1 + Uon
2 < · · · ,



where

T0 := Uon
0 + Uoff

0 , Tn := T0 +

n∑
i=1

(Uon
i + Uoff

i ), n ≥ 1.

Then

Xt := 1(Uon
0 > t) +

∞∑
n=0

1(Tn ≤ t < Tn + Uon
n+1), t ≥ 0.

• Assume that ON durations are heavy tailed:

F̄ on(x) ∼ con

xαon
, x →∞, 1 < αon < 2, con > 0,

and OFF durations have lighter tails: F̄ off(x) = o(F̄ on(x)).

Then the ON/OFF process has covariance LM:

cov(X0, Xt) ∼
( con µ2

off

(αon − 1)µ3

) 1

tαon−1
, t →∞. (20)

• Note
∫ ∞
0
|cov(X0, Xt)|dt = ∞

• The proof of (20) in Heath et al. (1998) uses renewal

methods



• Intuitively: LM in (20) is due to a few very long ON dura-

tions. E.g., the initial duration

P(Uon
0 ≥ t) ∼ con

µ

∫ ∞

t

y−αondy =
con

µ(αon − 1)
t−(αon−1)

decays at the same rate as the r.h.s. of (20).

• On the other hand, “partial sums” (integrated) ON/OFF

process tends to an asymmetric α−stable Lévy process Lα(t), t ≥
0:

T−1/α

∫ tT

0

(Xu − EXu)du →FDD Lα(t) (21)

• According to the terminology of Lecture 1, the above

ON/OFF process has distributional short memory

• Intuitively, (21) can be explained that
∫ T

0
(Xu − EXu)du ≈

∑
i=NT

(Uon
i − EUon

i ), where NT is a random number of ON

intervals in [0, T ] and NT ∼ T/µ:

NT/T → 1

µ



• Therefore,
∫ T

0
(Xu −EXu)du is approximately a sum of T/µ

i.i.d. r.v.’s in the domain of attraction of α−stable law and

has α−stable limiting distribution

• The above facts have important implications in network

traffic modeling: The cumulative traffic from a large number

M of independent sources is described as a sum of M indepen-

dent ON/OFF processes with heavy tailed inter-arrival times.

The integrated aggregated ON/OFF process

AM(t) :=

∫ t

0

M∑
i=1

X(i)
u du

describes the total accumulated work in the system. Depend-

ing on the mutual rate of growth of M and T , the normalized

process AM(Tt), t ≥ 0 tends either to a α−stable Lévy process,

or a fractional Brownian motion (Mikosch et al., 2002)

• Similar results (covariance LM and distributional SM (Lévy

process): AR(1) model with randomly switching coefficient:

Xt = atXt−1 + ζt



where the processes {ζt} ∼ IID(0,1) and {at} are indepen-

dent and at switches from 0 to 1 and back according to an

ON/OFF process with heavy-tailed inter-arrival times (Leipus

and Surgailis, 2003)



3.3.2 Infinite source Poisson model

Infinite source Poisson model (M/G/∞ queue): transmissions

start at Poisson points Γk, k ∈ Z and have random lengths

Uon
k . The process N(t) is the number of active transmissions

at time t ∈ R

More precisely:

· · · < Γ−1 < 0 < Γ0 < Γ1 < · · ·

is a rate λ > 0 homogeneous Poisson process on R, and {Uon
k >

0, k ∈ Z} is an i.i.d. sequence with common distribution F on,

independent of the Poisson process. Then

N(t) :=
∑
k∈Z

1(Γk ≤ t < Γk + Uon
l )

= ν(At), At := {(s, y) ∈ R× R+ : s ≤ t < s + y}

where

ν = Poisson random measure on R× R+

with mean measure λLeb× F on



We have

cov(N(0), N(t)) = cov(ν(A0), ν(At))

= var(ν(A0 ∩At))

= Eν(A0 ∩At)

=

∫

A0∩At

λds× F on(dx)

= λ

∫ ∞

t

F on(s)ds

∼ con

∫ ∞

t

s−αonds

=
( con

αon − 1

)
t−(αon−1), t →∞.

• Thus, for 1 < αon < 2 the Infinite source Poisson model

{N(t), t ∈ R} has covariance LM

• Aggregation of independent M/G/∞ queues is equivalent

to letting the intensity λ = λ(T ) → ∞ at certain rate when

T →∞

• the total accumulated input is defined by

AT(t) :=

∫ t

0

Nλ(T )(u)du



• Limit results for the Infinite source Poisson model are very

similar to those for the ON/OFF process: Depending on the

growth of the connection rate of λ(T ), the normalized process

AT(t), t ≥ 0 tends either to a α−stable Lévy process, or a

fractional Brownian motion (Mikosch et al., 2002)

• Similarly as in the ON/OFF model, long memory is due to

a small number of very long transmissions

• A similar model: the error duration model of Parke (1999).

The only difference is that the latter model assumes that

transmissions start at deterministic times k ∈ Z instead of

Poisson times.

• Another related and simple model: renewal reward process

• Mathematically more difficult: queues with restrictions, e.g.

M/G/k

• Statistical inference for LM duration models [estimation

of LM intensity, empirical d.f.] is rather peculiar and less

developed
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Berkes, I. and Horváth, L. (2003) Asymptotic results for long

memory LARCH sequences. Ann. Appl. Probab. 13,

641–668.

Breidt, F.J., Crato, N. and de Lima, P. (1998) On the detec-

tion and estimation of long memory in stochastic volatil-

ity. J. Econometrics 83, 325–348.

Breuer, P. and Major, P. (1983) Central limit theorems for

nonlinear functionals of Gaussian fields. J. Multivariate

Anal. 13, 425–441.



Bollerslev, T. (1986) Generalized autoregressive conditional

heteroskedasticity. J. Econometrics 31, 307–327.

Bougerol, P. and Picard, N. (1992) Stationarity of GARCH

processes and some nonnegative time series.J. Econo-

metrics 52, 115–127.

Dehling, H. and Taqqu, M.S. (1989) The empirical process

of some long-range dependent sequences with an appli-

cation to U-statistics. Ann. Statist. 17, 1767–1783.

Dobrushin, R. L. and Major, P. (1979) Non-central limit

theorems for nonlinear functionals of Gaussian fields. Z.

Wahrsch. Verw. Gebiete 50, 27–52.

Engle, R.F. (1982) Autoregressive conditional heteroskedas-

ticity with estimates of the variance of UK inflation.

Econometrica 50, 987-1008.

Giraitis, L., Robinson, P.M. and Surgailis, D. (2000) A model

for long memory conditional heteroskedasticity. Ann.

Appl. Probab 10, 1002–1024.



Giraitis, L. and Surgailis, D. (2002) ARCH-type bilinear mod-

els with double long memory. Stoch. Process. Appl.

100, 275–300.

Giraitis, L., Leipus, R., Robinson, P.M. and Surgailis, D.

(2004) LARCH, leverage and long memory. J. Financial.

Econometrics 2, 177–210.

Giraitis, L., Leipus, R. and Surgailis, D. (2009) ARCH(∞)

models and long memory properties. In: T.G. Andersen,

R.A. Davis, J.-P. Kreiss, T. Mikosch (Eds.) Handbook

of Financial Time Series, pp. 71–84. Springer-Verlag.

Giraitis, L., Leipus, R. and Surgailis, D. (2010) Aggregation

of random coefficient GLARCH(1,1) process. Econo-

metric Theory 26, 406–425.

Giraitis, L., Koul, H.L. and Surgailis, D. Large Sample Infer-

ence for Long Memory Processes (forthcoming)

Giraitis, L., Kokoszka, P.S. and Leipus, R. (2000) Stationary

ARCH models: dependence structure and central limit



theorem. Econometric Theory 16, 3–22.

Harvey, A. (1998) Long memory in stochastic volatility. In:

Forecasting Volatility in the Financial Markets (eds. J.

Knight and S. Satchell), pp. 307–320. Butterworth and

Heineman.

Heath, D., Resnick, S. and Samorodnitsky, G. (1998) Heavy

tails and long range dependence in ON/OFF processes

and associated fluid models. Math. Oper. Res. 23,

145–165.

Ho, H.-C. and Hsing, T. (1996) On the asymptotic expan-

sion of the empirical process of long memory moving

averages. Annals of Statistics 24, 992–1024.

Hurvich, C.M. and Soulier, Ph. (2009) Stochastic volatility

models with long memory. In: Andersen, T.G., Davis,

R.A., J.-P. Kreiss, J.-P. and Mikosch, T., (eds.), Hand-

book of Financial Time Series, 345–354. Springer-Verlag,

Berlin Heidelberg.
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4. Estimation of long memory parameter

I. Parametric estimation:

4.1a General asymptotic theory for linear time-series

4.1b Parametric Whittle estimator (approximate maximum

likelihood)

4.1c Example: estimation of ARFIMA(0, d,0) model

II. Semiparametric estimation:

4.2a Local Whittle semiparameteric estimator

4.2b Log-periodogram semiparametric estimator (Geweke and

Porter- Hudak estimator)

4.2c Increment Ratio estimator



I. Parametric estimation

4.1a General asymptotic theory for linear time-series

Example: parametric estimation in short memory ARMA(p, q)

Xt + a1Xt−1 + · · ·+ apXt−p = ζt + b1ζt−1 + · · ·+ bqζt−q

(1)

where:

• polynomials A(z) =
∑p

j=0
ajzj, B(z) =

∑q

j=0
bjzj have no

zeros in the unit circle {|z| ≤ 1}

• {ζj} ∼ WN(0, σ2)

Parametrization: ARMA(p, q) model (1) is specified by p +

q + 1 parameters σ, a1, · · · , ap, b1, · · · , bq; σ is called the scale

parameter

Denote:

θ = (a1, · · · , ap, b1, · · · , bq)



Parameter set: We suppose that the true value θ0 of parameter

θ is an inner point of a closed parameter set

Θ = I1 × · · · × Ip+q ⊂ Rp+q

where Ij are closed intervals

Spectral density:

f(λ) =
σ2

2π

∣∣∣∣
B(eiλ)

A(eiλ)

∣∣∣∣
2

is a continuous bounded function on Π := [−π, π], completely

specified by parameters σ, θ

Problem: to consistently estimate parameters σ, θ from obser-

vations X1, · · · , Xn

Classical time series analysis (LS, MLE, Yule-Walker estima-

tors)

General linear models (Hannan (1973))

Consider general moving average process:

Xt =
∞∑

j=0

bj(θ)ζt−j = ζt +
∞∑

j=1

bj(θ)ζt−j (2)



where:

• b0(θ) = 1,
∑∞

j=0 b2j (θ) < ∞

• {ζj} ∼ WN(0, σ2)

• coefficients aj(θ) are uniquely determined by finite

dimensional parameter θ ∈ Θ ⊂ Rp

• (2) includes ARMA(p, q), ARFIMA(p, d, q)

• spectral density:

f(λ) =
σ2

2π

∣∣∣1 +
∑∞

j=1
bj(θ)e

iλj
∣∣∣
2
≡ σ2kθ(λ)

where

kθ(λ) =
1

2π

∣∣∣1 +
∑∞

j=1
bj(θ)e

iλj

∣∣∣
2

• condition b0(θ) = 1 (”standard parametrization”) allows to

estimate θ and σ separately



• ”standard parametrization” a0(θ) = 1 can be also charac-

terized in terms of spectral density: it is equivalent to∫

Π

log f(λ)dλ ≡ 2π logσ2, or

∫

Π

log kθ(λ)dλ ≡ 0, ∀θ ∈ Θ

σ2: the variance of the best one step linear prediction

Whittle’s estimates:

Whittle’s objective function:

Q̃n(θ) :=

∫

Π

In(λ)

kθ(λ)
dλ,

where

In(λ) :=
1

2πn
|

n∑

j=1

eijλXj|2

is the periodogram (we assume EXt = 0)

Discretized version of Whittle’s objective function:

Q̂n(θ) :=
2π

n

n∑

j=1

In(λj)

kθ(λj)



where λj := 2πj
n

, j = 1,2, · · · , n are called Fourier fre-

quencies

θ̃n: minimizes Q̃n(θ) over θ ∈ Θ

θ̂n: minimizes Q̂n(θ) over θ ∈ Θ

both θ̃n and θ̂n are called Whittle’s estimates of θ0

Theorem 4.1 (Hannan (1973)): If 1/f is contin-

uous on Π (at θ = θ0) then

θ̃n → θ0, θ̂n → θ0, a.s.

• The class of time series which can be represented as moving

average (2) with uncorrelated noise {ζj} is very wide (see Wold

decomposition)

• because of this universality, asymptotic properties of Whit-

tle’s estimates in the large class might be not very good

• Hannan’s consistency result does not give converges rates

of Whittle’s estimators nor asymptotic normality



• additional restrictions on the model are necessary

Additional model assumptions:

X1, · · · , Xn is a sample from a stationary Gaussian

process {Xt, t ∈ Z} with spectral density

f(λ) = σ2kθ(λ)

Parameters σ > 0, µ = EXt and θ ∈ Θ are unknown,

Θ ⊂ Rp is a compact set. The function kθ(·) is assumed

to be known (up to the parameter θ) and satisfies the

”standard parametrization” condition:
∫

Π
log kθ(λ)dλ ≡ 0 (∀θ ∈ Θ) (3)

• unknown θ = (θ1, · · · , θp) can include the long

memory parameter d



Example 1: ARFIMA(p, d, q)

f(λ) =
σ2|B(eiλ)|2

2π|2 sin(λ/2)|2d|A(eiλ)|2

where:

• −1/2 < d < 1/2 is the memory parameter

•: σ > 0 is the scale parameter

• A(z) =
∑p

j=0
ajzj, B(z) =

∑q

j=0
bjzj are autoregressive poly-

nomials of known orders p, q respectively; a0 = b0 = 1

Here,

θ = (d, a1, · · · , ap, b1, · · · , bq) ∈ Θ ⊂ Rp+q+1

and

kθ(λ) =
|
∑q

j=0
bjeijλ|2

2π|2 sin(λ/2)|2d|
∑p

j=0
ajeijλ|2

• ”standard normalization” (3) holds because of a0 = b0 = 1

and (1− z)−d|z=0 = 1

Example 2: FEXP(p, d) (”fractional exponential”)

f(λ) =
σ2

2π

∣∣1− eiλ
∣∣−2d

exp{1 +

p∑
j=2

θj cos(jλ)}



where:

• σ > 0 is the scale parameter

• 0 ≤ d < 1/2 is the memory parameter

• θ = (d, θ2, · · · , θp) ∈ Θ ⊂ Rp

• kθ(λ) =
1

2π

∣∣1− eiλ
∣∣−2d

exp{1 +

p∑
j=2

θj cos(jλ)}

• ”standard normalization” (3) holds

4.1b Parametric Whittle estimate (approximate max-

imum likelihood)

Recall known facts:

• Likelihood function: L(θ;x1, · · · , xn) = joint probability den-

sity of observations X1, · · · , Xn, as the function of unknown

parameter θ ∈ Θ

• gives the likelihood of the event X1 = x1, · · · , Xn = xn

• if X1, · · · , Xn are i.i.d. with common probability density

p(x; θ) then L(θ;x1, · · · , xn) = p(x1; θ) · · · p(xn; θ)



• the value θ̂ which maximizes the likelihood L(θ;X1, · · · , Xn)

for a given sample X1, · · · , Xn is called the maximum likelihood

estimator (MLE) of θ

• For i.i.d. or weakly dependent {Xt}, the MLE is usually
√

n−consistent, asymptotically normal and efficient (has the

smallest asymptotic variance)

• for large n, the MLE is the ”best” (other estimators might

be just as good but not better)

Gaussian likelihood (exact and approximate)

Autocovariance:

γ(t) = cov(X0, Xt) = σ2rθ(t)

where

rθ(t) =

∫

Π

eitλkθ(λ)dλ.

Set

Rθ = (rθ(t− s))t,s=1,···,n

Then σ2Rθ = (cov(Xt, Xs))t,s=1,···,n



Exact likelihood:

L(θ;X1, · · · , Xn) =
1

(2π)1/2|σ2Rθ|1/2
exp{− 1

2σ2
(X−µ)′R−1

θ (X−µ)},

(X − µ)′ = (X1 − µ, · · · , Xn − µ)′

Maximization w.r.t. µ (σ and θ fixed) gives µ̂ = X̄ = n−1
∑n

t=1
Xt

The MLE of (σ, θ) maximizes the exact log-likelihood:

− 1

2n
logσ2− 1

2n
log |det(Rθ)|−

1

2nσ2
(X−X̄)′R−1

θ (X−X̄)

• maximizing exact MLE involves inverting of Rθ = (rθ(t− s))t,s=1,···,n

• a complicated task both analytically and computationally

(n large!)

• exact Gaussian MLE is sensitive to deviations from Gaus-

sianity

Approximate maximum likelihood:



The approximation involves two steps:

Step 1: (under some additional regularity conditions), as

n →∞

1

n
log |detRθ| →

1

2π

∫

Π

log kθ(λ)dλ ≡ 0 (∀θ ∈ Θ)

due to the standard normalization assumption (3)

Step 2: Replacement of the matrix

R−1
θ =

(∫

Π
ei(t−s)λkθ(λ)dλ

)−1

t,s=1,n

by the n× n−matrix

Sθ =

(
1

2π

∫

Π
k−1

θ (λ)ei(t−s)λdλ

)

t,s=1,n

The approximate (Whittle’s) likelihood is

−1

2
logσ2 − 1

2nσ2
(X − X̄)′Sθ(X − X̄)



Minimization of the approximate likelihood w.r.t. (θ, σ) re-

duces to the minimization of the objective function:

Q̃n(θ) =
1

n
(X − X̄)′Sθ(X − X̄) =

∫ π

−π

I∗n(λ)

kθ(λ)
dλ

where

I∗n(λ) =
1

2πn

∣∣∣
∑n

t=1
eitλ(Xt − X̄n)

∣∣∣
2

is the periodogram of centered observations X1−X̄, · · · , Xn−X̄

The discretized Whittle’s objective function is

Q̂n(θ) = (2πn)−1
n∑

j=1

I∗n(λj)

kθ(λj)
= (2πn)−1

n∑

j=1

In(λj)

kθ(λj)

(4)

• the last equality follows from I∗n(λj) = In(λj) for λj =

2πj/n, j = 1, . . . , n

• this follows from
∑n

j=1
eitλj = 0 for any integer t

• in other words: the periodogram is self-centring at Fourier

frequencies and the mean-correction is automatically incorpo-

rated into the discretized Whittle log-likelihood



Theorem 4.2 (Fox and Taqqu (1996))

Suppose that {Xt} is a stationary Gaussian LM pro-

cess with spectral density f(λ) = σ2kθ(λ), where

kθ(λ) = gθ(λ)|λ|−2d

where gθ(λ) is continuous in (θ, λ), gθ(0) > 0, the

parameter θ includes the long memory parameter 0 < d < 1/2

and belongs to a compact set Θ ⊂ Rp, and the true parameter

θ0 is an inner point of Θ.

Then under some additional regularity conditions on

gθ(λ), the parametric Whittle’s estimates θ̃n and θ̂n

(= the discretized version) are
√

n−consistent and

asymptotically normal:

√
n(θ̃n − θ0)√
n(θ̂n − θ0)

}
→law N (

0, W−1
θ0

)

where N (0, W−1
θ0

) denotes the Gaussian vector with zero mean



and covariance matrix W−1
θ0

The p× p−matrix Wθ0
has entries

wθ0
(k, j) =

1

4π

∫

Π

∂

∂θk

log kθ0
(λ)

∂

∂θj
log kθ0

(λ)dλ

Comments:

• scale parameter σ2 can be consistently estimated by either

Q̃n(θ̃n) or Q̂n(θ̂n):

Q̃n(θ̃n) → σ2, Q̂n(θ̂n) → σ2, a.s.

• Under conditions of Thm 2 (Gaussian set-up), Whittle’s esti-

mates θ̃n and θ̂n are asymptotically efficient (have the smallest

asymptotic variance)

• The fact that {Xt} has long memory does not affect neither

the consistency rate
√

n nor the limit distribution of Whittle’s

estimates (the limit covariance matrix Wθ0 is the same as in

short memory case)



• to construct confidence intervals, the unknown covariance

matrix Wθ0 can be replaced by

ŵ(i, k) =
1

n

n∑
j=1

∂

∂θi
log kθ̂n

(λj)
∂

∂θk

log kθ̂n
(λj)

• Giraitis and Surgailis (1990) extended the result to LM mov-

ing average time series {Xt} with {ζj} ∼ IID(0, σ2). In this

case, Whittle’s estimator is also
√

n consistent and asymptot-

ically normal, but the limit matrix Wθ0 contains an additional

term

• The proof of the CLT for Whittle’s estimator is based on

a CLT for Toeplitz quadratic forms

Qn =

n∑
t,s=1

qt−sXtXs

where {Xt} is a LM process as above and qt = (1/2π)
∫
Π
eitλk−1

θ (λ)dλ

are coefficients with the property
∑
|t|≤n

qt → (1/2π)

∫

Π

(∑
t∈Z

eitλ
)
k−1

θ (λ)dλ

= k−1
θ (0) = 0 (5)



since k−1
θ is proportional to f−1 and f(0) = ∞ under LM

• Condition (5) compensates for LM in {Xt} and helps to

prove the CLT for Qn with normalization n1/2

• Fox and Taqqu (1995) prove asymptotical normality of

n−1/2Qn by showing that cumk(n−1/2Qn) → 0 ∀ k ≥ 3

• For linear (non-gaussian) {Xt}, a different approach is

needed

4.1c Example Whittle’s estimation of ARFIMA(0, d,0)

parameters

X1, · · · , Xn is a sample from a stationary Gaussian ARFIMA(0, d,0),

with fractional differencing parameter 0 < d < 1/2

Spectral density:

f(λ) =
σ2

2π|2 sin(λ/2)|2d

ARFIMA(0, d,0) is completely specified by two parameters:

scale parameter σ > 0 and long memory parameter 0 < d < 1/2



In particularly,

f(λ) ∼ σ2

2π|λ|2d
(λ → 0)

In this case θ is the one dimensional parameter θ = d and the

parameter set Θ = [0,1/2] contains all possible values of d.

We assume that the true parameter d0 is an inner point of Θ,

i.e.

0 < d0 < 1/2

Then

f(λ) = σ2kd(λ), kd(λ) =
1

2π|2 sin(λ/2)|2d

ARFIMA(0, d,0) satisfies ”standard normalization ”condition:
∫

Π

log kd(λ)dλ = 0 for all d ∈ Θ = [0,1/2]

The (discrete) Whittle’s estimate d̂n of d minimizes the ob-

jective function σ̂n(d) in the interval d ∈ [0,1/2]:

d̂n = argmind∈[0,1/2]σ̂n(d),



where

σ̂n(d) =
2π

n

n∑
j=1

In(λj)

kd(λj)
=

4π2

n

n∑
j=1

|2 sin(λj/2)|2dIn(λj)

By Theorem 2,

√
n(d̂n − d0) →law N (0, w−1

d0
) (n →∞)

where wd0 is the scalar (1× 1−matrix):

wd0 =
1

4π

∫

Π

∂

∂d
log kd0(λ)

∂

∂d
log kd0(λ)dλ

=
1

4π

∫

Π

(log |2 sin(λ/2)|)2dλ

as log kd(λ) = − log(2π)−2d log |2 sin(λ/2)| is a linear function

in d

Hence

√
n(d̂n−d0) →law N (0, s2), s2 =

1

4π

∫

Π

(log |2 sin(λ/2)|)2dλ

The scale parameter σ2 can be estimated consistently by

σ̂n(d̂n) =
4π2

n

n∑
j=1

|2 sin(λj/2)|2d̂nIn(λj)



• the asymptotic variance s2 does not depend on unknown

parameters d and σ

II. Semiparametric estimation

In semi-parametric set-up, the full parametric model of spec-

tral density

f(λ) = |λ|−2dg(λ)

of observations X1, · · · , Xn, is not specified (the function g(λ)

is not specified)

It is only assumed that

g(λ) → g(0) = c > 0 (λ → 0)

so that

f(λ) ∼ c|λ|−2d (λ → 0) (6)

• The parameters of interest are the memory parameter d ∈
(−1/2,1/2) and the ”scale” parameter c > 0

• These parameters specify the behavior of spectral density

at λ = 0 (low frequencies) only



• Many parametric models (ARFIMA(p, d, q), FEXP(p, d), fBN)

satisfy (6)

• For these models, the function g(λ) is fully specified up to

unknown finite-dimensional parameter and efficient parametric

Whittle’s estimate can be applied to estimate all unknown

parameters including the memory parameter d

• When f(λ) and g(λ) are correctly parameterized, the un-

known parameter d and other parameters can be precisely es-

timated, with rate
√

n

• However, if the model is misspecified (e.g. in ARFIMA(p, d, q)

the orders p, q are misspecified), parametric Whittle’s esti-

mates can be even inconsistent

• Semiparametric estimates can consistently estimate un-

known parameters d and cf when f(λ) and g(λ) are unspecified

away from zero frequency

• Semiparametric estimates can be also applied to parametric

models to estimate d, with some loss of efficiency



4.2a The Local Whittle semiparametric es-

timator (LWE)

• To define LWE, first consider the approximate log-likelihood

of a Gaussian process with spectral density f :

− 1

2π

∫

Π

(
log f(λ) +

In(λ)

f(λ)

)
dλ

• The above approximation of the quadratic form in the ex-

ponent of Gaussian density by
∫
Π

In(λ)
f(λ)

dλ is similar to Whittle’s

estimate

• Since the behavior of f near λ = 0 is only important [we

want to estimate the asymptotic parameters c and d only], the

above approximate log-likelihood is further simplified by:

- restricting the integral to low frequencies |λ| < λm := 2πm
n

, m →
∞, m/n → 0

- replacing f(λ) by c|λ|−2d



- replacing integration by summation over |λj| < λm

• The resulting approximate log-likelihood is

R(c, d) :=
1

m

m∑
j=1

{
log(cλ−2d

j ) +
In(λj)

cλ−2d
j

}
(7)

• The Local Whittle estimate minimizes the above objective

function:

(ĉn, d̂n) := argmin
{

R(c, d) : c ≥ 0, d ∈ [−1/2,1/2]
}

• It is easy (by taking the derivative w.r.t. c) to see that for

fixed d the minimum of R(c, d) is achieved by

c(d) :=
1

m

m∑
j=1

|λj|2dIn(λj)

• Replacing c in R(c, d) by c(d) and λj by 2πj/m yields

U(d) := R(c(d), d)

= log

(
1

m

m∑
j=1

j2dIn(λj)

)
− 2d

m

m∑
j=1

log j.



This yields

Definition 4.1 The Local Whittle estimate of pa-

rameters (c, d) is defined by

d̂n := argmin{U(d) : d ∈ [−1/2,1/2]},
ĉn := c(d̂n).

• LWE was proposed by Künsch (1987) and developed by

Robinson (1995b)

• Recent developments and simplified exposition: GKS (2011)

• LWE uses only periodogram ordinates belonging to a small

neighbourhood of the zero frequency λ = 0

• To achieve convergence rates, additional assumptions on

the bandwidth m are needed, e.g. m = O(n4/5/ logn)

• Increasing m reduces standard deviation but increases the

bias of LW



• Rate optimal choice of m depends on smoothness assump-

tions on g(λ) in the representation f(λ) = |λ|−2dg(λ)

• In practice the choice of m can be difficult

• Because the periodogram In(λj), 1 ≤ j < n is invariant to

the shift in the mean at Fourier frequencies, the local Whittle

objective function does not depend on unknown mean µ = EXt

Asymptotic results for LWE

• Consistency and rates under weak assumptions: Dalla et al.

(2006), including nonlinear models

• CLT for LWE: Robinson (1995a) for linear models (moving

averages with i.i.d. innovations)

Consider linear process

Xt = (1− L)−dYt, |d| < 1/2, Yt =

∞∑
j=0

ajζt−j, (8)

{ζt} ∼ IID(0,1),

∞∑
j=0

|aj| < ∞,

∞∑
j=0

aj 6= 0.



Spectral density of {Xt} in (8):

f(λ) = const.
|A(λ)|2

|1− e−iλ|2d
, A(λ) :=

∞∑
j=0

aje
−ijλ

• Satisfies f(λ) = |λ|−2dg(λ) with g(λ) ∼ const.|A(λ)|2 and

c = g(0) > 0

The following result is due to Robinson (1995b) with some

modifications by Dalla et al. (2006).

Theorem 4.3 Let {Xj} be a linear process of

(8). Then the LWE (ĉn, d̂n) are weakly consistent

estimates of parameters (c0, d0).

Assume in addition E|ζ0|4 < ∞ and that g(λ) :=

|A(λ)|2 (= the spectral density of {Yt}) satisfies the

Hölder condition on with exponent > 1/2 and the

following relation

g(λ) = c0+b|λ|β+o(|λ|β), λ → 0, 0 < β ≤ 2.



Then

d̂n − d0 = −1

2
Zm − 1

2
Bm + o(

1

m1/2
) + op((

m

n
)β),

where

√
mZm →law N (0,1),

Bm = λβ
m

b

c0

β

(1 + β)2
+ o((

m

n
)β).

• If the bandwidth m increases not too fast: m = o(n2β/(1+2β))

so that the bias Bm = o(m−1/2), the asymptotic distribution

of the LWE is standard normal:

2m1/2
(
d̂n − d0

)
→law N (0,1) (9)

• The semiparametric LWE of the long memory parameter

has a nice limiting distribution: asymptotically normal with a

limiting variance that is completely known

• A drawback of LWE (and other semiparametric estimators)

is the fact that the bandwidth m must increase more slowly



than n and therefore d̂n converges to d0 more slowly than
√

n-consistent estimators based on a fully parametric model

• If n is large (as in financial data analysis) then one can

choose m large enough to achieve acceptable precision. How-

ever, if the time series is of moderate length, m may be too

small enough for d̂n to achieve a good approximation of d0

• choice of bandwidth m: Henry and Robinson (1996)

• Other semiparametric estimators: log-periodogram estima-

tor (Geweke and Porter-Hudak, 1983), (Robinson, 1995a),

wavelet estimators (Abry et al., 1998), quadratic variations

(Istas and Lang, 1994), Increment Ratio (Surgailis et al.,

2008)

4.2b. Log-periodogram semiparametric es-

timator (Geweke and Porter-Hudak)

Similarly to the local Whittle estimate, the log-periodogram

estimator is based on the very well-established statistical prin-



ciple of ‘whitening’ the data and has particularly nice asymp-

totic statistical properties

These nice properties make the local Whittle and the log-

periodogram estimators the most popular estimates of the

long memory parameter

We again suppose that X1, · · · , Xn is a sample from a stationary

Gaussian sequence which satisfies the same assumptions as in

Section 4.2a

The idea: the asymptotic relation

f(λ) ∼ c|λ|−2d (λ → 0)

implies

In(λj) = f(λj)
In(λj)

f(λj)
∼ c|λj|−2drj (λj → 0)

or

log In(λj) ∼ log c− 2d logλj + log rj (λj → 0) (10)



for Fourier frequencies λj = 2πj/n → 0, where

rj =
In(λj)

f(λj)

In the case when the Gaussian process {Xt} has short memory

under mild regularity conditions the whitening principle says

that the ratios rj, j = 1,2, · · · are asymptotically i.i.d. and

therefore the log rj’s can be regarded as ”errors” in the ”linear

regression model” (10)

The asymptotic i.i.d. property of log rj’s is not true in the long

memory case; nevertheless the idea of (10) is very useful

The log-periodogram estimator of Geweke and Porter-Hudak

is defined as the least squares estimate of d in the “linear

regression model”:

log In(λj) = log c− 2d logλj + uj, j = 1, · · · , m (11)

• ”errors” uj ≈ log rj

• uj have nonzero asymptotic mean −η = −.5772... (Euler’s



constant)

• ”centered errors”:

u∗j = uj + η

• (11) can be rewritten as the linear regression with ”centered

errors”:

yj = α− 2dxj + u∗j , j = 1, · · · , m (12)

with

yj := log In(λj), α := log c− η, xj := logλj

• least squares’ in (12):

m∑
j=1

(yj − α + 2dxj)
2 → min

yielding

d̂ = −
∑m

j=1
(xj − x̄)yj

2
∑m

j=1
(xj − x̄)2

α̂ = ȳ + 2d̂ x̄



• since λj = 2πj/n so

xj − x̄ = logλj − 1

m

m∑
j=1

logλj = log j − 1

m

m∑
j=1

log j

setting

νj := log j − 1

m

m∑
j=1

log j

we finally obtain

The log-periodogram estimator of d is defined by:

d̂ :=

∑m

j=1
νj log In(λj)

2
∑m

j=1
ν2

j

• as
∑m

j=1
ν2

j ∼ m so

d̂ ∼ 1

2m

m∑
j=1

νj log In(λj)

Assumption (f) (on the spectral density):

f(λ) = |λ|−2dg(λ)



where −1/2 < d < 1/2 and the function g(λ) satisfies

g(λ) = c + O(|λ|2) (λ → 0)

Moreover, g(λ) is integrable:∫ π

−π

g(λ)dλ < ∞

Assumption (m) (on the bandwidth):

m →∞, m ≤ n4/5/ logn

• Robinson (1995a) showed (under Assumption (f)

and Assumption (m)) that the log-periodogram es-

timator is asymptotically normal:

m1/2(d̂− d0) ⇒ N

(
0,

π2

24

)
(13)

• (12) is very important and simple to use, applies in the long

memory case 0 < d < 1/2 and well as in short memory case

d = 0 and in the negative memory case−1/2 < d < 0



• the asymptotic variance π2/24 in (12) is independent of d

• Velasco (1999) generalized (12) to non-Gaussian moving

averages {Xt} with iid innovations



4.2c Increment Ratio (IR) statistic

For a real-valued function f = {f(t), t ∈ [0,1]}, ∆p,n
i f denotes

the p−order increment of f at i
n
, p = 1,2, · · · , i = 0,1, · · · , n−p.

Let

Rp,n(f) :=
1

n− p

n−p−1∑
k=0

|∆p,n
k f + ∆p,n

k+1f |
|∆p,n

k f |+ |∆p,n
k+1f |

, (14)

with the convention 0
0

:= 1. In particular,

R1,n(f) =
1

n− 1

n−2∑
k=0

∣∣f (
k+1

n

)
− f

(
k
n

)
+ f

(
k+2

n

)
− f

(
k+1

n

)∣∣
∣∣f (

k+1
n

)
− f

(
k
n

)∣∣ +
∣∣f (

k+2
n

)
− f

(
k+1

n

)∣∣.
(15)

Note the ratio on the right-hand side of (14) is either 1 or

less than 1 depending on whether the consecutive increments

∆p,n
k f and ∆p,n

k+1f have same signs or different signs; moreover,

in the latter case, this ratio generally is small whenever the

increments are similar in magnitude (“cancel each other”).

Clearly, 0 ≤ Rp,n(f) ≤ 1 for any f, n, p. Thus if limRp,n(f) exists

when n → ∞, the quantity Rp,n(f) can be used to estimate



this limit which represents the “mean roughness of f” also

called the p−th order IR-roughness of f below. We show

below that these definitions can be extended to sample paths

of very general random processes, e.g. stationary processes,

processes with stationary and nonstationary increments, Lévy

processes, and even ÃLq-processes with q < 1.

Some properties:

• f monotone =⇒ R1,n(f) = 1

• f smooth (absolutely continuous) =⇒ R1,n(f) → 1

• R1,n(f) smaller =⇒ f “more rough”

Discrete time processes: S., Teyssière, Vaičiulis (2008), Bružaitė

and Vaičiulis (2008), Vaičiulis, M. (2009)



Relation between the IR stat and zero crossings

Let Yn(t), t ∈ [0,1− 1
n
] be the linear interpolation of the “dif-

ferenced” sequence ∆1,n
j X = X(j+1

n
)−X( j

n
), j = 0,1, · · · , n−1:

Yn(t) = n
[
(
j + 1

n
−t)∆1,n

j X+(t− j

n
)∆1,n

j+1X
]
, t ∈ [

j

n
,
j + 1

n
),

j = 0,1, · · · , n− 2. Then, using Figure ?? as a proof,

R1,n(X) =
n

n− 1

n−2∑
j=0

∣∣meas
{

t ∈ [
j

n
,
j + 1

n
) : Yn(t) > 0

}

− meas
{

t ∈ [
j

n
,
j + 1

n
) : Yn(t) < 0

}∣∣

=
n

n− 1

n−2∑
j=0

∣∣
∫ j+1

n

j

n

(1(Yn(t) > 0)− 1(Yn(t) < 0))dt
∣∣.(16)

J
J

J
J
J

J
J
J

J
J

J
J
J

J
J
J

JJ

t

Yn( j

n
)

j

n

j+1

n

Yn( j+1

n
)

︸ ︷︷ ︸

U2

︸ ︷︷ ︸

U1

1



The proof of (16): follows by
|Yn(

j

n
)+Yn(

j+1
n

)|
|Yn(

j

n
)|+|Yn(

j+1
n

)| = n|U1 − U2|.

• Let ψ(x1, x2) := |x1+x2|/(|x1|+ |x2|), ψ0(x1, x2) := 1(x1x2 ≥
0). Clearly, the two quantities 1 − ψ(Yn(

j
n
), Yn(

j+1
n

)) and 1 −
ψ0(Yn(

j
n
), Yn(

j+1
n

)) both are strictly positive if and only if Yn

crosses the zero level in the interval [ j
n
, j+1

n
) but the former

quantity measures not only the fact but also the “depth” of

the crossing so that 1− ψ(Yn(
j
n
), Yn(

j+1
n

)) attains its maximal

value 1 in the case of a “perfect” crossing in the middle of

the interval [ j
n
, j+1

n
) (see Figure ??).



Asymptotic results for the IR statistic

Consistency

Following Dobrushin (1980), we say that X = {Xt, t ∈ R}
has a small scale limit Y (t0) at point t0 ∈ R if there exist a

normalization A(t0)(δ) →∞ when δ → 0 and a random process

Y (t0) = {Y (t0)
τ , τ ≥ 0} such that

A(t0)(δ) (Xt0+τδ −Xt0) →FDD Y (t0)
τ . (17)

• Related definitions: Falconer (2002, 2003): Y (t0) a tangent

process (at t0); Benassi et al. (1997)

• In many cases, A(t0)(δ) = δH(t0), 0 < H(t0) < 1 and the limit

tangent process Y (t0) is self-similar with index H(t0) (Falconer,

2003 or Dobrushin, 1980)

• A trivial example: deterministic differentiable X = f , with

A(t0)(δ) = 1/δ and Y (t0)
τ = f ′(t0)τ = tangent line



• If X satisfies a similar condition to (17), then the statistic

Rp,n(X) converges to the integral

Rp,n(X) →p

∫ 1

0

E

[
|∆p

0Y
(t) + ∆p

1Y
(t)|

|∆p
0Y

(t)|+ |∆p
1Y

(t)|

]
dt, (18)

where ∆p
jY

(t) = ∆p,1
j Y (t) =

∑p

i=0
(−1)p−i

(
p
i

)
Y (t)

j+i, j = 0,1 is

the corresponding increment of the tangent process Y (t) at

t ∈ [0,1)

• In the particular case when X has stationary increments,

relation (18) becomes

Rp,n(X) →p E

[
|∆p

0Y + ∆p
1Y |

|∆p
0Y |+ |∆p

1Y |

]
.



“Fractal” Gaussian processes

A typical example: FBM X = BH (0 < H < 1): self-tangent

for any t ∈ [0,1]

Rp,n(X) →a.s. Λp(H) (p = 1,2), (19)

where

Λp(H) := λ(ρp(H)),

λ(r) :=
1

π
arccos(−r) +

1

π

√
1 + r

1− r
log

(
2

1 + r

)
,

ρp(H) := corr(∆p
0BH ,∆p

1BH),

and where ∆1
j BH = BH(j + 1)− BH(j), ∆2

j BH = BH(j + 2)−
2BH(j +1)−BH(j) (j ∈ Z) are respective increments of FBM.

Moreover,

√
n(Rp,n(X)−Λp(H)) →law N (0,Σp(H)) if

{
p = 1, 0 < H < 3/4,

p = 2, 0 < H < 1.
(20)

The asymptotic variances Σp(H) in (20) are given by

Σp(H) :=
∑
j∈Z

cov

(
|∆p

0BH + ∆p
1BH |

|∆p
0BH |+ |∆p

1BH |
,
|∆p

jBH + ∆p
j+1BH |

|∆p
jBH |+ |∆p

j+1BH |

)
.



The graphs of Λp(H) and
√

Σp(H) (p = 1,2) are given in

Figures ?? and ??.
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• The difference in the range of the parameter H for p = 1 and

p = 2 in the CLT (20) are due to the fact that the second order

increment process (∆2
j BH , j ∈ Z) is a short memory stationary

Gaussian process for any H ∈ (0,1), in contrast to the first

order increment process (∆1
j BH , j ∈ Z) which has long memory

for H > 3/4.

Generalizations of (19) and (20) to Gaussian processes having

nonstationary increments are proposed in Section ??. Roughly

speaking, Rp,n(X), p = 1,2 converge a.s. and satisfy a central

limit theorem, provided for any t ∈ [0,1] the process X admits

a FBM with parameter H(t) as a tangent process (more precise

assumptions (A.1), (A.1)′ and (A.2)p are provided in Sec-

tion ??). In such frames, the limits in (19) are
∫ 1

0
Λp(H(t))dt

instead of Λp(H) and the asymptotic variances in (20) also

change. The case of Gaussian processes with stationary in-

crements is discussed in detail and the results are used to

define a
√

n−consistent estimator of H, under semiparametric

assumptions on the asymptotic behavior of the variogram or



the spectral density.



The main advantages of the IR statistic:

• Robustness to additive and multiplicative trends

The estimator Rp,n(X) essentially depends on local regular-

ity of the process X and not on possible “multiplicative and

additive factors” such as diffusion and drift coefficients or

smoothly multiplicative and additive trended Gaussian pro-

cesses. This property is important when dealing with finan-

cial data involving heteroscedasticity and volatility clustering.

Such a robustness property (also satisfied by the estimators

based on generalized quadratic variations of wavelet coeffi-

cients) represents a clear advantage versus classical parametric

Whittle or semi-parametric log-periodogram estimators.



• Applicability to various “fractional” processes (Lévy, diffu-

sions, . . . )

• Computational simplicity

Does not require any bandwidth or tuning parameters such

as the scales for estimators based on quadratic variations or

wavelet coefficients.

In the Gaussian case, an estimator of H based on R2,n(X) can

be extremely simply computed:

Ĥ(2)
n ' 1

0.1468

( 1

n− 2

n−3∑
k=0

|X k+2
n
− 2X k+1

n
+ X k

n
+ X k+3

n
− 2X k+2

n
+ X k+1

n
|

|X k+2
n
− 2X k+1

n
+ X k

n
|+ |X k+3

n
− 2X k+2

n
+ X k+1

n
|.−0.5174

)
.

In the R language, if X is the vector (X1
n
, X2

n
, · · · , X1),

Ĥ(2)
n ' (mean(abs(diff(diff(X[−1])) + diff(diff(X[−length(X)])))

/(abs(diff(diff(X[−1]))) + abs(diff(diff(X[−length(X)])))))− 0.5174)/0.1468.
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