A Backward Characterization of Adjoint Strong Stability

Olof J. Staffans
Åbo Akademi University
Department of Mathematics
FIN-20500 Åbo, Finland
http://www.abo.fi/~staffans/

April 27, 2005

Abstract

We prove the following theorem: Let A be a bounded linear operator on a reflexive Banach space with the property that all forward trajectories are bounded. Then the adjoint of A is strongly stable if and only if A does not have a nontrivial bounded backward trajectory. The same result is also valid in continuous time.

Let A be a bounded linear operator on a reflexive Banach space \mathcal{X}. We call A stable or forward bounded if it is true for every $x \in \mathcal{X}$ that the sequence $\left\{A^{n} x\right\}_{n=0}^{\infty}$ is bounded. It is strongly stable if it is true for every $x \in \mathcal{X}$ that $\lim _{n \rightarrow \infty} A^{n} x=0$ (in the norm of \mathcal{X}). We shall refer the sequence $x_{n}=A^{n} x$, $n \in \mathbb{Z}^{+}:=\{0,1,2, \ldots\}$ as a forward trajectory of A (with initial value x). Thus, A is stable if and only if all forward trajectories are bounded, and A is strongly stable if and only if all forward trajectories tend to zero at infinity.

By a bounded backward trajectory of A we mean a bounded sequence $\left\{x_{n}\right\}_{n=-\infty}^{0}$ satisfying $x_{n}=A x_{n-1}$ for all $n \in \mathbb{Z}^{-}:=\{\ldots,-2,-1,0\}$. This trajectory is nontrivial if it is not identically zero. Note that if A is stable, then a nontrivial bounded backward trajectory of A cannot tend to zero at $-\infty$. Backward trajectories appear naturally in, e.g., optimal control.

Theorem 1. Let A be a stable bounded linear operator on a reflexive Banach space \mathcal{X}. Then A^{*} is strongly stable if and only if A does not have a nontrivial bounded backward trajectory.

The significance of this theorem is that it makes it possible to characterize the strong stability of A^{*} entirely in terms of the original operator A, without any formal reference to A^{*}.

Proof of Theorem 1. We denote the adjoint of \mathcal{X} by \mathcal{X}^{*}, and the value of $x^{*} \in$ \mathcal{X}^{*} applied to $x \in \mathcal{X}$ by $\left\langle x, x^{*}\right\rangle$.

Assume first that A^{*} is strongly stable. Let $x:=\left\{x_{n}\right\}_{n \in \mathbb{Z}^{-}}$be a bounded backward trajectory of A, and let $\left\{x_{n}^{*}\right\}_{n \in \mathbb{Z}^{+}}$be a forward trajectory of A^{*}. Then, for all $n \in \mathbb{Z}^{+}$,

$$
\begin{equation*}
\left\langle x_{0}, x_{0}^{*}\right\rangle=\left\langle A^{n} x_{-n}, x_{0}^{*}\right\rangle=\left\langle x_{-n},\left(A^{*}\right)^{n} x_{0}^{*}\right\rangle=\left\langle x_{-n}, x_{n}^{*}\right\rangle . \tag{1}
\end{equation*}
$$

Letting $n \rightarrow \infty$ and using the strong stability of A^{*} and the boundedness of x, we find that $\left\langle x_{0}, x_{0}^{*}\right\rangle=0$. This being true for all $x_{0}^{*} \in \mathcal{X}^{*}$, we must have $x_{0}=0$. Shifting $x k$ steps to the right and repeating the same argument we find that $x_{-k}=0$ for all $x \in \mathbb{Z}^{+}$. Thus, $x=0$, and we have shown that A does not have a nontrivial bounded backward trajectory.

Let us begin the proof of the converse part by observing that by the uniform boundedness principle, $\sup _{n \in \mathbb{Z}^{+}}\left\|A^{n}\right\|:=M<\infty$, and hence also $\sup _{n \in \mathbb{Z}^{+}}\left\|\left(A^{*}\right)^{n}\right\|=$ $M<\infty$. In particular A^{*} is stable. Suppose that A^{*} is not strongly stable. Choose some $x_{0}^{*} \in \mathcal{X}$ so that $x_{n}^{*}:=\left(A^{*}\right)^{n} x_{0} \nrightarrow 0$ as $n \rightarrow \infty$. By the stability of A^{*}, this implies that $\inf _{n \in \mathbb{Z}^{+}}\left\|\left(A^{*}\right)^{n} x_{0}\right\|:=\epsilon>0$. We can therefore find some $x_{-n}^{n} \in \mathcal{X}$ with $\left\|x_{-n}^{n}\right\| \leq 1 / \epsilon$ such that $\left\langle x_{-n}^{n}, x_{n}^{*}\right\rangle=1$. Let x^{n} denote the sequence $\left\{x_{k}^{n}\right\}_{k \in \mathbb{Z}^{-}}$, where $x_{k}^{n}=A^{k-n} x_{-n}^{n}$ for $k \in[-n, 0]$ and $x_{k}^{n}=0$ for $k<-n$. Then $\left\|x_{k}^{n}\right\| \leq M / \epsilon$ for all $k \in \mathbb{Z}^{-}$. In particular, the sequence $\left\{x^{n}\right\}_{n \in \mathbb{Z}^{+}}$is uniformly bounded in $\ell^{\infty}\left(\mathbb{Z}^{+} ; \mathcal{X}\right)$. Moreover, by construction, the elements of each sequence x^{n} satisfy $x_{k}^{n}=A x_{k-1}^{n}$ for all $k \in[-n+1,0]$. In particular, by (1),

$$
\begin{equation*}
\left\langle x_{0}^{n}, x_{0}^{*}\right\rangle=1 \tag{2}
\end{equation*}
$$

Since the unit ball in \mathcal{X} is weakly sequentially compact, it is possible to find a subsequence $\left\{x^{n_{1, j}}\right\}_{j \in \mathbb{Z}^{+}}$such that $x_{0}^{n_{1, j}}$ converges weakly to a limit x_{0} in \mathcal{X}. It follows from (2) that $\left\langle x_{0}, x_{0}^{*}\right\rangle=1$, hence $x_{0} \neq 0$. By repeating the same argument with the original sequence $\left\{x^{n}\right\}_{n \in \mathbb{Z}^{+}}$replaced by $\left\{x^{n_{1, j}}\right\}_{j \in \mathbb{Z}^{+}}$ we get another subsequence $\left\{x^{n_{2, j}}\right\}_{j \in \mathbb{Z}^{+}}$such that both $x_{0}^{n_{2, j}}$ tends weakly to x_{0} and $x_{-1}^{n_{2, j}}$ tends weakly to x_{-1} for some $x_{-1} \in \mathcal{X}$. The operator A is normcontinuous, hence weakly continuous, and therefore we must have $x_{0}=A x_{-1}$. Continuing in the same way, with $\left\{x^{n_{1, j}}\right\}_{j \in \mathbb{Z}^{+}}$replaced by $\left\{x^{n_{2, j}}\right\}_{j \in \mathbb{Z}^{+}}$we get another subsequence $\left\{x^{n_{3, j}}\right\}_{j \in \mathbb{Z}^{+}}$such that $x_{-1}^{n_{3, j}}$ tends weakly to x_{-1} and $x_{-2}^{n_{3, j}}$ tends weakly to some vector x_{-2} satisfying $x_{-1}=A x_{-2}$. The same process can be repeated indefinitely to produce a sequence $\left\{x_{k}\right\}_{k \in \mathbb{Z}^{-}}$, where $\left\|x_{k}^{n}\right\| \leq M / \epsilon$ for all $k \in \mathbb{Z}^{-}$and $x_{k}=A x_{k-1}$ for all $k \in \mathbb{Z}^{-}$. This proves the existence of a nontrivial bounded backward trajectory of A.

The same result is also valid in continuous time. In this case we replace A by a C_{0} semigroup $t \mapsto \mathfrak{A}^{t}, t \in \mathbb{R}^{+}:=[0, \infty)$. A forward trajectory of \mathfrak{A} is defined on \mathbb{R}^{+}, and it is of the type $t \mapsto \mathfrak{A}^{t} x_{0}$ for some initial value x_{0}. The semigroup \mathfrak{A} is bounded (or stable) if all forward trajectories are bounded, and it it strongly stable if all forward trajectories tend to zero at infinity. A backward trajectory is a continuous function x defined on $\mathbb{R}^{-}=(-\infty, 0]$ satisfying $x(t)=\mathfrak{A}^{t-s} x(s)$ for all $s \leq t \leq 0$. It is nontrivial if it is does not vanish identically. The adjoint semigroup $t \mapsto \mathfrak{A}^{* t}$ is defined by $\mathfrak{A}^{* t}=\left(\mathfrak{A}^{t}\right)^{*}$, and it is also a C_{0} semigroup.

Theorem 2. Let $t \mapsto \mathfrak{A}^{t}$ be a bounded C_{0} semigroup on a reflexive Banach space \mathcal{X}. Then the adjoint semigroup $t \mapsto \mathfrak{A}^{* t}$ is strongly stable if and only if \mathfrak{A} does not have a nontrivial bounded backward trajectory.

Proof. Define $A=\mathfrak{A}^{1}$. Then \mathfrak{A}^{*} is strongly stable if and only if A^{*} is strongly stable. By Theorem 1, this is true if and only if A does not have a nontrivial bounded backward trajectory. However, there is a one-to-one correspondence between the bounded nontrivial backward trajectories of \mathfrak{A} and those of A : Given a backward trajectory $t \mapsto x(t), t \in \mathbb{R}^{-}$, of \mathfrak{A} we get a backward trajectory $\left\{x_{n}\right\}_{n=-\infty}^{0}$ of A by defining $x_{n}=x(n)$, and given a backward trajectory $\left\{x_{n}\right\}_{n=-\infty}^{0}$ of A we can fill it in to get a backward trajectory of \mathfrak{A} by defining $x(t)=\mathfrak{A}^{t-[t]} x_{[t]}, t \in \mathbb{R}^{-}$, where $[t]$ is the largest integer less than or equal to t. Thus, \mathfrak{A} does not have a nontrivial backward trajectory if and only if \mathfrak{A}^{*} is strongly stable.

Acknowledgment The importance of the notion of a bounded backward trajectory became clear to us in a recent joint work with Mark Opmeer (not yet published) on an alternative interpretation of the discrete time dual forward cost minimization problem.

