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Abstract

You are in a sub-fair casino, with fortune f0 ∈ (0, 1), and you want
to turn it into a fortune of size one in discounted time. You may
stake any amount, sn, 0 < sn ≤ fn and at any odds, rn > 0, if your
fortune is fn at any time, n ≥ 0. We assume every such gamble has
an expected payoff with a fixed value, csn, with −1 < c < 0. The
problem is to maximize the expected discounted payoff,

V (f0) = V (f0; b, c) = maxS,RES,R
f0

bτχ(fτ ≥ 1)
where the maximum is taken over all choices of stakes, S, and odds, R,
and you get a positive payoff, namely bτ , only if your fortune at time
τ is at least unity. Here 0 < b < 1,−1 < c < 0 are given parameters.
The parameter b reflects that the gambler wants to stop gambling as
soon as possible, while the parameter c reflects how subfair the casino
is. The case b = 1 was solved earlier and it was shown that the optimal
payoff is not attained. When b < 1, the solution is attained, and we
solve explicitly for the unique optimal strategy R,S and for V =
V (f, b, c). We show that there is an increasing sequence of numbers,
φn ∈ [0, 1), with φn tending to one, such that if f0 ∈ (φn−1, φn], n ≥ 1,
then the optimal strategy is to make at most n bets; one stakes an
amount s0 at odds r0, each given explicitly, at time 0. If you win any
bet at any time, then your fortune is one and then you quit, but if you
lose you then have a fortune, f1 ∈ (φn−2, φn−1], and then you then
continue until you either win and get the reward bj , j ≤ n and quit,
or until you arrive at fortune 0 (after exactly n bets) and on such a
path you get 0 reward. We show that φn tends to one very quickly:

1 − φn ≈ (−bc)
n2

2 , and that V (1−, b, c) = b(1+c)
1+bc . Set γ2 = −bc

1−b(1+c) .
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Then the φn and the values vn = V (φn) at these break points, are
φ1 = 1 − γ2, v0 = 0, v1 = b(1 + c)(1 − γ2), and for n ≥ 2, φn, vn are
given recursively by:

φn = 1 + bc(1−φn−1)
1−vn−1
1−vn−2

1−φn−2
1−φn−1

−b(1+c)
, vn = b(1 + c)(1− 1−φn

1−φn−1
) + b(−c +

(1 + c) 1−φn

1−φn−1
)vn−1.

Thus φ2 = 1 − γ6. For general f0 ∈ [0, 1], between the break points,
the optimal expected return is given explicitly, again, inductively. It is
tempting to guess that for every n, φn is a power of γ since this holds

for n = 0, 1, 2, but the asymptotics, φ ≈ (−bc)
n2

2 shows this is false. In
fact the recurrence shows that φ3 is given by φ3 = 1 + bcγ10(1−b+γ2)

1−b−bc(1−b+γ2)
.

Thus the φ’s are explicit, but not simple.
We solve a more general problem as well, where there is a third

parameter, a > 0, and the problem is to maximize
V (f0; a, b, c) = maxS,RES,R

f0
bτχ(fτ ≥ (1 + a)τ ).

Again the gambler wants to stop gambling (as reflected by the pa-
rameter b, but there is also a second kind of discounting, where for-
tunes decay in time, as reflected by the parameter a, so that one must
achieve a growing fortune to obtain a positive reward. In the case
b = 1, this problem was solved earlier. We show that if a > 0, b ≥ 0,
there are at most a finite number of bets no matter how close to one
the initial fortune, f0, is, as distinct to the case above where for
a = 0, b > 0, the number of bets can be arbitrarily large if f0 is
close to one. Thus, in case a > 0, there are a finite number intervals
defined by break points at which the optimal strategy makes at most
n bets, n ≤ N(a, b, c) < ∞. Of course, as a ↓ 0, N(a, b, c) ↑ ∞.

Discussion of prior results.
It is interesting to compare these results with the celebrated results
for the Dubins-Savage and for the Vardi casinos. In the former, where
there is only one fixed odds ratio r allowed and b = 1, the solu-
tion is highly non-unique. Although it is usually stated simply that
“bold play” is optimal in the Dubins-Savage casino, which is true, it
is somewhat misleading since there are many other optimal strate-
gies as Dubins and Savage showed. In the Vardi casino, where again
b = 1 but all r > 0 are allowed, there is no optimal solution though
a sequence of strategies achieve the supremum value, given simply by
1 − (1 − f0)1+c. Similar results have been shown to hold with b = 1
but a > 0. Thus if either discount factor, a, or b, is present, this
gives rise to existence and uniqueness of the optimal solution. All of
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these problems and many similar ones belong to convexity theory, or
infinite dimensional linear programming; it seems insightful to observe
the consequences of discounting - it provides compactness and hence
existence and uniqueness. The problem of this paper is one of many
versions of the classical problem due to Dubins and Savage [1]; the
new twist is that we assume there is a decline of utility or desire to
continue gambling after every bet by a factor 0 < b < 1. We bet on a
binary outcome with odds r and we win with probability w and lose
with probability 1 − w. Thus our fortune moves from f to fortune
f + rs w.p. w and to fortune f − s w.p. 1 − w (note that binary
outcomes generate any possible gamble with a fixed expected return
since these are the extreme points of a convex set). We must have
w = 1+c

1+r so the expected return is cs, and we must have −1 ≤ c ≤ r
in order that w is a legitimate probability. The parameters 0 < b < 1
and −1 < c < r are assumed given. In the Dubins-Savage casino, the
parameter r is fixed. In the present paper we assume that r can also
be chosen to be any positive odds ratio at any time, as was suggested
by Yehuda Vardi [12].

In Dubins and Savage’s classic book [1] it is supposed the mafia
will kill you if you do not repay your debt, normalized to be of size 1,
to them. Your present fortune is 0 ≤ f < 1 and you are in a casino
where certain gambles are available. You want to optimize the chance
to reach one and remain alive. In Dubins’s simplest case the casino
allows only one subfair bet with odds r, i.e., you can stake any amount
s ≤ f and reach the fortune

f1 = f + rs with probability w < 1
1+r , or

f1 = f − s with probability 1− w > r
1+r .

It was proved by Dubins and Savage [1] that bold play, where you
stake s = min(f, 1−f

r ) at each bet until you either go broke or reach
the goal is (non-uniquely) optimal. This is not as obvious as it may
appear and with the variation where money decays by the factor 1

1+a
and it is desired to finf maxτ P (fτ = (1 + a)τ ), it is shown in [6]
that bold play is no longer optimal and though it seems even more
“obviously” optimal it is false. At certain initial fortunes it is necessary
to play boldly but at other fortunes it is provably suboptimal to play
boldly; the general optimal strategy is remains unknown. For the case
when bets at any odds are permitted (Vardi casino), the problem was
solved in [13], by methods similar to those used here, as discussed in
the abstract. Related results were obtained in [8, 2, 3, 4, 7, 14, 9].

In more realistic casinos the casino allows more than one odds ra-
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tio, r, and then the optimal strategy is usually not known and hard to
approximate much less determine without writing a large linear pro-
gram. Yehuda Vardi raised the question in a conversation of whether
bold play would also be optimal in a gambling house where any stake
s ≤ f is allowed and any odds is allowed so long as the expected return
is at most cs, where c ∈ (−1, 0) is negative and given. Vardi’s question
has a neat answer [12]: the supremum over all betting strategies of the
probability to reach f = 1, in Vardi’s casino, although not attained
by any strategy, is

P (f) = 1− (1− f)1+c, 0 ≤ f ≤ 1.
The supremum is achieved as the limit of the probability attained by
the strategy Sα as α ↓ 0, where Sα (boldly) stakes f when f ≤ α and
Sα (timidly) stakes s = α

1−α(1− f) when α ≤ f < 1. Note that s ≤ f
as required. Whenever money is bet, all of it is bet (boldly) on the
table with the right odds, r, to carry the fortune to unity in case of
a win (similar to the Dubins-Savage case). [12] shows the strategy Sα

obtains the winning probability
Pα(f) = 1 + (1− (1 + c)α)n(c− (1+c)(1−f)

(1−α)n )
when f ∈ In ≡ [(1 − (1 − α)n, 1 − (1 − α)n+1), n ≥ 0. The limit as
α ↓ 0 is then seen to be P (f) = 1− (1− f)1+c. John Lou [10] showed
that the maximum of V (f) over strategies for R,S is very flat; having
different odds available does not help the gambler very much. That is
the value for the Vardi casino for a given c, not too negative, is equal
to that of the Dubins-Savage casino for any fixed r to several decimal
places. this makes one realize that the usual multiplicity of types of
gambles in actual casinos have little value to the serious gambler, at
least in terms of maximizing the chance to leave with a preset desired
fortune.

In the simplest Dubins casino it is easy to find a formula for the
value achieved by bold play. For example, for r = 1, if f ∈ (0, 1) has
the binary representation, f =

∑∞
j=1

1
2nj , where 1 ≤ n1 < n2 < . . .,

then the reward obtained by bold play is:
V (f) =

∑∞
j=1(b(1− 1+c

2 ))j−1(b(1+c
2 )nj−nj−1

where n0 = 0. One verifies (not at all trivially) that V (fn) is a su-
permartingale for any strategy of staking. It then follows from the
standard arguments that V is an upper bound and since it is achieved
by bold play it is the answer to the problem.
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