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1. Review of basic properties of ID laws

1.1. Definition and first examples

Definition

A random vector X in Rd (or its distribution) is said to be
infinitely divisible (ID) if for every n ≥ 1 there exist iid random
vectors Yn,1, . . . ,Yn,n in Rd (possibly on a different probability
space) such that

X d
= Yn,1 + · · ·+ Yn,n.

Equivalently, a probability distribution µ on Rd is ID if for every
n ≥ 1 there exists a probability distribution µn on Rd such that

µ = µn ∗ · · · ∗ µn︸ ︷︷ ︸
n−times
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Easy to verify examples.

ID: Normal, Poisson, compound Poisson, geometric, negative
binomial, exponential, gamma, Cauchy, ...

Proof: Check that for every n, (φX (t))1/n is a characteristic
function, or otherwise.

Not-ID: binomial, uniform.
Any random vector with bounded range is not ID, unless is
constant.

p. 4



1.2. Class ID(Rd ) - basic properties

ID(Rd ) denotes the class of all ID distributions in Rd .

Proposition

(i) If µ1, µ2 ∈ ID(Rd ), then µ1 ∗ µ2 ∈ Rd

(ii) If µ ∈ ID(Rd ), then µ̂(u) 6= 0 for any u ∈ Rd

(iii) If µn ∈ ID(Rd ) and µn → µ, then µ ∈ ID(Rd )

(iv) If µ ∈ ID(Rd ) and V : Rd 7→ Rk is a linear transformation,
then µ ◦ V−1 ∈ ID(Rd )
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By (ii) there is a unique continuous function C : Rd 7→ C with
C(0) = 0 such that

µ̂(u) = exp(C(u)), u ∈ R.

The function C(u) is called the cumulant function of µ and is
denoted as

C(u) = Cµ(u) = log µ̂(u).

The famous Lévy-Khintchine formula gives a structural form of
cumulants of ID distributions.
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1.3. Lévy-Khintchine representation

Theorem (L-K representation)

Let X be an ID random vector X in Rd . Then there exits a unique
triplet (b,Σ, ν) such that

logE exp{i〈u,X 〉} = i〈b, u〉 − 1
2〈u,Σu〉 (1)

+

∫
Rd

(ei〈u,x〉 − 1− i〈u, τ(x)〉) ν(dx)

where u, b ∈ Rd , Σ is a nonnegative definite d × d matrix, and ν
is a measure on Rd with ν({0}) = 0 and

∫
Rd ‖x‖2 ∧ 1 ν(dx) <∞.

τ : Rd 7→ Rd is a fixed bounded measurable function such that
limx→0 ‖x‖−2(τ(x)− x) = 0.
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Theorem (L-K representation, continue)

Σ is called a Gaussian covariance matrix, ν a Lévy measure, and τ
a truncation function. Conversely, given (b,Σ, ν) and τ as above,
there is an X satisfying (1).

We will write X ∼ ID(b,Σ, ν)

The Lévy-Khintchine formula allows to write

X d
= G + Y

where G ⊥⊥ Y , G is Gaussian, G ∼ ID(0,Σ, 0), and Y is of a
Poissonian type, Y ∼ ID(b, 0, ν). This decomposition is very
helpful.
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Change of τ only affects b in the Lévy-Khintchine triplet and

bτ1 = bτ2 +

∫
Rd

(τ2(x)− τ1(x)) ν(dx).

Remark

Different forms of the truncation τ(x) appear in the literature.

(i) x
‖x‖2 + 1 ;

(ii) x1[0,1](‖x‖);

(iii) x
max{‖x‖, 1} ;

(iv) sin x ;
(v) x1[0,1](‖x‖) + x(2− ‖x‖)1(1,2](‖x‖).
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We will fix a truncation function proposed by Maruyama (1970). It
is well suited for ID processes.

τ(x) = [[x ]] =

( x1
|x1| ∨ 1 , . . . ,

xd
|xd | ∨ 1

)
,

x = (x1, . . . , xd ) ∈ Rd .
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1.4. Examples:

Poisson distribution with parameter λ:

µ̂(u) = exp(λ(eiu − 1)), ν = λδ1.

Compound Poisson distribution (on Rd):

µ̂(u) = exp(c(ρ̂(u)− 1)), ν = cρ.

Negative binomial with parameters c > 0 and p ∈ (0, 1):

µ̂(u) = pc(1− qeiu)−c , ν{k} = ck−1qk , k ∈ N, q = 1− p..

Gamma distribution with parameters α, β > 0:

µ̂(u) = (1− iα−1)−β, ν(dx) = βx−1e−αx1(0,∞)(x) dx
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ID distributions whose infinitely divisibility is difficult to prove:

Student’s t-distribution:

µ(dx) = c(1 + x2)−(α+1)/2 dx , α ∈ (0,∞)

Pareto distribution:

µ(dx) = c(1 + x)−α−11(0,∞)(x) dx , α ∈ (0,∞)
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ID distributions difficult to prove (continue):

Log-normal distribution:

µ(dx) = cx−1e−α(log x)21(0,∞)(x) dx , α ∈ (0,∞)

F-distribution:

µ(dx) = cxβ−1(1 + x)−α−β1(0,∞)(x) dx , α ∈ (0,∞)
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ID distributions difficult to prove (continue):

Half-Cauchy distribution:

µ(dx) = 2π(1 + x2)−11(0,∞)(x) dx , α ∈ (0,∞)

Weibull distribution:

µ(−∞, x ] =

{
1− e−xα x > 0
0 x ≤ 0,

0 < α ≤ 1.
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ID distributions difficult to prove (continue):

Logistic distribution:

µ(−∞, x ] = (1 + e−x )−1, x ∈ R

Gumbel distribution:

µ(−∞, x ] = e−e−x
, x ∈ R
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1.5. Lévy processes

Definition

A stochastic process {Xt}t≥0 taking values in Rd is called a Lévy
process if it has the following properties:
1. Starts from 0: X0 = 0 a.s.;
2. Independent increments: For any 0 ≤ t1 < · · · < tn, the

random variables Xt2 − Xt1 , . . . ,Xtn − Xtn−1 are independent;

3. Homogeneous increments: For any s < t, Xt − Xs
d
= Xt−s ;

4. Stochastic continuity: For any ε > 0,
P(‖Xt+s − Xt‖ > ε)→ 0 as s → 0.

5. Path property: Sample paths t 7→ Xt are right continuous
and have left limits a.s. Precisely,

P{ω : t → Xt(ω) is right continuous with left limits} = 1.
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Theorem

(i) {Xt}t≥0 is a Lévy process then Xt ∈ ID(Rd ) for all t.
Moreover, there exists a uniques Lévy-Khintchine triplet
(b,Σ, ν) such that Xt ∼ ID(tb, tΣ, tν) for all t.

(ii) Given a Lévy-Khintchine triplet (b,Σ, ν) there exists Lévy
process {Xt}t≥0 such that Xt ∼ ID(tb, tΣ, tν) for all t.
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Examples

Brownian motion in Rd : Xt ∼ ID(0, tΣ, 0)

Brownian motion with drift in Rd : Xt ∼ ID(tb, tΣ, 0)

Poisson process with parameter λ: Xt ∼ ID(tλ, 0, tλδ1)

Compound Poisson process in Rd : Xt ∼ ID(tb, 0, tν), where
ν is a finite measure and b depends on ν.
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2.6. Infinitesimal generator

Pt f (x) := Ef (x + Xt), f ∈ L∞(Rd ).

forms a contraction semigroup.
For every f ∈ C2

0 (Rd ) ∪ C3(Rd ) it’s generator can be evaluated as

Af (x) =
∂Pt f (x)

∂t
∣∣ t=0

= 〈b,∇f (x)〉+
1
2TrΣ∇

2f (x)

+

∫
Rd

(f (x + y)− f (x)− 〈∇f (x), [[y ]]〉)ν(dy)
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We reviewed

1 Definition and first examples
2 Class ID(Rd ) - basic properties
3 Lévy-Khintchine representation
4 Examples
5 Lévy processes
6 Infinitesimal generator
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2. Large deviations and concentration inequalities
2.1. Existence of g-moments of ID variables

A function g : Rd 7→ R+ is said to be log-subadditive if

g(x + y) ≤ Kg(x)g(y) ∀x , y ∈ Rd .

g is locally bounded when sup‖x‖≤r g(x) <∞, ∀ r > 0.

Theorem

Let g : Rd 7→ R+ be a log-subadditive locally bounded function,
and let X ∼ ID(b,Σ, ν) be a random variable in Rd . Then

Eg(X ) <∞ ⇐⇒
∫
{‖x‖>1}

g(x) ν(dx) <∞.

In other words, finiteness of a g-moment of X is equivalent to the
finiteness of the g-moment of ν|{‖x‖>1}.
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For example, g(x) = ‖x‖p (p > 0), g(x) = exp(‖x‖β) (β ∈ (0, 1])
are log-subadditive. Log-subadditive functions have at most
exponential growth, e.g.

g(x) ≤ A exp(B‖x‖), x ∈ E,

for some positive constants A,B.

Hence g(x) = exp(‖x‖ log+ ‖x‖) is not log-subadditive.

Proof of the above theorem is in Sato’s book, Chapter 5.25.

Analogous result holds for Banach spaces, see de Acosta (1980).
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2.2. Estimation of moments

Let X ∼ ID(0, ν, b) be a mean zero random variable in Rd . We
have by differentiating of characteristic function

E‖X‖2 =

∫
Rd
‖x‖2 ν(dx).

E‖X‖4 =

∫
Rd
‖x‖4 ν(dx) + (

∫
Rd
‖x‖2 ν(dx))2

+

∫
Rd×Rd

〈x , y〉2 ν(dx)ν(dy).

In a heavy tailed case we have E‖X‖2 =∞ and usually
E‖X‖ <∞. How to estimate the latter quantity in terms of ν?
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Theorem (M.B. Marcus, JR (2001))

Let X ∼ ID(0, ν, b) be a mean zero random variable in Rd . Let
` = `(ν) be a unique solution of the equation∫

Rd
‖`−1x‖2 ∧ ‖`−1x‖ ν(dx) = 1.

Then
(0.25) `(ν) ≤ E‖X‖ ≤ (2.125) `(ν).

If ν is symmetric, the the upper bound constant can be decreased
to 1.25.

Note: The above result was proved for random variables in Hilbert
spaces.
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Theorem (JR, M. Turner (2011))

Let X ∼ ID(0, ν, b) be a mean zero random variable in Rd . Let
p ≥ 1 and ` = `(ν) be a unique solution of the equation

`−2
∫
{‖x‖≤`}

‖x‖2 ν(dx) + `−p
∫
{‖x‖>`}

‖x‖p ν(dx) = 1.

Then
(0.25) `(ν) ≤ (E‖X‖)1/p ≤ K (p) `(ν).

If 1 < p < 2, then K (p) ≤ 2.3.

Note: The above result was proved for random variables in Hilbert
spaces.
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2.3. Asymptotic behavior of the norm

Theorem (JR (1995))

Let X ∼ ID(b, 0, ν), where ν 6= 0 has bounded support in Rd . Let

R := inf {r > 0 : ν{x : ‖x‖ > r} = 0}

and
p := ν{x : ‖x‖ = R}.

Then
E exp

{
R−1‖X‖ log+(α‖X‖)

}
<∞

for every α ∈ (0, (epR)−1). (0−1 =∞.)

Methods: isoperimetric inequalities (see Talangrand (1989)), or
hypercontractivity (see Kwapień-Szulga (1991)), combined with a
technique similar to découpage de Lévy combined with certain
methods of de Acosta.

p. 26



Theorem (Large Deviations, JR (1995))

Let X ∼ ID(b,Σ, ν), where ν 6= 0 has bounded support in Rd .
Let R be as above. Then

lim
t→∞

logP{‖X‖ > t}
t log t = −R−1.

If ν has unbounded support, then the above limit equals 0.

Note: The above was proved for Banach space valued random
variables.

Corollary

Let X be as above. If E exp{‖X‖β} <∞ for some β > 1, the X
is Gaussian; if this holds for β > 2, then X is nonrandom.
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2.4. Concentration inequality

Theorem (Houdré (2002))

Let X ∼ ID(0, ν, b) be a random variable in Rd with Lévy measure
ν of bounded support. Let R be as above and
V 2 =

∫
Rd ‖x‖2 ν(dx). Then for every Lipschitz function

f : Rd 7→ R with ‖f ‖Lip ≤ 1 and t > 0

P(f (X )− Ef (X ) ≥ t) ≤ exp
{
t
R −

(
t
R +

V 2

R2

)
log
(
1 +

Rt
V 2

)}

Corollary

Under above notation, for every θ < R−1

Eeθ|f (X)| log+ |f (X)| <∞.
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2.5. Covariance Representation

Theorem (C. Houdré, V. Pérez-Abreu, D. Surgailis (1998))

Let X ∼ ID(b,Σ, ν) be a vector in Rd such that E‖X‖2 <∞.
Let f , g : Rd 7→ R be Lipschitz. Then

Cov(f (X ), g(X ))

=

∫ 1

0
Es

∫
Rd

(f (Y + x)− f (Y ))(g(Z + x)− g(Z )) ν(dx)ds

where the expectation is with respect to probability measure Ps on
R2d such that (Y ,Z ) ∼ ID(0, νs , bs), where bs = (b, b) and
νs = sν1 + (1− s)ν0, s ∈ [0, 1]. Here
ν0(du, dv) = ν(du)δ0(dv) + δ0(du)ν(dv) is concentrated on the
two main ’axes’ of R2d and µ1(du, dv) is the push-forward of ν to
the main diagonal of R2d , (u, u) ∈ R2d .
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Notice that

∀s ∈ [0, 1], under Ps , Y and Z have the same distribution as X

Y ⊥⊥ Z under P0, and

Y = Z under P1.

p. 30



2.6. Application of the covariance representation to
concentration

Let f : Rd 7→ R be Lipschitz with ‖f ‖Lip ≤ 1, and let Eet‖X‖ <∞,
t ∈ (0, t0). Let g(x) = etf (x). Assume for a moment that f is
bounded, so that g is also Lipschitz, and that Ef (X ) = 0.

Consider the Laplace transform L(t) of f (X ), L(t) = Eetf (X).

d
dt L(t) = Ef (X )etf (X) = Cov(f (X ), g(X ))
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By the covariance representation

d
dt L(t) =

∫ 1

0
Es

∫
Rd

(f (Y + x)− f (Y ))(etf (Z+x) − etf (Z)) ν(dx)ds

≤
∫ 1

0
Esetf (Z)

∫
Rd
|f (Y + x)− f (Y )|(et|f (Z+x)−f (Z)| − 1) ν(dx)ds

≤
∫ 1

0
Esetf (Z)

∫
Rd
‖x‖(et‖x‖ − 1) ν(dx)ds = L(t)h(t),

where
h(t) :=

∫
Rd
‖x‖(et‖x‖ − 1) ν(dx).

Thus L′(t)

L(t)
≤ h(t), which yields

Eetf (X) = L(t) ≤ exp(

∫ t

0
h(s) ds), t ∈ (0, t0).
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By the standard Cramér method in large deviations

P(f (X ) ≥ a) ≤ exp(−
∫ a

0
h−1(s) ds)

Now once can remove restrictions on f to get

P(f (X )− Ef (X ) ≥ t) ≤ exp(−
∫ t

0
h−1(s) ds).

If ν has bounded support, we can bound h easily to get the tail
bound given on a previous slide (for finite dim spaces and extend
to Banach spaces). It can be applied to other ID random vectors
as well (see Houdré (2002)).

For current results on integrability of seminorms of chaos variables
see Andreas Basse (2009).
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We covered the following:
1 Existence of g-moments of ID variables
2 Estimation of moments
3 Asymptotic behavior of the norm
4 Concentration inequality
5 Covariance representation
6 Application of the covariance representation to concentration
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3. ID random measures and stochastic integration

3.1 Lévy processes and random measures
Given a real valued Lévy process {Xt}t≥0, for any A ∈ Bb(R+)
(bounded Borel sets) the stochastic integral

M(A) =

∫ ∞
0

1A(t) dXt

can be defined.
The process {M(A) : A ∈ Bb(R+)} has the following properties:
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(i) M(∅) = 0 a.s.
(ii) If Aj ∈ Bb(R+) are disjoint sets then M(Aj) are independent,

j = 1, 2, . . . , and if
⋃

j Aj ∈ Bb(R+), then

M(
∞⋃

j=1
Aj) =

∞∑
j=1

M(Aj) a.s.

(iii) For every A ∈ Bb(R+), M(A) is ID with

M(A) ∼ ID(λ(A)b, λ(A)σ2, λ(A)ν)

where λ is the Lebesgue measure on R+ and (b, σ2, ν) is the
Lévy-Khintchine triplet of X1.

Such process {M(A) : A ∈ Bb(R+)} is called an infinitely divisible
random measure (IDRM) associated with the Lévy process
{Xt}t≥0.
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Conversely, if M satisfies (i)–(iii), then

Xt = M(0, t], t ≥ 0

defines a Lévy process (in law).

IDEA:

IDRM’s can be defined on more general spaces than R+, for
example Rd

+, which leads to interesting random fields such as Lévy
sheets, etc.
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3.2. IDRM’s
Let S be a set and S0 be a σ-ring of subsets of S.

Definition

A stochastic process M = {M(A)}A∈S0 is called an infinitely
divisible random measure (IDRM) if
(i) M(∅) = 0 a.s.
(ii) For every {Ai} ⊂ S0 pairwise disjoint, {M(Ai )} forms a

sequence of independent random variables and if
⋃

i Ai ∈ S0,
then

M(
∞⋃

i=1
Ai ) =

∞∑
i=1

M(Ai ) a.s.

(iii) For every A ∈ S0, M(A) has an ID distribution.
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Let M be an IDRM on (S,S0). Then for every A ∈ S0 the
distribution of M(A) is determined by its Lévy triplet

M(A) ∼ (β(A), γ(A), ν0(A, ·)). (2)

Condition (ii) and the uniqueness of Lévy triplets imply that for
every {Ai}ni=1 ⊂ S0 pairwise disjoint

β(
n⋃

i=1
Ai ) =

n∑
i=1

β(Ai ), γ(
n⋃

i=1
Ai ) =

n∑
i=1

γ(Ai )

and
ν0(

n⋃
i=1

Ai , ·) =
n∑

i=1
ν0(Ai , ·).

These relations extend to the countable additivity. Before ding
that we need the following.
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Since we prefer working with σ-finite measures from now on we
assume the following condition on a σ-ring S0 of subsets of S.
There exists an increasing sequence {Sn} ⊂ S0 such that

S =
⋃
n
Sn.

For instance, when S0 = Bb(R+), then Sn = [0, n].

Put
S = σ(S0).
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Theorem

(A) Let M be an IDRM on (S,S0) as above. Then
(i) β : S0 7→ R is a signed measure,
(iii) γ extends to a σ-finite measure on S,
(iii) there exists a σ-finite measure ν on S ⊗ B(R) such that ∀

A ∈ S0, B ∈ B(R),

ν(A× B) = ν0(A,B).

(B) Let (β, γ, ν) satisfy the conditions given in (A). Then there
exists a unique (in the sense of finite-dimensional distributions)
IDRM M = {M(A)}A∈S0 such that (2) holds.
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Theorem (continue)
(C) Let (b, γ, ν) be as in (A). Define a measure

m(A) = |β|(A) + γ(A) +

∫
A

∫
R
min{x2, 1} ν(ds, dx), A ∈ S0,

where |β| = β+ − β− is the Jordan decomposition of measure β
into positive and negative parts.
m is called a control measure of M because it has the property:
m(A) = 0 ⇐⇒ M(A′) = 0 a.s. for all A′ ⊂ A.
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Since all above measures are σ-finite, we can define measurable
functions

b(s) :=
dβ
dm (s),

σ2(s) :=
dγ
dm (s),

and a measure kernel ρ(s, dx) on (R,B(R))

ν(ds, dx) := ρ(s, dx)m(ds),

by disintegrating measure ν.

In this way we attach to every s ∈ S a Lévy-Khintchine triplet
(b(s), σ2(s), ρ(s, ·)). Symbolically,

M(ds) ∼ ID(b(s), σ2(s), ρ(s, ·))
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An IDRM is said to be homogeneous when b, σ2, ρ do not depend
on s. Thus in the homogeneous case, in (2) we have for all A

β(A) = m(A)b

γ(A) = m(A)σ2

ν0(A, ·) = m(A)ρ(·)

for one Lévy-Khintchine triplet (b, σ2, ρ).
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In conclusion,
Theorem

(σ2(s), ρ(s, ·), b(s)) is a generating triplet of an infinitely divisible
distribution µ(s, ·) on R such that

|b(s)|+ σ2(s) +

∫
R
min{x2, 1} ρ(s, dx) = 1

For every B ∈ B(R), s 7→ µ(s,B) is measurable; thus µ is a
probability kernel on S × B(R). Let

C(s, u) = ib(s)u − 1
2σ

2(s)u2 +

∫
R

(eiux − 1− iu[[x ]])) ρ(s, dx)

be the cumulant function of µ(s, ·). Then cumulant function
CM(A) of L{M(A)} is of the form

CM(A)(u) =

∫
A
C(s, u)m(ds).
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3.3. Stochastic integral - definition & existence

By a simple function on S we understand a finite linear
combination of indicators of sets from S0, f (s) =

∑n
j=1 aj1Aj (s),

Aj ∈ S0. For such function the integral is defined in an obvious
way: ∫

f dM =
n∑

j=1
ajM(Aj).

(By a convention, we skip the region of integration when the
region of integration is the whole space.)

In order to extend the integral beyond simple functions we need to
introduce a distance, say dM , such that if dM(fn, f )→ 0 then∫
fn dM converges in probability to some random variable X . Then

we define
∫
f dM = X .
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For a random variable X , let ‖X‖0 := E{|X | ∧ 1}. Clearly
‖Xn − X‖0 → 0 if and only if Xn

P→ X . Define for a simple
function f : S 7→ R,

‖f ‖M := sup ‖
∫
φf dM‖0,

where the supremum is taken over all simple functions φ : S 7→ R
with |φ| ≤ 1. Notice that since s 7→ φ(s)f (s) is a simple function
according to our definition, ‖f ‖M is well-defined.
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It is easy to verify the following properties: for any simple
functions f and g ,

‖f ‖M = 0 ⇐⇒ f = 0 m-a.e.
‖f + g‖M ≤ ‖f ‖M + ‖g‖M
‖θf ‖M ≤ ‖f ‖M for any |θ| ≤ 1

These are properties of an F -norm on a vector space. Naturally,
dM(f , g) := ‖f − g‖M is a metric on the vector space of simple
functions.
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Definition

We say that a function f : S 7→ R is M-integrable if there exists a
sequence {fn} of simple functions such that
(i) fn → f m-a.e.
(ii) limk,n→∞ ‖fn − fk‖M = 0.
If (i)-(ii) hold, then we define∫

f dM = lim
n→∞

∫
fn dM,

where the limit is taken in probability.
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Define the following functions:

B(s, x) = b(s)x +

∫
([[xy ]]− x [[y ]]) ρ(s, dy).

V (s, x) =

∫
[[xy ]]2 ρ(s, dy).

and

ΦM(s, x) := |B(s, x)|+ σ2(s)x2 + V (s, x), (3)

s ∈ S, x ∈ R.
If M is homogeneous, then above functions depend only on x .
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Theorem

A measurable function f : S 7→ R is M-integrable if and only if∫
ΦM(s, f (s))m(ds) <∞

where ΦM is given by (3).
The integral has an infinitely divisible distribution with the
cumulant function

C∫ f dM(u) =

∫
C(s, uf (s))m(ds)

and the generating triplet∫
f dM ∼ ID

(
bf , σ

2
f , νf

)
,

where bf , σ2
f , and νf are given by
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Theorem (continue)

bf =

∫
B(s, f (s))m(ds),

σ2
f =

∫
σ2(s)f 2(s)m(ds),

and for every B ∈ B(R)

νf (B) = ν({(s, x) : f (s)x ∈ B \ {0}})

=

∫
ρ(s, {x : x ∈ B/f (s)})m(ds).
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3.4. Examples

Example (Poisson random measure)
Let M be a Poisson random measure on S.
M ∼ ID(m(A), 0,m(A)δ1), so M is homogeneous generated by
(1, 0, δ1) and m. We compute

B(x) = x +

∫
([[xy ]]− x [[y ]]) δ1(dy) = x + [[x ]]− x = [[x ]]

and
V (x) =

∫
[[xy ]]2 δ1(dy) = [[x ]]2.

Thus
ΦM(x) = [[x ]]2 + |[[x ]]|.

Notice that |[[x ]]| ≤ ΦN(s, x) ≤ 2|[[x ]]| and |[[x ]]| = |x | ∧ 1. By the
above Theorem

L(S,M) := {f : S 7→ R :

∫
|f | ∧ 1 dm <∞}.
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Example (Poisson random measure, continue)
Since

C(u) =

∫
(eiux − 1− iu[[x ]]) δ1(dx) + iu = eiu − 1,

by (21) we have

C∫ f dM(u) =

∫ [
eiuf (s) − 1

]
m(ds),

for every f ∈ L(S,M).
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Example (Compensated Poisson random measure)
Let M̄ = M −m, where M is a PRM with mean measure m.
M̄(A) ∼ ID(0, 0,m(A)δ1), so M is homogeneous generated by
(0, 0, δ1) and m. We compute

B(x) =

∫
([[xy ]]− x [[y ]]) δ1(dy) = [[x ]]− x

and
V (s) =

∫
[[xy ]]2 δ1(dy) = [[x ]]2.

Thus
ΦM̄(x) = [[x ]]2 + |x − [[x ]]| = x2 ∧ |x |.

We get

L(S, M̄) = {f : S 7→ R :

∫
f 2 ∧ |f | dm <∞}.
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Example (Compensated Poisson random measure, continue)
Since

C(u) =

∫
(eiux − 1− iu[[x ]]) δ1(dx) = eiu − 1− iu,

by (21) we have

C∫ f dM(u) =

∫ [
eiuf (s) − 1− iuf (s)

]
m(ds),

for every f ∈ L(S, M̄).
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Example (Symmetric α-stable random measure)
Let M be a symmetric α-stable random measure determined by
E exp(iuM(A)) = exp(−m(A)|u|α). M(A) ∼ ID(0, 0,m(A)θα),
where θα(dx) = c|x |−α−1dx , where c > 0 is a constant. M is
homogeneous generated by (0, 0, δ1) and m. Since B(x) = 0, we
get

ΦM(x) = V (x) = c
∫

[[xy ]]2 |y |−α−1dy =
4c

α(2− α)
|x |α.

Hence
L(S,M) = {f : S 7→ R :

∫
|f |α dm <∞}.
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Example (Symmetric α-stable random measure, continue)
Since

C(u) =

∫
(eiux − 1− iu[[x ]]) θα(dx) = −|u|α,

we have
C∫ f dM(u) = −|u|α

∫
|f (s)|αm(ds),

for every f ∈ L(S,M). Therefore,
∫
f dM is a symmetric

α-stable random variable with parameter (
∫
|f |α dm)1/α.
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Example (Gamma random measure)
Let M be a gamma random measure with shape measure m.
M ∼ ID(m(A), 0,m(A)η), where η(dx) = x−1e−x dx , so M is
homogeneous generated by (k, 0, η) and m. Here

k =

∫ ∞
0

[[x ]]x−1e−x dx .

We compute

B(x) = kx +

∫ ∞
0

([[xy ]]− x [[y ]])y−1e−y dy

=

∫ ∞
0

[[xy ]]y−1e−y dy

and
V (x) =

∫
[[xy ]]2 ρ(s, dy) =

∫ ∞
0

[[xy ]]2y−1e−y dy .

ΦM(x) = |B(x)|+ V (x).

p. 59



Example (Gamma random measure, continue)
we infer that there are constants c,C > 0 such that

cΨ(x) ≤ ΦM(x) ≤ CΨ(x), x ∈ R,

where

Ψ(x) =

{
|x | |x | ≤ 1,
log(e|x |) |x | > 1.

Hence
L(S,M) = {f : S 7→ R :

∫
Ψ(f ) dm <∞}.

Since
C(u) = −1

2 log(1 + u2) + i arctan(u),

we get the cumulant of
∫
f dM in an explicit form as well.
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3.5. Lévy bases
In modeling time plays a distinguished role. For this reason it is
convenient to make a separate definition.

Definition

A Lévy basis is an IDRM M on S = R×V , where R (or its subset)
is viewed as a time set and V as a space of marks. Typically one
assumes that the control measure M on S = R× V satisfies

m({t} × V ) = 0 ∀ t ∈ R..

One can then consider filtration F = {Ft}t∈R and stochastic
integration of adapted processes with respect to M.

p. 61



3.6. Metric properties of the space of integrable functions

L(S,M) the space of functions f : S 7→ R for which
∫
f dM exists.

L(S,M) is a linear vector space equipped with an F-norm

‖f ‖M := sup ‖
∫
φf dM‖0,

where the supremum is taken over all simple functions φ : S 7→ R
with |φ| ≤ 1. Under the metric

dM(f , g) := ‖f − g‖M

the stochastic integral: f 7→
∫
f dM is a continuous operation.

We want an more direct way to measure the distance.
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Theorem

The space L(S,M) is a complete linear metric space under the
metric dM . For any fn, f ∈ L(S,M)

dM(fn, f )→ 0 ⇐⇒
∫

ΦM(s, fn(s)− f (s))m(ds)→ 0.

Under the metric dM simple functions are dense in L(S,M).
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We covered:
1 Lévy processes and random measures
2 IDRM’s
3 Stochastic integral - definition & existence
4 Examples
5 Lévy bases
6 Metric properties of the space of integrable functions

p. 64



4. ID processes – generalized Lévy-Itô representation

By a natural analogy to Gaussian processes we consider

Definition
Let T be an arbitrary nonempty set. A process X = {Xt}t∈T is
said to be an infinitely divisible stochastic process if for any
t1, . . . , tn ∈ T the random vector

(Xt1 , . . . ,Xtn )

has an infinitely divisible distribution.
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Examples:
1. Lévy processes.

X = {Xt}t≥0 has independent and stationary increments. If X
has only independent increments, then is called an additive
process.

2. Linearly additive random fields.
A random field X = {Xt}t∈Rd is called linearly additive if for
every a, b ∈ Rd , the process {Xa+sb}s∈R has independent
increments.
Mori (1992) characterized all infinitely divisible, stochastically
continuous, linearly additive random fields. (Chentsov type
representations.)
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3. Multiparameter Lévy processes.
These are linearly additive random fields as in (2) such that
for every a, b ∈ Rd , {Xa+sb}s∈R is a two-sided Lévy process.

4. Brownian and Lévy sheets.
Let M be an IDRM with control Lebesgue measure on Rd

+.
The random field indexed by t = (t1, . . . , td ) ∈ Rd

+ defined by

X (t) = M([0, t1]× · · · × [0, td ])

is called a Lévy sheet (Brownian sheet when M is Gaussian).

5. Gaussian processes.
Recall that a stochastic process X = {Xt}t∈T is said to be
Gaussian if ∀ t1, . . . , tn ∈ T and a1, . . . , an ∈ R

n∑
j=1

ajXtj

has normal distribution on R.
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6. Symmetric α-stable (SαS) processes. Defined similarly as
Gaussian processes except we require that

∑n
j=1 ajXtj has a

SαS distribution.
7. Stationary ID processes.

For instance, Ornstein-Uhlenbeck processes

Xt =

∫ t

−∞
e−λ(t−s) dZs , t ∈ R.

Such processes are stationary solutions to Langevin equation

dXt = −λXt + dZt ,

{Zt}t∈R is a two-sided Lévy process with E log+ |Z1| <∞.
More generally, moving average processes

Xt =

∫
R
f (t − s) dZs , t ∈ R.

(Conditions for existence of such integrals were given in the
previous lecture.)
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Mixed moving average processes

Xt =

∫
R×V

f (t − s)M(ds dv), t ∈ R.

where M is IDRM on R× V with control measure λ⊗ η. For
example, mixed Ornstein-Uhlenbeck process

Xt =

∫ t

−∞

∫
R+

e−λ(t−s) M(ds dλ), t ∈ R.

Harmonizable processes

Xt =

∫
Rd

eitx M(dx), t ∈ R

where M is an IDRM.
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8. Stationary increment ID processes.
For instance,

Linear fractional α-stable motion:

XH(t) =

∫
R

{
a
[
(t − s)

H−1/α
+ − (−s)

H−1/α
+

]
+b

[
(t − s)

H−1/α
− − (−s)

H−1/α
−

]}
dZs , t ∈ R.

M is a stationary α-stable random measure.
Non-anticipative fractional Lévy process:

Md (t) =

∫
R

(
(t − s)d

+ − (−s)d
+

)
dZs , t ∈ R.

Well-balanced fractional Lévy process:

Nd (t) =

∫
R

(
|t − s|d − |s|d

)
dZs , t ∈ R.
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9. Stationary increment moving average (SIMA) ID processes.

Xt =

∫
R

(f (t − s)− f0(−s)) dZs , t ∈ R.

Cases f0 = f and f0 = 0.
Mixed SIMA = SIMMA

Xt =

∫
R

(f (t − s, v)− f0(−s, v))M(ds dv), t ∈ R.
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ID random vectors are classified by their Lévy-Khintchine triplets.
Can one extend this classification to ID processes?

In his fundamental work Maruyama (1970) defined a Lévy measure
of an infinitely divisible process on a σ-ring of subsets of RT . Such
σ-ring has a complicated structure when the index set T is
uncountable. Moreover, Maruyama’s proof does not seem to be
complete.

Below we present a simpler and natural construction of
Lévy-Khintchine triplets for ID processes.
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Let T be a nonempty set. For every S ⊂ T , consider the product
measurable space

(RS ,BS) =
∏
t∈S

(Rt ,Bt)

where (Rt ,Bt) = (R,B(R)).
Let pU,S : RU 7→ RS denote the canonical projection, S ⊂ U ⊂ T ,
and write pS for pT ,S .

Let 0S denote the origin of RS , which is the set 0S =
∏

t∈S{0t},
0t = 0.
Denote by Pf (T ) the family of finite subsets of T .
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When T is countable and ν is a Lévy measure on RT , the
condition ν(0T ) = 0 guarantees the uniqueness of ν. Such
condition does not make sense when T is uncountable because
0T /∈ BT . We circumvent this difficulty by extending the meaning
of “ν does not charge the origin”.

Definition

Let ν be a measure on (RT ,BT ). We say that ν does not charge
the origin if for every A ∈ BT there exists a countable subset S of
T such that

ν(A) = ν(A \ p−1
S (0S)).
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Definition (Path Lévy measure)

A measure ν on (RT ,BT ) is said to be a Lévy measure if it does
not charge the origin and for every t ∈ T∫

RT

(
|xt |2 ∧ 1

)
ν(dx) <∞.
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Theorem

Let {νF : F ∈ Pf (T )} be a family of Lévy measures such that
(i) for every F ∈ Pf (T ), νF is a Lévy measure on (RF ,BF ),
(ii) for every F ,G ∈ Pf (T ) with F ⊂ G,

νF = νG ◦ p−1
G,F on BF ∩ (0F )c .

Then there exists a unique measure ν on (RT ,BT ) such that ν
does not charge the origin and for every F ∈ Pf (T )

ν ◦ p−1
F = νF on BF ∩ (0F )c .

ν will be called a path Lévy measure.
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Remark

Path Lévy measure does not need be σ-finite but it is unique
for a consistent system of finite dimensional Lévy measures.
The difficulty in the proof comes from the fact that such system
does not form a projective family of measures because of the
condition of no mass at the origin (needed for the uniqueness).
Our result does not require any integrability conditions,
however, so it applies to general classes of measures that do not
charge the origin.
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Theorem
Let X = {Xt}t∈T be an infinitely divisible stochastic process. Then
there exist a unique triplet (b,Σ, ν) consisting of
(i) b ∈ RT ,
(ii) a nonnegative symmetric operator Σ : R(T ) 7→ RT ,
(iii) a Lévy measure ν on RT

such that for any y ∈ R(T )

Eei
∑

t∈T ytXt =

exp
{
i〈y , b〉 − 1

2〈y ,Σy〉+

∫
RT

(
ei〈y ,x〉 − 1− i〈y , [[x ]]〉

)
ν(dx)

}
.
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Notation in the theorem:
For x ∈ RT the truncation [[x ]] ∈ RT is defined by

[[x ]]t :=
xt

|xt | ∨ 1 , t ∈ T .

R(T ) = {x ∈ RT : xt = 0 for all but finitely many t}.

〈y , x〉 =
∑
t∈T

ytxt , y ∈ R(T ), x ∈ RT .
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Proposition

Let ν be a Lévy measure on RT . Then ν is σ-finite if and only if

ν(p−1
T0

(0T0)) = 0.

for some countable set T0 ⊂ T.

Corollary

If an ID process X = {Xt}t∈T is separable in probability, i.e., there
is a countable set T0 ⊂ T such that ∀ t ∈ T ∃ {tn} ⊂ T0 such
that Xtn

P→ Xt , then the path Lévy measure ν of X is σ-finite.
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As a consequence of the theorem we get,

X d
= G + Y,

where G = {Gt}t∈T is a mean zero Gaussian process with the
covariance operator Σ, Y = {Yt}t∈T is an infinitely divisible
process of the Poissonian-type with the triplet (0, ν, b), and G, Y
are independent.
Σ is described by covariance function of G by

〈y ,Σy〉 =
∑
s,∈T

ysytCov(Gs ,Gt), y ∈ R(T ).

From now on will concentrate on infinitely divisible processes
without Gaussian part.
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Another view at Lévy and additive processes

1. Let X = {Xt}t≥0 be a Lévy process with

EeiuXt = etψ(u),

ψ(u) =

∫ ∞
−∞

(eiuv − 1− iu[[v ]]) η(dv).

Here T = R+. What is the Lévy measure ν of X?
Let F = {0 ≤ t1 < · · · < tn} ⊂ R+ and let νF be the Lévy
measure of XF = (Xt1 , . . . ,Xtn ). Since the Lévy measure of
(Xt1 ,Xt2 − Xt1 , . . . ,Xtn − Xtn−1) is concentrated on the axes and
equals to

n∑
k=1

(tk − tk−1)δ0 × · · · × δ0 × η︸︷︷︸
k

×δ0 × · · · × δ0,
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we get∫
Rn

g(x) νF (dx) =
n∑

k=1
(tk − tk−1)

∫ ∞
−∞

g(0, . . . , 0︸ ︷︷ ︸
k−1

, v , . . . , v) η(dv).

for every g : Rn 7→ C such that |g(x)| ≤ C(‖x‖2 ∧ 1).
Let pF : RR+ 7→ RF denote the projection. By the consistency,∫

RT
g (pF (x)) ν(dx) =

∫
Rn

g(x) νF (dx)

=
n∑

k=1
(tk − tk−1)

∫ ∞
−∞

g( 0, . . . , 0︸ ︷︷ ︸
(k−1)−times

, v , . . . , v) η(dv)

=

∫ ∞
0

∫ ∞
−∞

g
(
pF (v1[s,∞))

)
η(dv)ds.
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Hence Lévy measure ν of a Lévy process X is the image measure
of η ⊗ Leb by

R× R+ 3 (v , s) 7→ v1[s,∞) ∈ RR+ .

In particular, every such ν is concentrated on the set of
one-step functions

S = supp ν = {v1[s,∞) : v ∈ R, s ≥ 0}.

(Precisely, ν∗(RR+ \ S) = 0.)

For a Poisson process with parameter λ,

supp ν = {1[s,∞) : s ≥ 0}

and ν is the image measure of η ⊗ Leb by the map s 7→ 1[s,∞).
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2. Additive processes.

Proposition
Let X = {Xt}t≥0 be a Poissonian-type infinitely divisible process
with Lévy measure ν. Then X is an independent increment
(additive) process if and only if ν is concentrated on the set

S = {v1[s,∞) : v ∈ R, s ≥ 0}

i.e., ν∗(RT \ S) = 0.

From the perspective of the support, Lévy (or additive) processes
constitute a rather narrow class of infinitely divisible processes.
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NOTE:

’Geometry’ of the support of a Lévy measure determines to some
extend sample path properties. For example, ’bad’ properties (such
as discontinuities) of functions in the support of the Lévy measure
are inherited by sample paths of the process.

Series representation if time is OK.
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Generalized Lévy-Itô representation

Proposition
Let ν be a Lévy measure on RT . Let E be a Borel space equipped
with a σ-finite measure n and a measurable function f : E 7→ RT

such that
n ◦ f −1 = ν.

Let N be a Poisson random measure on E with intensity measure
n. Then the stochastic integral

Xt :=

∫
E
ft(x)

(
N(dx)− ν(dx)

1 ∨ |ft(x)|

)
, t ∈ T

is well-defined and represents an infinitely divisible process with the
triplet (0, 0, ν). Here ft(x) is the value of f (x) ∈ RT at t.
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Example
Let E = R× R+ and let n = η × Leb be a measure on E , where η
is a Lévy measure on R. Consider f : E 7→ RR+ ,

ft(x) = v1[s,∞)(t), x = (v , s) ∈ E .

We know that ν = n ◦ f −1 is a Lévy measure of a Lévy process,
which by the above Proposition has the form

Xt =

∫
R×R+

v1[s,∞)(t)

(
N(dv , ds)− η(dv)ds

1 ∨ |v |1[s,∞)(t)

)

=

∫
R×[0,t]

v
(
N(dv , ds)− η(dv)ds

1 ∨ |v |

)
=

∫
[−1,1]×[0,t]

v (N(dv , ds)− η(dv)ds)

+

∫
[−1,1]c×[0,t]

v N(dv , ds) + at.
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Generalized Lévy-Itô representation shows that every ID process
without Gaussian part is a stochastic integral process with respect
to a Poisson random measure.

Processes with special distributional properties, such as stable,
selfdecomposable, etc. have special Lévy measures that can be
factored. This leads to representations with respect to other than
Poisson or Gaussian random measures.
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1 Stochastic integral processes
2 Generating triplet of ID processes
3 Another view at Lévy and additive processes
4 Generalized Lévy-Itô representation
5 Stochastic integral representation of ID processes
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5. Simulation of Lévy processes: an overview

Motivation Consider an SDE:

dXt = f (Xt−) dZt ,

where {Zt} is a Lévy process. Interested in the numerical value of

Eg(XT )

for some know function g and terminal value T . The Euler scheme:

X (n)
(k+1)

n T
= X (n)

k
n T + f

(
X (n)

k
n T

)(
Z (k+1)

n T − Z (k+1)
n T

)
, X (n)

0 = X0.

Eg(XT ) ≈ Eg(X (n)
T ) ← use MONTE CARLO technique.
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The latter step requires many simulations of a Lévy process.
We may consider other SDEs involving Lévy processes and
different approximation schemes.
General problem: Given a functional Ψ(Z(·)) of a path
{Zt : t ∈ [0,T ]}, find

Eg
(

Ψ(Z(·))
)
.

Numerical method:

Eg
(

Ψ(Z(·))
)
≈ Eg

(
Ψ(Z (n)

(·) )
)
,

where the latter expectation is obtained by Monte Carlo technique,
requires fast and efficient simulation of approximations
{Z (n)

t : t ∈ [0,T ]} to a Lévy process {Zt : t ∈ [0,T ]}.
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1. Notation

EeiuX(t) = exp(tC(u)),

where C(u) is given by the Lévy-Khintchine formula

C(u) = iau − σ2u2

2 +

∫ ∞
−∞

(
eiux − 1− iu1{|x |≤1}

)
ν(dx), (4)
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Jumps J(t) = X (t)− X (t−) of a Lévy process {X (t)}:

The counting process

N((0, t]× B) = Card{s ≤ t : J(s) ∈ B}, B ∈ B(R \ {0})

is a Poisson point process with rate dt ν(dx).

Thus ν(dx) is the intensity of jumps of size x .

ν is the Lévy measure of X (1), satisfying ν({0}) = 0 and∫
min{|x |2, 1} ν(dx) <∞.
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The Lévy-Itô representation:

X (t) = at + σB(t) + lim
ε↓0

{∑
s≤t

J(s)1{|J(s)|>ε} − t
∫
ε<|x |≤1

xν(dx)
}
,

(5)
where {B(t)} is a standard Brownian motion independent of the
process of jumps {J(t)}t≥0. The convergence on the right hand
side holds a.s. uniformly in t on each finite interval.
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When ν(R) <∞ we can write

X (t) = µt + σB(t) +

N(t)∑
j=1

Vj ,

where {B(t)} is a standard Brownian motion, {N(t)} is a Poisson
process with rate λ = ν(R), Vj are i.i.d. with the distribution
ν/ν(R), {B(t)}, {N(t)}, and {Vj} are independent of each other.
Moreover, µ = a −

∫
|x |≤1 xν(dx).

If ∫
min{|x |, 1} ν(dx) <∞, (6)

then
∑

s≤t |J(s)| <∞ a.s. and (5) reduces to

X (t) = µt + σB(t) +
∑
s≤t

J(s),

where µ is as above. Sample paths of {X (t)} have bounded
variation on each finite interval if and only if σ = 0 and (6) holds.
If additionally µ ≥ 0 and ν((−∞, 0)) = 0, then {X (t)} has
nondecreasing sample paths and is called a subordinator.
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A Lévy process {X (t)} is a Markov process with transition
probabilities

Pt,x (·) = P(X (t) + x ∈ ·).

Explicit forms of Pt,x or their densities pt,x are known in some
cases but generally they are unknown.

The generating triplet (a, σ2, ν) or the cumulant C(u) of X (1)
are usually used as an identifiable parametrization of Lévy
processes.
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2. Simulation of 1-dimensional Lévy processes

Simulation of a Brownian motion and/or of a compound Poisson
process can be found in many textbooks and will not be discussed
here. Brownian and Poissonian-type components of a Lévy process
can be generated independently of each other.

The main problem is to simulate a Poissonian-type component
of a Lévy process having infinite Lévy measure.
In that case, by the Lévy-Itô representation, sample paths of
{X (t)} have infinitely many jumps in each finite interval.
Exact simulation of such process is obviously impossible.
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2 (A). Random walk approximation

Suppose {X (t)} is a Lévy process determined by the
Lévy-Khintchine formula (4) with σ = 0 and an infinite Lévy
measure ν. Fix the time domain [0,T ), n ≥ 1, and put h = T/n.
Generate the increments ∆h

j X = X (jh)− X ((j − 1)h) as i.i.d.
random variables with the distribution Ph(·) = P(X (h) ∈ ·),
j = 1, . . . , n − 1, and let

Xh(t) =

{
0 if 0 ≤ t < h,
∆h

1X + · · ·+ ∆h
j X if jh ≤ t < (j + 1)h.

Process {Xh(t)}0≤t<T is a random walk approximation to
{X (t)}0≤t<T .
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Example (Standard gamma process)

This is a Lévy process such that X (t) ∼ Gamma(t, 1). The
density of X (h) is given by

ph(x) =
1

Γ(h)
xh−1e−x , x > 0.

There exist many algorithms for generating ∆h
j X ’s with this

density; see the book of Devroye (1986) for a survey on this
topic.

Johnk’s algorithm (h < 1):
REPEAT Generate i.i.d. Uniform(0,1) r.v.’s U, V Set Y = U1/h,
Z = V 1/(1−h) UNTIL Y + Z ≤ 1;
Generate Exponential(1) r.v. W ;
RETURN YW

Y +Z ; Set ∆h
j X = YW

Y +Z .
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Example (Stable process)

A stable Lévy process is determined by

EeiuX(t) = etψ(u)

where the cumulant function ψ(u) is of the form

ψ(u) =

{
−θα|u|α(1− iβsgnu tan πα

2 ) + iµu if 0 < α < 2, α 6= 1
−θ|u|(1 + iβ 2

π sgnu log |u|) + iµu if α = 1,

where 0 < α < 2, θ > 0, and −1 ≤ β ≤ 1. If β = µ = 0, the

EeiuX(t) = e−tθ|u|α .

Densities ph(x) are known in only a few cases of α.
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Example (Stable process: Chambers, Mallow and Struck algorithm)
Chambers, Mallow and Struck (1976) gave an algorithm for
simulation of arbitrary one-dimensional stable r.v.
In the symmetric case, i.e. ψ(u) = −θα|u|α, this algorithm has a
specially simple form

∆h
j X = θh1/α sinαUj

(cosUj)1/α

(
cos((1− α)Uj)

Vj

)(1−α)/α

,

where Uj are i.i.d. Uniform(−π/2, π/2) r.v.’s independent of
i.i.d. Exponential(1) r.v.’s Vj .
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Example (Damien, Laud & Smith algorithm (1995))
This algorithm provides an approximation to an infinitely
divisible random variable. Let ν be a Lévy measure and define

θ(dx) = x2/(1 + x2) ν(dy)

and c =
∫∞
−∞ θ(dx). Fix m ≥ 1 and let (Ui ,Vi ), i = 1, . . . ,m, be

i.i.d. pairs such that U has distribution θ(dx)/c and given
U = u, V ∼ Poisson(λm(u)), where λm(u) = c(1 + u2)/(mu2).
Then, as m→∞,

m∑
i=1

(
UiVi −

c
mUi

)
(7)

converges in distribution to an infinitely divisible random
variable with the generating triplet
(
∫

(x1{|x |≤1 − x
1+x2 )ν(dx), 0, ν). The centers c

mUi
in (7) are not

needed when (6) holds.
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Example (Damien, Laud & Smith algorithm, cont.)
Using this algorithm for an approximate simulation of a Lévy
process {X (t)}, one needs to fix n, the number of partitions of
the time domain [0,T ] and m, the number of of terms in (7) to
approximately generate the increment ∆h

j X . Two types of
errors are committed, one from using a discrete skeleton and
another one from each approximation at a grid point.

p. 104



Comments on the random walk approximation method.

A discrete skeleton {X (jh) : j = 0, 1, . . . } is a random walk.
Therefore, if a simulation method of X (h) is available, then one
simulates X (t) approximately when t /∈ hZ.

A disadvantage of such method is that one cannot precisely
identify the location and magnitude of the large jumps. Large
jumps are important, especially in the heavy tailed case, because
they determine various functionals of a Lévy process. Another
complication may be that a simulation of X (h) may be numerically
tedious (e.g., when its density involves special functions).
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2 (B). Series representations

Series representations provide uniform along sample paths
approximation of Lévy processes. Let ν be a Lévy measure. Define
its tail integral by

U(x) =

{
ν((x ,∞)), x ≥ 0,
−ν((−∞, x ]), x < 0

and the inverse of U by

U−1(u) =

{
inf{x > 0 : U(x) ≤ u}, u ≥ 0,
inf{x < 0 : U(x) ≤ u} ∧ 0, u < 0.
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Theorem

Let {γj} be a Poisson point process on R with unit rate. Fix
T > 0 and let {τj} be i.i.d. Uniform(0,T ). Then

X (t) =
∞∑

j=1

[
U−1(γj/T )1τj≤t − ajt

]
converges uniformly to a Lévy process {X (t) : t ∈ [0,T ]} with the
characteristic triplet (0, 0, ν). Here

aj =

∫
j−1≤|u|≤j

U−1(u)1|U−1(u)|≤1 du.

Remark: γj = εjΓj/2, where {Γj} is a random walk with
Eponential(1)-steps independent of the Bernoulli(1

2) sequence of
signs {εj}.
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Example (Stable process (LePage 1980))
ν(dx) = c1αx−α−11x>0dx + c−1α|x |−α−11x<0dx .

U(x) =

{
c1x−α, x ≥ 0,
−c−1|x |−α, x < 0

and

U−1(u) =

{
(u/c1)−1/α, u ≥ 0,
−(|u|/c−1)−1/α, u < 0.

Hence
X (t) =

∞∑
j=1

[
εj
( |γj |
Tcεj

)−1/α
1τj≤t − ajt

]
,

where εj = sgn(γj).
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Example (Standard gamma process, series representation)
ν(dx) = x−1e−x dx . U(x) =

∫∞
x t−1e−t dt = Ei(x), the

exponential integral function. Neither Ei nor Ei−1 have explicit
forms. Nevertheless, one can represent a gamma process as

X (t) =
∞∑

j=1
Ei−1(γj/T )1τj≤t .

There are important Lévy processes whose Lévy measure tail
functions do not have explicit inverses. In such situation, using the
series formula can be numerically expensive.
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Theorem (Generalized series representations)

Let {Γj} be a random walk with Eponential(1)-steps, {Vj} an i.i.d.
sequence of random elements in some measurable space E, and
{τj} and i.i.d. Uniform(0,T ). Assume that all sequences {Γj},
{Vj}, and {τj} are independent of each other. Let
H : R+ × E 7→ R be such that

T−1
∫ ∞

0
P(H(u,V ) ∈ ·) du = ν(·).

Then

X (t) =
∞∑

j=1

[
H(Γj ,Vj)1{Uj≤t} − tbj

]
, 0 ≤ t ≤ T . (8)

converges uniformly to a Lévy process {X (t) : t ∈ [0,T ]} with the
characteristic triplet (0, 0, ν). Here bj =

∫ j
j−1 EH(s,V1)1|H(s,V1)|≤1.
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The trick is to find (guess) a function H and a marking variable V
so that (9) holds.

Example (Standard gamma process, series representation revisited)
Bondesson (1982) gave the following formula for a gamma process.

X (t) =
∞∑

j=1
e−Γj/TVj1τj≤t ,

where {Vj} is i.i.d. Exponential(1) independent of {Γj , τj}.

Here H(u, v) = e−u/T v , V ∼ Exponential(1).
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Example (Tempered stable process algorithm (J.R. 2004))
We consider a symmetric Lévy process with
ν(dx) = κ1x−α−1e−λ1x1x>0 dx + κ−1|x |−α−1e−λ−1|x |1x<0 dx .
The tail function, for x > 0,

U(x) = ν((x ,∞)) = κ1

∫ ∞
x

t−α−1e−λ1t dt = κ1λ
α
1Ei(α + 1, λ1x),

U(x) = κ−1λ
α
−1Ei(α + 1, λ−1|x |) when x < 0.

Ei(p, x) =

∫ ∞
x

t−pe−t dt.

In order to avoid inverting Ei(p, ·) (many times) in the usual series
expansion we need to find an appropriate H and marking V .

p. 113



Example (Tempered stable process algorithm, cont.)
(Symmetric case: κ1 = κ−1 = κ, λ1 = λ−1 = λ.) Let {εj}, {ηj},
and {ξj} be sequences of i.i.d. random variables such that
P(εj = ±1) = 1/2, ηj ∼ Exponential(λ), and ξj ∼ Uniform(0, 1).
All random sequences {Γj}, {Uj}, {εj}, {ηj}, and {ξj} are assumed
to be independent of each other. Then

X (t) =
∞∑

j=1
εj

((
αΓj
2κT

)−1/α
∧ ηjξ

1/α
j

)
1{Uj≤t}, 0 ≤ t ≤ T

represents a symmetric tempered α-stable process with Lévy
measure as above.

Here V = (ε, η, ξ), H(u,V ) = ε(( αu
2κT )−1/α ∧ ηξ).
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Comments on series representations

Series representations provide uniform along sample paths
approximation of Lévy processes. They are often easy to simulate.
Usually the largest jumps of a Lévy process are included in the first
few terms of the series. A disadvantage of this method is that
some series may converge slowly. Therefore, one may need a huge
number of terms to reach a desired accuracy of the approximation.
On the other hand, with ever increasing computational speed, a
slow convergence may be not an issue of practical importance for
some applications.
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Poisson and Gaussian approximations

{X (t)} a Lévy process with the generating triplet (a, 0, ν) can be
decomposed into a sum of two independent Lévy processes

X (t) = X ε(t) + Xε(t), (9)

where {X ε(t)} is a compound Poisson process with a drift and the
distribution of jumps proportional to νε = ν|{|x |>ε} and the process
{Xε(t)} has mean zero and the Lévy measure νε = ν|{|x |≤ε}; ε > 0
is fixed. We refer to {Xε(t)} as a small-jump part of {X (t)}.
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When the intensity of small jumps is high (as for a stable process
with α > 1) it was proposed to replace Xε by a Brownian motion
with variance σ2

ε =
∫

(−ε,ε) x ν(dx):

X (t) = X ε(t) + Xε(t) ≈ X ε(t) + σεW (t),

where {W (t)} is a standard Brownian motion independent of
{X ε(t)}.

Asmussen and J.R. (2001) rigorously discussed this approximation
and showed that as ε→ 0

σ−1
ε Xε

d→W ⇐⇒ σcσε∧ε ∼ σε (∀c > 0).
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One can select the level of cut ε experimentally.

To this end one needs a consistent procedure for generating
{X ε(t)} as ε ↓ 0. This is possible when a shot noise series
representation is available. We take

X ε(t) =
∑

j: Γj≤ε−1

[
H(Γj ,Vj)1{Uj≤t} − taj

]
.

Some work on Berry-Esseen bounds and Edgeworth approximations
was done by Asmussen and J.R. (2001) but precise estimates on
errors of such approximations are missing.

p. 119



Comments on Poisson and Gaussian approximations.

If one discards small jumps or if one replaces them by their mean
value, then the resulting process is a compound Poisson process
with a drift. This is a Poisson approximation of a Lévy process.
The large jumps are precisely simulated.
However, when the intensity of small jumps is high, discarding
them may produce a substantial error. In such case one can often
replace the small jump part by a Brownian motion with small
variance. This approximation complements the method based on
series representations because is applicable when the series
converges slowly.

p. 120



4. Simulation of multidimensional Lévy processes

Eei〈y ,X(t)〉 = exp
{
t
[
i〈a, y〉+

∫
Rd

(ei〈y ,x〉 − 1− i〈y , x〉1‖x‖≤1) ν(dx)

]}
.

Contrary to the one-dimensional case, close formulas for simulation
of increments of multidimensional Lévy processes are rarely
available.
We need approximate methods:

Generalized shot noise series representations of Lévy processes
Poisson and Gaussian approximations
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X (t) =
∞∑

j=1

[
H(Γj ,Vj)1{Uj≤t} − taj

]
, 0 ≤ t ≤ T .

Here {Γj} is the sequence of arrival times in a Poisson process of
rate one, {Vj} is a sequence of iid random elements taking values
in a Borel space S and having the common distribution Q, {τj} an
iid sequence of uniform on [0,T ] random variables, and the
sequences {Γj}, {Vj}, and {τj} are independent of each other.
Furthermore, {aj} is a sequence of vectors in Rd and
H : R+ × S 7→ Rd is a measurable map such that the function
r 7→ ‖H(r , s)‖ is nonincreasing for each s ∈ S and

ν(B) =

∫ ∞
0

Q({s ∈ S : H(r , s) ∈ B \ {0}}) dr , B ∈ B(Rd ).

There are many ways of representing a Lévy process {X (t)} in this
form.
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Series representation based on a polar decomposition of ν was
proposed by LePage (1980).

ν(A) =

∫
Sd−1

∫ ∞
0

1A(xv) ρ(dx , v)σ(dv), A ∈ B(Rd
0 )

where σ is a probability measure on the unit sphere Sd−1 of Rd

and {ρ(·, v)}v∈Sd−1 is a measurable family of Lévy measures on
(0,∞). Put

ρ−1(u, v) := inf{x > 0 : u ≥ ρ((x ,∞), v)}.

Let {Vi} be an i.i.d. sequence in Sd−1 with the common
distribution σ such that {Vi} is independent of {Γi , τi}.

X (t) =
∞∑

j=1

[
ρ−1(Γj/T ,Vj)Vj1{Uj≤t} − taj

]
, 0 ≤ t ≤ T .
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Another method of generating series representations is by Lévy
copulas, introduced by Tankov ( PhD thesis, Ecole Polytechnique,
France, 2004.) (See also Cont, and Tankov, P. (2004, book) and
Kallsen and Tankov 2006).

For the sake of simplicity, we give the definition for d = 2.
A function F : (−∞,∞]2 7→ (−∞,∞] is called a Lévy copula if
(i) F (x , y) <∞ if (x , y) 6= (∞,∞)

(ii) F (x , y) = 0 if min{|x |, |y |} = 0
(iii) F is 2-increasing, i.e.,

F (x2, y2)− F (x1, y2)− F (x2, y1) + F (x1, y1) ≥ 0 whenever
x1 ≤ x2 and y1 ≤ y2

(iv) F (i)(x) = x for i = 1, 2. (F (1)(x) = F (x ,∞)− F (x ,−∞)).
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µF a measure determined by Lévy copula F by
µF ((x1, x2]× (y1, y2]) = F (x2, y2)−F (x1, y2)−F (x2, y1) +F (x1, y1)

Let ν1, ν2 be marginal Lévy measures of ν on R2. Let U1,U2 be
tail integrals of ν1, ν2, respectively. (see page 17)

For any Lévy measure ν there is a unique Lévy copula F such that

(u, v) 7→ (U−1
1 (u),U−1

2 (v))

transports µF onto ν. Conversely, given one-dimensional Lévy
measures ν1, ν2 a Lévy copula produces a Lévy measure ν on R2.

p. 125



X (t) =
∞∑

j=1

[(
U−1

1 (Γj/T ),U−1
2 (Vj)

)
1{Uj≤t} − taj

]
, 0 ≤ t ≤ T .

Vj is independent of {Γi}i 6=j and its conditional distribution given
Γj is determined by Lévy copula F .

There is no universal formula for producing ’good’ series
representations of Lévy processes. It’s better to see (11) as a
general patterns and sometimes guess a representation.
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5. Gaussian approximation in the multidimensional case

(with Serge Cohen, 2007)

{Xε(t)} ’small-jump’ part of {X (t)}

Eei〈y ,Xε(t)〉 = exp
{
t
∫
Rd

[ei〈y ,x〉 − 1− i〈y , x〉]νε(dx)

}
,

Σε =

∫
Rd

xx> νε(dx).

We assume that the matrix Σε is nonsingular for sufficiently small
ε > 0.
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{W (t)}t≥0 a standard Brownian motion in Rd . Then

Σ−1/2
ε Xε

d→W ⇐⇒
∫
〈Σ−1

ε x ,x〉>c
〈Σ−1

ε x , x〉 νε(dx)→ 0 ∀c > 0.

This result generalized the one-dim result of Asmussen and J.R.
(2001). We now have

X (t) = X ε(t) + Xε(t) ≈ X ε(t) + Σ1/2
ε W (t).
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Direct computation of Σε is often impossible. In (S. Cohen and
J.R. 2007) we find computationally tractable matrices Aε
asymptotically equivalent to Σε for processes of interest.

In particular, we provide Poisson-Gaussian approximation for stable
and tempered stable Lévy processes in Rd .

Verification that the Gaussian approximation holds is often difficult
(opposite to d = 1).
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Application to tempered stable processes
Recall that the Lévy measure of a tempered α–stable process X in
Rd is of the form

ν(dr , du) = αr−α−1q(r , u) dr λ(du),

in polar coordinates, where α ∈ (0, 2), λ is a finite measure on
Sd−1, and q : (0,∞)× Sd−1 7→ (0,∞) is a Borel function such
that, for each u ∈ Sd−1, q(·, u) is completely monotone with
q(0+, u) = 1 and q(∞, u) = 0.
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We show that

εα−2Σε = εα−2
∫
Rd

xx> νε(dx)→ Λ,

as ε→ 0, where

Λ =
α

2− α

∫
Sd−1

uu> λ(du).
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Finally,

X (t)
d
= aε(t) + ε1−α/2Λ1/2Wt + Nε(t) + Yε(t),

where

Nε(t) =
∑

{j: Γj≤ε−αT‖λ‖}
1(τj ≤ t)

((
Γj

T‖λ‖

)−1/α
∧ eju1/α

j ‖vj‖−1
)

vj
‖vj‖

,

and

εα/2−1 sup
t∈[0,T ]

‖Yε(t)‖ P−→ 0 as ε→ 0.
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6. Open questions

Precise estimation of the error in approximate methods.
How to choose cutting level ε?
Robustness. Continuity with respect to different functionals of
Lévy processes such as solutions to stochastic differential
equations.
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