A Backward Characterization of Adjoint Strong Stability

Olof J. Staffans Åbo Akademi University Department of Mathematics FIN-20500 Åbo, Finland http://www.abo.fi/~staffans/

April 27, 2005

Abstract

We prove the following theorem: Let A be a bounded linear operator on a reflexive Banach space with the property that all forward trajectories are bounded. Then the adjoint of A is strongly stable if and only if Adoes not have a nontrivial bounded backward trajectory. The same result is also valid in continuous time.

Let A be a bounded linear operator on a reflexive Banach space \mathcal{X} . We call A stable or forward bounded if it is true for every $x \in \mathcal{X}$ that the sequence $\{A^n x\}_{n=0}^{\infty}$ is bounded. It is strongly stable if it is true for every $x \in \mathcal{X}$ that $\lim_{n\to\infty} A^n x = 0$ (in the norm of \mathcal{X}). We shall refer the sequence $x_n = A^n x$, $n \in \mathbb{Z}^+ := \{0, 1, 2, \ldots\}$ as a forward trajectory of A (with initial value x). Thus, A is stable if and only if all forward trajectories are bounded, and A is strongly stable if and only if all forward trajectories tend to zero at infinity.

By a bounded backward trajectory of A we mean a bounded sequence $\{x_n\}_{n=-\infty}^0$ satisfying $x_n = Ax_{n-1}$ for all $n \in \mathbb{Z}^- := \{\dots, -2, -1, 0\}$. This trajectory is nontrivial if it is not identically zero. Note that if A is stable, then a nontrivial bounded backward trajectory of A cannot tend to zero at $-\infty$. Backward trajectories appear naturally in, e.g., optimal control.

Theorem 1. Let A be a stable bounded linear operator on a reflexive Banach space \mathcal{X} . Then A^* is strongly stable if and only if A does not have a nontrivial bounded backward trajectory.

The significance of this theorem is that it makes it possible to characterize the strong stability of A^* entirely in terms of the original operator A, without any formal reference to A^* .

Proof of Theorem 1. We denote the adjoint of \mathcal{X} by \mathcal{X}^* , and the value of $x^* \in \mathcal{X}^*$ applied to $x \in \mathcal{X}$ by $\langle x, x^* \rangle$.

Assume first that A^* is strongly stable. Let $x := \{x_n\}_{n \in \mathbb{Z}^-}$ be a bounded backward trajectory of A, and let $\{x_n^*\}_{n \in \mathbb{Z}^+}$ be a forward trajectory of A^* . Then, for all $n \in \mathbb{Z}^+$,

$$\langle x_0, x_0^* \rangle = \langle A^n x_{-n}, x_0^* \rangle = \langle x_{-n}, (A^*)^n x_0^* \rangle = \langle x_{-n}, x_n^* \rangle.$$

$$\tag{1}$$

Letting $n \to \infty$ and using the strong stability of A^* and the boundedness of x, we find that $\langle x_0, x_0^* \rangle = 0$. This being true for all $x_0^* \in \mathcal{X}^*$, we must have $x_0 = 0$. Shifting x k steps to the right and repeating the same argument we find that $x_{-k} = 0$ for all $x \in \mathbb{Z}^+$. Thus, x = 0, and we have shown that A does not have a nontrivial bounded backward trajectory.

Let us begin the proof of the converse part by observing that by the uniform boundedness principle, $\sup_{n \in \mathbb{Z}^+} ||A^n|| := M < \infty$, and hence also $\sup_{n \in \mathbb{Z}^+} ||(A^*)^n|| = M < \infty$. In particular A^* is stable. Suppose that A^* is not strongly stable. Choose some $x_0^* \in \mathcal{X}$ so that $x_n^* := (A^*)^n x_0 \neq 0$ as $n \to \infty$. By the stability of A^* , this implies that $\inf_{n \in \mathbb{Z}^+} ||(A^*)^n x_0|| := \epsilon > 0$. We can therefore find some $x_{-n}^n \in \mathcal{X}$ with $||x_{-n}^n|| \leq 1/\epsilon$ such that $\langle x_{-n}^n, x_n^* \rangle = 1$. Let x^n denote the sequence $\{x_k^n\}_{k \in \mathbb{Z}^-}$, where $x_k^n = A^{k-n} x_{-n}^n$ for $k \in [-n, 0]$ and $x_k^n = 0$ for k < -n. Then $||x_k^n|| \leq M/\epsilon$ for all $k \in \mathbb{Z}^-$. In particular, the sequence $\{x^n\}_{n \in \mathbb{Z}^+}$ is uniformly bounded in $\ell^{\infty}(\mathbb{Z}^+; \mathcal{X})$. Moreover, by construction, the elements of each sequence x^n satisfy $x_k^n = Ax_{k-1}^n$ for all $k \in [-n+1, 0]$. In particular, by (1),

$$\langle x_0^n, x_0^* \rangle = 1. \tag{2}$$

Since the unit ball in \mathcal{X} is weakly sequentially compact, it is possible to find a subsequence $\{x^{n_{1,j}}\}_{j\in\mathbb{Z}^+}$ such that $x_0^{n_{1,j}}$ converges weakly to a limit x_0 in \mathcal{X} . It follows from (2) that $\langle x_0, x_0^* \rangle = 1$, hence $x_0 \neq 0$. By repeating the same argument with the original sequence $\{x^n\}_{n\in\mathbb{Z}^+}$ replaced by $\{x^{n_{1,j}}\}_{j\in\mathbb{Z}^+}$ we get another subsequence $\{x^{n_{2,j}}\}_{j\in\mathbb{Z}^+}$ such that both $x_0^{n_{2,j}}$ tends weakly to x_0 and $x_{-1}^{n_{2,j}}$ tends weakly to x_{-1} for some $x_{-1} \in \mathcal{X}$. The operator A is normcontinuous, hence weakly continuous, and therefore we must have $x_0 = Ax_{-1}$. Continuing in the same way, with $\{x^{n_{1,j}}\}_{j\in\mathbb{Z}^+}$ replaced by $\{x^{n_{2,j}}\}_{j\in\mathbb{Z}^+}$ we get another subsequence $\{x^{n_{3,j}}\}_{j\in\mathbb{Z}^+}$ such that $x_{-1}^{n_{3,j}}$ tends weakly to x_{-1} and $x_{-2}^{n_{3,j}}$ tends weakly to some vector x_{-2} satisfying $x_{-1} = Ax_{-2}$. The same process can be repeated indefinitely to produce a sequence $\{x_k\}_{k\in\mathbb{Z}^-}$, where $||x_k^n|| \leq M/\epsilon$ for all $k \in \mathbb{Z}^-$ and $x_k = Ax_{k-1}$ for all $k \in \mathbb{Z}^-$. This proves the existence of a nontrivial bounded backward trajectory of A.

The same result is also valid in continuous time. In this case we replace A by a C_0 semigroup $t \mapsto \mathfrak{A}^t$, $t \in \mathbb{R}^+ := [0, \infty)$. A forward trajectory of \mathfrak{A} is defined on \mathbb{R}^+ , and it is of the type $t \mapsto \mathfrak{A}^t x_0$ for some initial value x_0 . The semigroup \mathfrak{A} is bounded (or stable) if all forward trajectories are bounded, and it it strongly stable if all forward trajectories tend to zero at infinity. A backward trajectory is a continuous function x defined on $\mathbb{R}^- = (-\infty, 0]$ satisfying $x(t) = \mathfrak{A}^{t-s} x(s)$ for all $s \leq t \leq 0$. It is nontrivial if it is does not vanish identically. The adjoint semigroup $t \mapsto \mathfrak{A}^{*t}$ is defined by $\mathfrak{A}^{*t} = (\mathfrak{A}^t)^*$, and it is also a C_0 semigroup. **Theorem 2.** Let $t \mapsto \mathfrak{A}^t$ be a bounded C_0 semigroup on a reflexive Banach space \mathcal{X} . Then the adjoint semigroup $t \mapsto \mathfrak{A}^{*t}$ is strongly stable if and only if \mathfrak{A} does not have a nontrivial bounded backward trajectory.

Proof. Define $A = \mathfrak{A}^1$. Then \mathfrak{A}^* is strongly stable if and only if A^* is strongly stable. By Theorem 1, this is true if and only if A does not have a nontrivial bounded backward trajectory. However, there is a one-to-one correspondence between the bounded nontrivial backward trajectories of \mathfrak{A} and those of A: Given a backward trajectory $t \mapsto x(t), t \in \mathbb{R}^-$, of \mathfrak{A} we get a backward trajectory $\{x_n\}_{n=-\infty}^0$ of A by defining $x_n = x(n)$, and given a backward trajectory $\{x_n\}_{n=-\infty}^0$ of A we can fill it in to get a backward trajectory of \mathfrak{A} by defining $x(t) = \mathfrak{A}^{t-[t]}x_{[t]}, t \in \mathbb{R}^-$, where [t] is the largest integer less than or equal to t. Thus, \mathfrak{A} does not have a nontrivial backward trajectory if and only if \mathfrak{A}^* is strongly stable.

Acknowledgment The importance of the notion of a bounded backward trajectory became clear to us in a recent joint work with Mark Opmeer (not yet published) on an alternative interpretation of the discrete time dual forward cost minimization problem.