Well-Posed State/Signal Systems
in Continuous Time
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Abstract. We introduce a new class of linear systems, the LP-well-posed
state/signal systems in continuous time, we establish the foundations of their
theory and we develop some tools for their study. The principal feature of
a state/signal system is that the external signals of the system are not a
priori divided into inputs and outputs. We relate state/signal systems to the
better-known class of well-posed input/state/output systems, showing that
state/signal systems are more flexible than input/state/output systems but
still have enough structure to provide a meaningful theory. We also give some
examples which point to possibilities for further study.
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1. Introduction

In this work we introduce a new class of linear systems, the well-posed state/signal
systems (shortly written s/s systems) in continuous time. Our approach differs
from classical control theory in the sense that the systems under consideration
have no fized inputs or outputs, but instead a combined external signal, which can
be decomposed into inputs and outputs in different ways.
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In order to make this idea more concrete, let us consider a continuous-time
input/state/output system (i/s/o system) in differential form with state x, input
u and output y:

&(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)’

Here & denotes the derivative of x with respect to t, z(t) € X, u(t) € U and
y(t) € Y. We call X the state space, U the input space and Y the output space
and, at the moment, we assume that all these spaces are finite dimensional for
simplicity.

x(0) = o given, t > 0. (1.1)

Example 1.1. In the system ([I), we might instead want to consider the signal y
as input and the signal u as output, thus inverting the flow of the system. If D is
invertible, then this is indeed possible and we obtain the new system

#(t) = (A— BD'C)x(t) + BD y(t)
u(t) = =D~ 'Cx(t) + D 'y(t)
which is of the same type as the system in ().

x(0) =z given, t > 0, (1.2)

The idea to ignore the distinction between inputs and outputs can be for-
malised as follows. Consider the product space W := [ 2{’], which we call the
combined external signal space. We can identify the subspaces [ {%))}] and [{8}] of
W with Y and U, respectively. In this way we can view U and ) as subspaces of W
and add elements of & and Y in W: u+y = [¥]. In this way W can be identified
with the direct sum U + ).

Defining the combined external signal of [IIl) by w(t) := u(t) +y(t), we may
now write (I) equivalently as

z(t) A B pe
z(t) | €V, 2(0) =20, t >0, where V=] lx 0 [ y ] . (1.3)
w(t) C D + 1u

The triple (V; X, W) is called the state/signal node (s/s node) of the system.

Returning to Example [[TJl we note that although the equations ([Il) and
[C2) are different, they describe the same physical system, because the relations
between the different signals are preserved. This is reflected in the fact that the
s/s node is invariant under flow inversion:

A-BD"'C BD7! {X} A—-BD7'C BD7!

1y 0 N 1 0
D'  Dl+1 -D7'C D l41y

Le ]| L0, | (]

since [§] = [& 3][%] when D is invertible.
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By choosing different decompositions of the external signal into inputs and
outputs we get different input/output behaviours. Indeed, the i/s/o represen-
tation in () corresponds to the particular input/output space pair (i/o pair)

(9] ) ]) w20 omaondswriaisonas (| 21 ].] ©]).

Example 1.2. Assume for the moment that the input space U and the output space
Y in () coincide. The operation of choosing the signal u* = (u+y)//2 as input
and the signal y* := (u—1vy)/\/2 as output is called the “diagonal transformation”
in e.g. [Sta02h]. It turns out that the system in () is diagonally transformable
if and only if 1 + D is invertible.

Making the diagonal transformation corresponds to decomposing W into an-
other direct sum W = U* + Y*, where U* = [ 12’[ ]Z/{ and Y* = { —11y }L{.

u y

The s/s node (V; X, W) is invariant under the diagonal transformation as well, in
a sense which we make precise in Example [[8.

The state/signal setting is advantageous when one considers interconnection,
where the interconnection determines which signals of the interconnected subsys-
tems may act as inputs and which signals are outputs. See e.g. V. Belevitch’s
classic work [Bel68] on circuit theory. A particularly unrealistic assumption in the
i/s/o formulation is that the load on the output has no influence on the mod-
elled system. For an electrical circuit this means that the output impedance of the
system is zero or that the load impedance is infinite, which in practice never is
the case. The s/s approach is related to the behavioural framework developed for
finite-dimensional systems by J. W. Polderman and J. C. Willems in [PW9§].

After this general motivation for our approach, let us now describe in more
detail what we mean by a state/signal system (s/s system). Let the state space
X and the external signal space W be finite-dimensional vector spaces. (Later we

allow these spaces to be Banach spaces.) Let V be a closed subspace of [5?\1} which

we call the generating subspace. A classical s/s trajectory generated by V on the
CHI; X)

C(I: W) } , which satisfies

time interval I C R is a pair [ Zi } of functions in [

a(t)
3:((1;)) eV, tel, (1.4)

with one-sided derivatives at any end points of I. We denote the space of classical
trajectories on I generated by V by U([I).

In order for V to generate a reasonable linear system through (L], we need to
assume that V has some additional technical properties. In the finite-dimensional
case W should have a decomposition W = U + ) into an i/o pair (4, ), such that
V' generates a unique classical trajectory on RT for all given initial states x(0)
in X and all given input signals v in C(RT;U). That is, denoting the pointwise
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projection of W onto U along Y by 738; , the condition

a(t)
z(t) | €V, t>0, 2(0) =20, Plw=1u (1.5)
w(t)

should be satisfied by a unique classical trajectory [ 5] in B(R™T).

. C(RT; X) .
We denote the closure of T(R') in { P (ot ] by 207 and call its
LlOC(R ’W)
elements the LP trajectories generated by V. By the LP-well-posed state/signal
system (s/s system) generated by V' we mean the triple (207; X, ) obtained in
the manner described above.

Thus ([C3) should be thought of as an abstract differential equation and the
trajectories as its solutions. In this sense a s/s node (V; X, W) is a static object,
which generates a system by specifying its evolution at any given time ¢. The
system (WP; X, W) is defined as the set of all trajectories, which are functions of
time, and thus dynamic objects. This idea applies to i/s/o nodes and systems,
which we need later in this article, as well.

In this paper we take ([CH) as the starting point instead of ([l), and we do
not at the outset care about whether V' can be written in the form ([L3) or not. Our
approach is motivated by the input/output invariance of the s/s node (V; X, W),
which we demonstrated above. We use well-established notation whenever possible
and we refer the reader to the appendix for some definitions and notation.

A theory for infinite-dimensional s/s systems in discrete time is already well
under way in a series [AS05], [AS07a], [ASO7h], [ASO7d and [ASO§] of articles writ-
ten by D. Z. Arov and the second author. In our current paper we study infinite-
dimensional systems in continuous time, letting X and ¥V be Banach spaces. The
construction above generalises to infinite dimensions, but the formulations become
more technical than in the discrete-time and the finite-dimensional cases. Often
these difficulties are related to the fact that typical applications in continuous
time (partial differential equations) demand that some important operators are
unbounded. For example, both in discrete and continuous time we can write V'
as the graph of some operator S, in a way similar to ([([3)). In the discrete-time
setting this operator S is bounded, but in the continuous-time setting it may be
unbounded.

The class of LP-well-posed i/s/o systems plays a very central role in this
paper. This class has been studied in e.g. [SalR7|, [Sal89], [WeiR9a], [Weil9h],
[Weig0d), [CWRY], [Weidd], [WSTOT], [SW02], [SW04] and many other articles.
The book [Sfalf] collects most of the background we need on LP-well-posed i/s/o
systems and for simplicity we often cite results from [Sfa05]. The reader may
consult this source for further references to the original versions of the various
results.

Passive systems, i.e., systems that do not have any internal energy sources, are
one of the main motivations for our study of s/s systems. Our framework applies
particularly well to this important class of systems and we will develop their theory
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in a future paper. Passive i/s/o systems in continuous time have previously been
studied in e.g. [Aro98], [AN9G], [Ara99], [WSTO1, [Sta0Zal, [Sta02h], [TW03],
[MS06], [MS07] and [MSW08].

This paper is structured as follows. In Section Pl we define the notion of
a continuous-time well-posed s/s node. The most fundamental properties of s/s
systems are studied in SectionBl chiefly using L? trajectories. In Section Hlwe study
the admissibility of given i/o pairs for a s/s system and give the corresponding
well-posed i/s/o representations. Section B is devoted to a short study of i/s/o-
system nodes and their relation to the associated i/s/o systems. In Section B we
prove the existence and uniqueness of a maximal generating subspace of any given
s/s system. We end the paper by giving two examples of how the s/s theory can
be applied in order to model some systems which are ill-posed in the i/s/o setting.

2. Construction of well-posed state/signal nodes

In this section we introduce well-posed state/signal nodes by taking the abstract
differential-equation approach, which we outlined in the introduction. Trajectories
and the subspaces V that generate them are thus the main objects to be studied
in this section.

Definition 2.1. Let I be a subinterval of RT with positive length, let X and W be

Banach spaces and let V' be a subspace of [%} with the norm

z
= Izl + llzllx + lwlw- (2.1)

8

w v

By a classical trajectory generated by V on I we mean a pair { ;f} ] mn

CHI; X) o
[ C(I; W) } that satisfies:
x(t)
z(t) | €V, fortel, (2.2)
w(t)

with one-sided deriwvatives at any end points of I.
We denote the set of classical trajectories on I by B(I). For brevity we write
Vla,b] :=V([a,b]) and T := [0, c0).

By 7¢ we denote the bilateral shift operator, which shifts its argument func-
tion to the left by a distance c¢. The operator which restricts the domain of its
argument function to the interval I is denoted by p;. The function f x. g coin-
cides with f on the interval (—oo,c) and with g on [c,00). See the appendix for
precise definitions of these operators.
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Lemma 2.2. Let I be a subinterval of R. Then the following claims are valid:
(i) A pair [§] lies in B(I) if and only if [i} e C(I;V).
(ii) Forall —co<a<b< oo andceR we have
Yla,b] = 7°Vla+¢,b+c] and Yla,o0) = 7°Vla + ¢, 0).
(iii) For all subintervals I' of I we have
prB(I) C V().

(iv) Let c € (a,b), [ ill ] € Vla, c] and

x! x?
[ Wl } X [ w2 ] € Yla, b|
if and only if

it(c) = 2%(c), z'(c)=2%(c) and w'(c)=w*(c). (2.3)
a(t)

Proof. (i) Obviously | «(t) | € V for t € I with &, x and w continuous on
w(t)

| —
g5,
m
S
s
&
3
)
S

& a(t) i (to)
ifand only if | = | € C(I;V), because | =(t) | — | x(to) | in V if and
w (1 (to)
only if &(t) — @(to), x(t) — z(to) in X and w(t) — w(ty) in W, cf. @I
(ii) Trivially e.g. 7°C([a + ¢,b+c|; V) = C([a,b]; V).
(iii) The restriction to I’ of a function in C(I; V) lies in C(I'; V).
(iv) If @3) holds, then

g
g

il i? i(c) #2(c)
lim x| x| 2? t)=1 2(c) | = 2%(c) |, (2.4)
e wl w? wl(c) w?(c)
@t i?
because of continuity of | z' | on [a,c]. As | 2? | is continuous on [c, b]
w! w?
@t @?
it is clear that | z' | . | 2? | is continuous on [a, b].
w! w?
il x
Conversely, if | ! X. | 2? | is continuous on [a,b], then &3,
wt w?
and therefore 3, holds. O

In the following definition we introduce the notion of a s/s node (V; X, W)
by adding a number of conditions on the subspace V' in Definition EIl As we will
show in Lemma Z4 below, the main feature of a s/s node is that its trajectories
always can be extended in the forward-time direction.
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Definition 2.3. Let X and W be Banach spaces and let V' C [%} We say that
(V; X, W) is a state/signal node (s/s node) if V' has the following properties:

(i) The space V is closed (in the norm (Z1)).

(ii) The space V' has the property {é} eV =2z=0.

(iii) There exists some T > 0 such that

) . (0) 20
Vi x [ €V w } € U[0,7T] : z(0) | =1 = |. (2.5)
wo L w(0) wo

We remark that property (ii) of Definition implies that two classical tra-
1 2 7
jectories { il and Z}2 generated by a s/s node can be concatenated at c if

and only if 21 (c) = 22(c) and w'(c) = w?(c). Indeed, in this case

' (c) — %(c) it (c) — %(c)
2l(c) —2%(c) | = 0 eV,
wh(c) — w?(e) 0

which implies that #!(c) = @2(c).

Lemma 2.4. Condition (iii) of Definition [Z3 holds for some T > 0 if and only if
it holds for all T > 0. In this case

(0)

V=<1 x(0) ‘ { f] } €W0,7T] p and (2.6)
w(0)
% j; eva[ﬂem: iﬁgi = iﬂ . (2.7)
wo w(0) wo

Proof. First we show that if X)) holds for some T" > 0 then it also holds for
T replaced by any T’ € (0,T). Assume therefore that [J] € [0,T] satisfies

/
2(0) | = | xo |. Then [ I, } = Plo,1] [ . } lies in [0,7"], by Lemma
w ' w
w(0) wo
'(0) 20
E2(iii), and moreover | z'(0) | = | o
w'(0) wo

We proceed by showing that if Definition EZ3(iii) holds for some 7" > 0
then the same condition also holds for T replaced by 27'. By assumption, for any
Z0 xl x'l (0) Z0

xzo | € V there is a trajectory [ 1 } € U[0,T] with | z*(0) | = | o
wo v w*(0)
: i (1) . z?
According to Definition 1] [r((?))} € V and by letting { W2 ] € U[0,T] be
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%(0) #1(T)
such that | 22(0) | = | 2%(T) |, we obtain from Lemma 2 that the function
w?(0) w!(T)

1 2
[ Z)l ] )r (77T [ 5)2 ]) is a classical trajectory on [0, 27], which by construc-

20
tion starts from | z¢ |. By induction we have that Definition EZ3(iii) holds with
Wo

T replaced by 2T, for any n € ZT. Letting n — oo, we get a function [ ] € U
which satisfies (7)), cf. Definition [A2(iii).
Now we prove the last claim. By Definition 2Tl any [ ] € [0, T in particular

,T(O) 20

satisfies | z(0) | € V. Conversely, by 8), for any | x9 | € V, there exists a
w(0) wo
€T Z0

classical trajectory [ 13; ] € U0, T with | x(0) | = | zo |. O
w(0) wo

The preceding lemma and its proof shows that for s/s nodes claim (iii) of
Lemma can be sharpened to

V' € (a,b]: plpBla,b] = Vla,b'] and V' > a: pjapDBla, 00) = Vla,b'].
(2.8)
This is because every trajectory in U[a,b’] can be extended to a trajectory on
[a,00), i.e., in addition to Lemma EZA(iii) we also have pjq11D[a, 00) D Vla, b'].

Definition 2.5. The pair (U,)) is a (direct-sum) decomposition of the Banach
space W if U and Y are closed subspaces of W and W =U + ), i.e., every vector
i W can be written as the sum of unique elements u € U and y € Y.

The corresponding (bounded) projection onto U along Y is denoted 'PL){) and
the complementary projection is 73%. By this we mean that if w = u + y, where
u€elU andy €Y, then Pw =u and Plw = (1 — Pp)w = y.

We apply P to a function f € W pointwise, i.e. (PY f)(t) = Py f(t), t € I.

IfW =U+Y, then we identify w = u+y, u € U and y € Y, with [4] € [}]

Y Py Y
through u | = Pzij) (ut+y)andu+y=1[Zy Iy | u | where 7y and

Tu are the injection operators from ) and U to W, respectively. In particular, if
we have two decompositions W = U; + V1 = Us + )» then we identify

Py Py
{Pﬁw}_w_[Pb%w]' (2.9)

We have the following standard result.
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Lemma 2.6. The Cartesian product p-norm ||[¥]|| 2]~ yl15+ lullf) /P is equiv-
u

alent to the norm on W for any 1 < p < co and any decomposition VW = [iﬂ , i.e.
there exists a constant k > 1, which depends on p, U and ), such that

1
Vwew:  —([PYwl” + IPYw(P)? < lwlw < k(IPSwllP + [|PYw][?)/>.
(2.10)

We now add significant structure to s/s nodes by introducing the concept of
well-posedness.

Definition 2.7. Let 1 < p < co. The s/s node (V; X, W) is LP well posed if there
exists a T > 0 and a direct sum decomposition W = U + Y, such that V[0, T)]
satisfies the following conditions:

(i) The space {(0) | [&] € V[0,T]} is dense in X.

(ii) The operator [ 0 ’ng ] maps the space

B0, 7] := {[ i } € [0, 7] ‘ [ i((%)) } = 0} (2.11)

densely into LP([0,T];U).
(iii) There exists a Kp > 0, such that all [§] € [0, T] satisfy

lz@)ll2 + l[wlzro.gm) < Kz (20 a + 1Pwllro,020) » (2.12)
for all t €10,T).

In this case we call (U,Y) an LP-admissible input/output space pair (admissible
i/o pair) of the s/s node (V; X, W).

In this work we only consider LP-admissible i/o pairs, because this is the
natural notion of admissibility for LP-well-posed s/s systems. For other classes of
s/s systems, however, admissibility of an i/o pair might mean something else. In
the sequel we shortly write “admissible i/o pair”. Similarly, we also usually talk
about “well-posed systems”, meaning “LP-well-posed systems”, because this is the
only relevant notion of well-posedness here and the value of p is usually clear from
the context.

Remark 2.8. The defining properties of a discrete-time s/s node in [ASO5, Def.
2.1] have the following counterparts in the continuous-time setting:

(i) The space V is closed.
(ii) The set
TeEX|TzeX,weW: |z | €V

s a dense subspace of X.
(iii) If [8} €V then z = 0.
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Out of these necessary, but not sufficient, conditions, (i) and (iii) are identical to
the corresponding discrete-time conditions. In the discrete case the set defined in
(i) is all of X.

Property (iii) implies that the space V' can be written as the graph

F
V= H H Dom (F)

of some linear operator F'. Property (i) says that F is closed. However, its domain

Dom (F) = [i]}ﬂz: j: eV

needs not be closed as in the discrete case and, therefore, F' need not be bounded
in the continuous case.

The main significance of [ZIJ) is that the classical trajectory [ ] € U0, T]
depends continuously on the initial state z(0) and the “input” Pg w. This property
is the essence of well-posedness in continuous time and it will be heavily exploited
in the coming sections. The following technical lemma explains the other two
conditions that we impose on well-posed s/s nodes.

Lemma 2.9. Let (V; X, W) be a s/s node, let W=U+Y and let T > 0 be such
that condition (i) of Definition[Z] is satisfied. Then the following claims are true:

20
(i) For alle >0, | o | € V and u € LP([0,T);U), there exists a trajectory
Wo
|: w :| S Q}[O,T] with LL‘(O) = o and H,PZ/J{)U) - U”LP([Q’T];L{) <e.
w(0) wo

(i) If in addition to condition (i), condition (i) of Definition [Z7 is also met,

then the space
DT = H ;gz } { ZJ } € QI[O,T]} (2.13)

X
Lr((0,T];U)

is dense in {

1
Proof. (i) By Definition EZ3(iii) and Lemma A we may let [ fvl ] € [0, T

x'l (0) [ 20
be such that | 2'(0) | = | zo |. Thereafter, by Definition EZ7(ii), we can
w*(0) | wo
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2
find an [ 22 ] € [0, T such that 22(0) = 0, w?(0) = 0 and

HPZ/),)w2 —(u— Pgwl)H <e.

By Definitions Bl and EZ3(ii) we then also have ©:2(0) = 0. Thus the function

z 2l 4 22 i(0) 20
{ w } = { w4+ w? } lies in Y[0, T| and satisfies | x(0) | = | zo | and
w(0) wo

|PYw —ul| <e.
(i) Fix € > 0, z9 € X and u € LP([0, T];U). If condition (i) of Definition 27

is met, then we can find a classical trajectory [ %] € [0, T'], which satisfies

#0)

|Z(0) — zo|| < &/2. Moreover, [5(0) ] € V, and by the first part of this lemma
@(0)

there then exists a classical trajectory [ ] € [0,T] with z(0) = Z(0) and

0
EARE R
Pw u
We now prove the important fact that the conditions in Definition BX7, and
therefore also the claims in Lemma 23, are independent of T' > 0.

|PYw — u|| < /2. This trajectory satisfies

Lemma 2.10. Assume that (V; X, W) is a s/s node. Any of the claims (i) (i) in
Definition [27] is valid for some T > 0 if and only if the respective claim is valid
for all'T > 0.

Proof. Again, if one of the conditions (ii) or (iii) holds for some T' > 0 then it is
easy to see that it holds also for T replaced by any T” € (0,T). We show that if
claim (ii) or (iii) is valid for some T > 0 then it is valid for T replaced by 2T, cf.
the proof of Lemma B4

(i) Lemma A yields that we independently of 7' > 0 have

{I(O)’ {z}e%[O,T]}_[O 1 0]V

(i) Let € > 0 and up € LP([0,2T];U) be arbitrary. By assumption we can find a
1
trajectory { Z)l } € [0, T, such that x1(0) = 0, w!(0) = 0 and

||73£,)w1 - p[O,T]UOHLP([O,T];L{) <e/2.

@' (T)
In particular | z'(T) | € V and by Lemma EZ(i) there exists a trajectory
w'(T)
2
{ Z}Q } € [0, T}, such that #2(0) = 24(T), 22(0) = 2*(T), w?(0) = w!(T)

and

HP&)UP - p[O,T]TTUOHLP([OyT];M) <eg/2.
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In this way we obtain that

[Qﬂ = [ Zjll ] MTTTH; } € [0, 277,

by Lemma & and z(0) = 2 (0) = 0, w(0) = 0 and
1Py w — vl Lo (o.21100) < €

(iii) We assume that ZI2) is true for ¢ € [0,7]. Thus we may without loss of
generality take t € [T,2T] and Kp > 1. Let [§] € D[0,2T] be arbitrary
and note that pjo )77 ] € U[0,T] by Lemma Writing u = PY/w and
making heavy use of 1 < Kr < K% we obtain:

(@)l 2+ [wl Lo o,0:m) < Nwlleqo,mwy + @) lx + wll ez
< lwll oo, w0y + K (l2(T) 2 + ull Lo(r,120))
< K ([|2(0) |2 + llull Lo o,1724))
+ K7 (l2(0)]lx + l[ull Loo.rya0)) + Krllwll Loz
< 2K7 (||
< 2K7 (||

0)[lx + HUHLT’([O,T];L{)) + QK%”U”LP([T,t];u)
O)llx + lwll Loo,0) -

O

The following proposition requires the operator d,, which evaluates its argu-
ment function at a, and the space L} (R*;U) of functions that locally lie in LP.

See Definitions [AJ] and in the appendix for more details.

Lemma 2.11. If (V; X, W) is an LP-well-posed s/s node then the space

(€[ EA I N

< d ) X
is dense in | rp (R+:2) |

loc

Proof. Let zp € X and v € LY (R*;U) be arbitrary. We construct a sequence

loc
[ “n } € ¥, such that [ x,)l)(O) ] — [ o ] By Lemma Z(ii) and Lemma EZT0
Wp, P wn U

there for all n > 1 exists a pair [ ;%" } € [0, n], such that

n

:fn(O) Zo
>1: ~ — .
el H[ AT } [ Plo.n]U }H <1/m
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Moreover, according to (ZJ) there for all n > 1 exist [ i" ] € U, such that

Tn | Zn
e

|25 (0) — 20]| = ||Zn(0) — 20|l < 1/n— 0 and
1P wn — wlln = |lp0,n] (P wn — Wl ogo,ngze) = 1P @n — pjo,nytll Lo o,nyze) — 0

for all seminorms || - ||, on L} (R*;U), cf. Definition [AZ3(ii). This implies that the

In(o) . + xo . X
Pgwn ] in D™ tends to [ w || g R+:U) | (]

sequence |:
loc

It is now time to proceed to the next section, where we are finally able to
define the notion of a well-posed state/signal system.

3. Well-posed state/signal systems

In the study of well-posed input/state/output systems the state trajectory is
only required to be continuous and the external signals are allowed to belong
to L7 ([a,00); W), see e.g. [Stali]. We now extend the space of trajectories of s/s
systems in order to include trajectories of this type.

Recall that we for bounded [a, b] have LY ([a,b]; W) = LP([a, b]; W) and that
z, — x in C([a,00); X) if and only if ppy pj2n — pla,pjz uniformly for all bounded

subintervals [a,b] of [a, 00). See Definitions and for more details.

Definition 3.1. Let X and W be Banach spaces, let I be a subinterval of R and let
V' be a subspace of L%} with the norm &I)).

‘ x C(I; x) ) S
The pair [ w } € [ 7 (W) ] is an LP trajectory on I generated by

loc
V' if there exists a sequence [ ZZn ] € U(I) such that x, — z in C(I;X) and
w, — w in L?

D (I;W). We denote the space of LP trajectories on I by 20P(I),
again abbreviating WP [a,b] := WP ([a,b]) and WP := WP[a, o).

C(I; x)
Lipe(I;W)
in spite of their name, the external signal part of the LP trajectories on [a, 00) do
not lie globally in L”([a, c0); W), but only locally. From now on we mainly use L?
trajectories and for brevity we assume that all trajectories are of LP type except
when we explicitly mention that a given trajectory is classical.

In the terminology of [Paz83|, the classical trajectories generated by V' corre-

Definition Blsays that 207 (I) is the closure of U(I) in [ } . Thus,

&

spond to classical solutions of the inhomogeneous Cauchy-type problem [ z ] eV,

w
whereas LP trajectories closely resemble the corresponding mild solutions. Most of
the auxiliary results cited in this section are found in [Paz83].
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The following corollary to Definition Bl is the LP-trajectory analogue of
Lemma Z2

Corollary 3.2. For all subintervals I of R, the spaces 2P (I) satisfy:

(i) For all c € R, WPa,b] = 7°WP[a+ ¢,b+ c] and WP[a, c0) = 7°WP[a + ¢, 0).
(ii) For all subintervals I' of 1:

pr 0P (1) WP (I'). (3.1)

(i) The space WP of trajectories on R is invariant under left shift on R, i.e.,
for all t > 0 we have p, TGP C WP.

Proof. (i) Let [ 1:1; } be a trajectory on I + ¢ with [ ZZn

] a sequence of clas-
n

In

sical trajectories approximating it. Then 7¢ [ is a sequence of classical

! C(I; X)

L7 (I, W) } By Definition

trajectories on I, converging to 7°¢ { Z} } in [
B r¢[5] is a trajectory on I.
(i) If [ 1:1; } € 20P(I) then, by Definition Bl there exist [ Z" } € U(I) such

that z,, — x uniformly on bounded intervals I and w,, — w in L} (I;W). By

Lemma i), pr [ ZZn ] € Y(I') and of course pyrx,, — pra uniformly on
n

bounded intervals and ppw, — ppw in LY (I';W). This shows that pp [ ]
is an element of 20P(I"), i.e., that pp/20P(I) C 207 (I").
(iii) By claim (i) we have 7'20? = 20P[—t, 00) and then p, 720 C WP, according

to claim (ii). O

We are now ready to define an LP-well-posed s/s system.

Definition 3.3. Let the s/s node (V; X, W) be LP-well posed with trajectories 20P.

The triple ¥5/s = (P; X, W) is called the LP-well-posed state/signal system
(well-posed s/s system) on (X, W) generated by (V; X, W).

Any (not a priori well-posed) s/s node (V'; X, W), whose classical trajectories
on some positive-length interval [0, T] form a dense subspace of pjo. 2P, is said
to generate ¥/, = (WP; X, W) and V' is then called a generating subspace of X.

An i/o pair (U,D) is admissible for the system X if it is admissible for some
of its generating s/s nodes (V; X, W).

We do not even in the well-posed case exclude the possibility that several
s/s nodes generate the same s/s system. In the next few lemmas, we study the
implications of the properties that we demand of a well-posed s/s node in Definition

i
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Lemma 3.4. Let 1 <p < oo and I = [a,b] or I = [a,00), where —o0o < a < b < 0.
The following claims are true:

(i) The operator [ 661 ,Poy } maps the space [
u

) } continuously into

X
the space
b |: loc(I u) :|

(i) If the restriction of [ a 0

to some closed W C C(I X) 1S in-

loc (I W)

-1

jective with closed range, then T = a Oy s continuous.
0 Pu w
(iii) If (WP; X, W) is an LP- well-posed s/s system with admissible i/o pair (U,DY),
do O X
P -to-
then [ 0 P&; ] maps WP (I) one-to-one onto [ L2 (I;U) } and
s 0 7|7 s 0 1|7

30 = [ Yy } and T, := [ Yy ] (3.2)

0 Py 207 [a,b] 0 Py WP [a,00)

are both continuous.

da

Proof. (i) It suffices to prove that Oy

2]l £

e

} is continuous at zero. Letting

], we for all b > a get:

loc

< Sup llzn (&)l + 1P llwnll o (a1
€la,

§(1+|I7’z3’||)mi2”

X
[ Lo (anbian]

B

Thus, if | ™ | — 0, then xn(c;)) — 0 for all b > a, which by
Wn, p[a7b]’PM’LUn

Definition [A3(ii) implies that P w, — 0.

(ii) The given assumptions and claim (i) yield that [ % 0O } is continuous

0 Py
w
with a closed domain, i.e., the restriction is a closed operator. Then also the
inverse T is a closed operator, whose domain is a closed subspace of a Fréchet

space. This implies that Dom (%) is a Fréchet space and T is then continuous

by the closed graph theorem.
(iii) Assume that (20P; X, W) is well-posed with admissible i/o pair (4,Y). We

first show that the restriction of [ % 0

0 ;8{)
operato % 0
per T O ,PZ:/){;

} to U is injective and that the
-1
is continuous.

Py
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Let [ 5" } € D+. Since [ 0 0

9 | maps U onto DT defined in ([ZT3),
0 Py

there for every n > 1 exists an { Tn ] € U such that z,(0) = &, and

n

Ppjw, = uy,. Then pp 7 [ Z)" } € U[0,T] by Lemma EZX(iii) for all T > 0
and therefore, according to (ZI2):

lznlleqo, iy + lwallLeo,mwy < Kr(l[énllx + [lunll o jo,7120))- (3.3)

This proves that if n | _ | % Oy ol —gand | " € %7, then

A - 0, i.e., that % Oy is injective. If &n € DT tends to
W, 0 Py - Uy,
zero, then

] _[% 07 &]_,

because pp rjun — 0 for all T > 0. By [B3) this implies that pjo.1 [ . }

wy,
tends to zero for all T > 0, i.e., that S - 0, cf. Definitions [A2(iii) and

n

s O

0 P
X
(R*5U)

[A3ii). This finishes the proof that [ ] ‘ has a continuous inverse.
by

By Lemma EZT1l, DT is dense in [ and thus the operator

s 0 1"
0 Py

which maps the closure D+ = {

LP

loc

can be uniquely extended by continuity to an operator %y,
T
X

N L _
(R+;L{) } of DT one-to-one onto ‘0.

LfOC
Definition Bl says that % = 20P.

An analogous, but slightly simpler, argument shows that the restric-
tion of { % 0

0 P

tion can be extended to a continuous operator Tgf", which maps Db—a
one-to-one onto W[0,b—a] = WP[0,b — a]. According to Lemma EZIii),
P X
D = { LP(]0,b — al;U)
For the intervals I with left end point a we now get that

} to B[0,b — a] is injective. The inverse of this restric-

do 0 a6 0
P — a agyp
5 |- o
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which in combination with Corollary BZ(i) proves that [ %1 ’POZ},} } maps
20(I) one-to-one onto [ LfOC?(I;U) ] Continuity of ¢ and T, follows from
claim (ii) and the fact that all the spaces 207[a, b], [ Lp([a),(b];u) } , WPa, 00)
and e ([ai)(oo);l/{) ] are Fréchet spaces. (I
Let —co < a < b < oo and let (V; X, W) be a s/s node. Define

WEa, b] := H i ] € WP[a,b] | 2(a) = o} (3.4)

and note that the space Up[0,T], which was defined in III), is subspace of
5[0, T]. The trajectories [] in 240, 7] are said to be externally generated,
because they are completely determined by the (external) input signal P}w.

Lemma 3.5. Assume that [ 0 P} | maps 205[0, T one-to-one onto LP([0, T;U).
Then Definition [Z(ii) holds if and only if V[0, T is dense in 205[0,T.

Proof. We first show that 203[0,77] is a closed subspace of the Banach space
207(0, T']. Obviously,

W0, 7] C Wr[0, 1] = WP[0, T

n n

by @) and Definition Bl respectively. Let { Z}" ] € W40, 7] and let { “n }

LP([0,T]; W)
thus z(0) = lim,,— 00 2, (0) = 0.

It is clear that [ 0 P/ ] maps 205[0, T'] one-to-one onto LP([0, T];U) if and
only if { (?)3 7)0&, } maps 205[0, 7] one-to-one onto [ Lp([é,()%];U) ] . Moreover,
it is easy to see that 205 [0, T] inherits closedness from 207[0, T']. Lemma B then
yields that the restrictionof [ 0 P ] to 205[0, T is continuous with a continuous
inverse, which by assumption is defined on all of the Banach space L?([0, T];U).

Let uw € LP([0,T];U) and define an element of 205[0, 7] by

0= (10 P2 Nagom)

If 9 is dense in 209, then there exists a sequence ol e 0|0, T'| that converges
0 w

n

tend to [ i } in [ (o, 7] ) } Then [ ] € 207(0, T], x, — x uniformly and

to [ i ] in { LC;(([[%?]);V)) } Obviously [ 0 PY | { zz ] — win LP([0, T; U),

which proves that Definition EZ7(ii) holds.
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Conversely, if [, ] € 205[0, T, then
r -1
{ w } = ([ 0 Py ] ’mg[oﬂ) Pijw.

If Definition E7(ii) holds, then there exists a sequence [ i" } € Uy[0,T], such

n

that ’Pg{} Wy — ’Pg{} w. Then also
Tn -1 y
[ w,, } = ([ 0 Py ] |Qng[0,T]) Pigwn

-1
and by the continuity of ([ 0 P&’ } ‘an[o T]) . we have that [ Tn, } N [ T }
oL n

in 2050, T']. This proves that Uy is dense in 20. O

Let f be a function and I C Dom (f). In the following lemma we use the
notation 7; for the operator which first restricts its argument function f to I and
then extends the restriction by zero to all of R, see Definition [A-Jl The lemma
further illustrates the importance of bijectivity of the restriction of [ 0 Pg } to
205[0, T]. We shall soon see that this bijectivity is the key to characterising the
admissible i/o pairs of well-posed s/s systems.

Lemma 3.6. Let (V; X, W) be a s/s node and let T > 0. If Up[0,T] is dense in
206[0, T, then WH[0,T) is invariant under right shift with zero padding:

Vt Z 0 . p[o)T]TitTr[O)T]Qng[O, T] C Qﬁg[O,T] (35)

If B3) holds and the operator [ 0 Py | maps the space 204[0,T] one-to-
one onto LP([0,T];U), then the space 24[0,T] has the property:

xr xr
Vt € [O,T], [ w :| € wg[O,T] : p[oﬂg]Pg{}w =0 = Plo,t] |: w :| =0. (3.6)

Tn

Proof. Let [ i } € 255[0, 7] and let [ } € [0, T] tend to [ Z) ] Then

n

Tn L —t Tn
W, = Plo,1T T0,T] w,

lies in V[0, T], as we now show.

Tn

Lemma (i) yields that 7* { } € Y[t,T + t] with z,(t) = 0 and

n

wy,(t) = 0. This implies that 0 x; 77¢ Tl e 00, T+t] if 0 is the zero trajectory
w

n

in [0, t], according to Lemma Z2(iv) and Definition ZZ3(ii). From Lemma E2(iii)

we now get that
:fn _ —t Tn
|5 ] o (0| 22])

lies in [0, T']. Moreover, Z,(0) = 0 and @, (0) = 0 by construction.
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Obviously { ;%" } tends to

n

Pl el . [ C0.TLA)
o ‘= Plo,11T (0,7 w Lp([(), T], W) s
which shows that [%] is an element of 207[0,T], cf. Definition Bl Moreover,
z(0) = 0, which by @) yields that [Z] € 205[0, T}, and we have proved ([&3).
In order to prove (), we suppose that [ 0 7P | maps 205[0, 7] one-to-
one onto LP([0,T];U) and that [£] € 205[0,T] satisfies pjo 4P w = 0 for some
t € [0,T]. Then we have that
p[oﬁT]Titﬂ'{oyT]Ttﬂ'[oyT]'Pgw = ’Pgw, (3.7)
because
P,y o,y w0, 1) PY w — P w = pio.r e 470,17 Pojw — ppo.1y 011 PY W
= plo,1) (T 1) — o, 1)) Py w = —pjo, 7m0, Poyw = 0.

By the surjectivity of [ 0 P} | there exists a trajectory [Z] € 205[0, 7],
such that

} = P&)@ = p[O,T]TtW[O,T]PL){)w- (3.8)

g) ®)

Lo R

From B3) we get that also the right-shifted trajectory

ff . _t ./I\
o | T Plo,7)T 70,7 m

belongs to 205[0, 7). Combining ([B) and ([BX) we get that

x — ~
[0 Py ] [ @ ] = plo.)7 o7 Py

= plo,1T Mo, P[0,T] TtTr[O,T],Pg{}w

recalling that mo 1)pp0,7] = 7o, 7] On Liloc ;U). By the injectivity of the restric-
tion of [ 0 738; } to 205[0, T'] we have [%} =[] and ppo, 1 [%] = 0 then implies

plo,1) [w] = 0. u

The property ([B8) implies causality, because it says that future input does
not influence past values of the trajectories. We now return to well-posed s/s
systems and collect our most important findings so far in the following proposition.
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Proposition 3.7. Let —oo < a < b < oo and let ¥/, = (WP; X, W) be a well-posed
s/s system with admissible i/o pair (U,D).

(i) For all x, € X and u € LP([a,b];U) there exists a unique [ ] € 20P[a,b],
such that x(a) = x, and Pw = u (almost everywhere).
(i) For all [I] € WP[a,b] and t € [a,b] we have

lz(8)llx + lwll e o) < Ko—a (@) |2 + 1PYwl Le(a,g20) » (3.9)

where Ky_, is the constant K in ZI2) with T =b — a.

(iii) For all x, € X and u € LY ([a,00);U) there is a unique [] € 2P[a,00),
such that x(a) = x, and PYw = u (almost everywhere).

(iv) Let Bola,b] be given by @I) for any well-posed s/s node, which generates
Y. Then Vola,b] is dense in the space WWh|a,b] defined in (BI).

(v) The operator [ 0 P} | maps 2Wh[a,b] one-to-one onto LP([a,bl;U).

n

Proof. We first prove claim (ii). Let therefore [, ] € 20P[a,b] and let [ Z" ] be a

sequence in Yla, b, which tends to [ Zi } . Then every { i"

n

} satisfies

|zn(®)|lx + ||wn||LP([a,t];W) < Kpq (Hxn(a)HX + ||Pl?{)wn||l/p([a»t]$u))

for all ¢ € [a,b] by a combination of Lemma EZ(ii) and Definition EZA(iii). Letting
n — oo, we obtain (&)

] maps 20?[a, b] one-to-

X
([a, 00);U)

According to Lemma B4 the operator { 661 POy
u
X

17 ([a, b: 1) . This

one onto { } and 20P[a, 00) one-to-one onto { P

loc

implies claims (i) and (iii). In particular, [ maps 205[0, 7] one-to-one

o 0
0 PY

onto (0, T:U) | Thus claim (v) is valid and then claim (iv) follows from
Lemma B3l O

The following proposition shows that the LP trajectories of a well-posed s/s
system can be extended with great flexibility. This is, together with property (i)
of Proposition B, one of the main advantages of using LP trajectories instead
of classical trajectories. Compare the following proposition to Lemma Z2(iv) and
Lemma BTl which are the corresponding results for classical trajectories.

Proposition 3.8. Let ¢ € (a,b) and let ¥/, = (WP; X, W) be a well-posed s/s
x! z? 3
P P P
system. Let [ Wl ] € WPla, |, { w? ] € WPc,b] and [ W3 ] € WP, 00).
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Then the following claims are true:
1 2
The concatenation [ il M. 52 is an element of WP|a,b] if and only

if 2(c) = x%(c). Moreover, [ ill ] X [ Z:u?; ] € WP[a,0) if and only if
zl(c) = 23(c).

If U,D) is an admissible i/o pair of ¥, then for every u € LY ([c,00);U), the

loc

1
trajectory Z:ul on [a,c] can be extended to a trajectory Z; on [a, o)

such that p[cpo)Pg;w = u.

Proof. Assume that (U,)) is an admissible i/o pair of X.

(i)

(i)

If 1 (c) # 22(c) then the concatenation 2! x. 22 is discontinuous at ¢ and
it cannot be a state trajectory on [a, b] by Definition Bl Therefore we now
assume that z1(c) = 22(c).

According to Proposition B there exists a unique trajectory [ ] on
[a,b], such that z(a) = z'(a) and PYw = PY(w' . w?). This trajec-
tory satisfies z(c) = z!(c) = 2%(c) and pp. Py w = Ppw?. Since we have

2
Ple) [w] € WP[c, b] by Corollary B2, we also have pp. [ i } = [ 131:)2 ] by

1 2
uniqueness of trajectories. This proves that [ Z)l ] M { 5}2 } € 2P[a, b].

1 3
If z1(c) = 23(c) then i)l M ;f]g can be proved to be an element

2 3
of 2P[a,00) by considering [ 512 ] = Pla,b] [ 513 ], applying claim (i) for
the case 207[a, b] and letting b — oo.
3
For an arbitrary u € LY ([c,00);U) we may, by Proposition B take { i?, }

loc

to be the unique trajectory in 20”[c, 00) which satisfies z3(c) = z'(c) and
Ppw? = u. Then

HEFIEE

1
by claim (i), and moreover, [ Zju ] is obviously an extension of [ Z:ul ] such
that p[cyoo)ngw = u. O

Property (i) in the preceding proposition means that z'(c) and 22 (c) contain
1

all the information that is needed to determine whether two LP trajectories il

2

and [ w? ] of ¥ can be concatenated at time c or not. This is referred to as “z
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splitting the past and the future” or “x having the property of state”, see e.g.
[PWOR, Rem. 4.3.4]. In the space U[a,b] of classical trajectories, the state does
not split the past and the future.

Proposition 3.9. Let —oco < a < b < oo and let (V; X, W) be an LP-well-posed s/s
node with the space 2P [a, b] of trajectories on [a,b]. Let ¥/, = (WP; X, W) be the
s/s system induced by (V; X, W). Then

V—oo<a<b<oo: Wrla,b] = ppap7 “WP  and (3.10)
. x C(RT; X) . x »
WP = {[ w ] S |: LfOC(R_,_;W) Vb > 0: Plo,b] w €W [O,b] . (3.11)

Proof. Corollary B2 immediately yields that py, ;7= 2P C 20P[a, b] for all a and
b. We thus need to show that ppg )7~ 2P D WP[a, b] and that

[i ] € { Lg(ﬁ;if/{,) } , Vb >0 ppoy [ i ] € WP[0,b] = { fu ] c 9P,
(3.12)

loc
In order to prove that 2P[a,b] C pp, 57 “WP, we let [;,] € Wla, b] be arbi-
trary. By Proposition B(ii) [ ] can be extended to some [ Z] € 20P[a, 00). Then
7 [§] € W and p 7 ([T ]) = [0]-

We now prove BI2) and therefore assume the left-hand side of the implica-

tion. We define [ & ] =% { ’Pgw } € 2P, so that, in particular, pjg ) [ w }

and pjo ) { ;% } lie in 207[0, b] with 2(0) = Z(0) and P}, pjo yyw = Py pjo,5 @ for all
b > 0. Then, by B32), for all b > 0:

on | | =5 e | =00 | 3
This implies that [ ] = [Z] € 207, cf. Definition O

Note that we cannot always extend trajectories in the backward time direc-
tion, because in general there is no guarantee that for every z, € X there is a

trajectory [Z] on [a',a] such that Z(a) = zq.

Proposition 3.10. Let T' > 0 and let X,/ = (WP; X', W) be a well-posed s/s system.
Then

1 2 3
T -T| T —27 | X
P = XT T Mo T M3 ...
wt T w? 2T w? 3T

{ iﬂ } € P[0, T), "+ (0) = 2"(T), n > 1}' (3.13)

n

Proof. Denote the right-hand side of BI3) by 20P. We first show that 207 C 207.
Corollary B2 implies that for all ¢ > 0:

P, P = plo.1yp+ T WP C pro, 2P C WPI0,T).
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For any [ ] € 207 we can thus define the sequence

x" .: (n—1)T T P >
|: w™ ] = Plo,7|T |: w ] e W [O,T], n>1,

which obviously satisfies

A N R VP O I and 2" (0) = 2(nT) = 2™(T)
w = wl T T w2 27T « -« = = .

In order to prove the inclusion 207 C 207, we let [%] € 207 be arbitrary. An
induction argument, which uses Proposition B8(i), yields that

x r! _ x? _(N— N
Plo,NT) [ w ] = { w! } }p T T [ w2 ] Mop ... 7 VDT { wV ] € WP0, NT]
for all integers N > 1.

For every b > 0 we can now choose N > b/T in order to get NT > b and

T

T
P10,b] { w ] = P[0,b] P[0,NT] { w ] € W7[0, b]
by Corollary BZA(ii). According to (BIT)), this implies that [ ] € 20P. O

In the following proposition we characterise well-posedness of s/s systems
and the respective admissible i/o pairs under the assumption that Uo[0,7] is
dense in 240, T]. This condition is necessary for well-posedness, as we showed in
Proposition B

Proposition 3.11. Let 1 < p < oo, —co < a < b < oo, W =U+DY and let
(V; X, W) be a s/s node with trajectories 20P[a,b] on [a,b]. Assume that Uola, b]
gwen in ZII) is dense in Wha,b] gwen in BA). Then the following statements
are equivalent:
(i) The s/s node (V; X, W) is LP well posed with admissible i/o pair (U,D).
This s/s node induces the LP-well-posed s/s system (20P; X, W), where 207
is given by BI3) with 20P[0,T] := 7°20P[a, b].
do O X
P -to-

0 P ] maps 2WP[a,b] one-to-one onto [ £2([a, b: 1) ]
(iii) The operator [ 0 Py | maps 2hla,b] one-to-one onto LP([a,b];U) and

(ii) The operator {

{;v(a) | [ fj } € QUp[a,b]} =X, (3.14)

Proof. We only prove the case a = 0 and b = T'. The general case can be reduced
to this case using Corollary B2(i).

(ii) => (iii): We proved that [ 0 P} | maps the space 20} [a, b] one-to-one onto
L?([a,b];U) in Proposition BZl The space on the left-hand side of ([BId) is the

range of the operator [ 0 O } } 09(0,7]" which by assumption equals X.
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(i11) => (ii): We first prove injectivity of the operator in (ii). If [ ] € 207[0,T] and
[ % 0 ] [ * ] =0, then { . } € Wh[0, 7] and Pw = 0. Using the injectiv-
w w

0 Py
do 0}

ityof [ 0 P ] 0 P

‘QBS[O,T] we then obtain that [ ;] = 0, i.e. that {

2w7[0,T]
is injective.

Considering surjectivity, we take arbitrary zo € X and ug € LP([0, T];U).
Condition ([BI4) implies that there exists an [ im ] € WP[0,T] with z(0) = =o.

x

an

By the surjectivity of [ 0 Py ] we can find [ ] € 27[0,T] such

|zmg [0,7] »

that 2,(0) = 0 and PYw, = ug — PYw, in LP([0,T];U). We then have that

[ . } = [ Tut T ] lies in 207[0, T'] and, moreover, that
w Wy, + Wy

oo 0 T | ,T(O) _ | ®o
0 Py w || PYwy +wy) | | wo |
(i) = (ii): This was established in Lemma B4

(i1) = (i): We already proved that if condition (ii) holds for some T > 0, then
condition (iii) holds for the same T'. This allows us to make use of Lemma B3, (B0
and (BI4) for that particular 7. We now prove that the conditions in Definition
27 are satisfied.

We start with condition (i) and, therefore, let zy € X be arbitrary. By (BI4)
there exists a trajectory [ i } € P[0, T, with 2(0) = x¢. Let [ wn ] € U[0,T]

be a sequence of classical trajectories, which converges to [, ]. Then z,(0) lies in
the space in Definition EZ7(i) for all n and, moreover, z,,(0) — xg, since z, — =
uniformly on [0,7T]. This proves that condition (i) of Definition 7 is satisfied.
Condition (ii) is proved by combining the assumption Uo[0,7] = 205[0, T] with
Lemma B3l

Proceeding to Definition 2Z7(iii), we recall that [ i } =37 [ Zo

] by the
definition of T is the unique [%] € 207[0,T], which satisfies x(0) = 3:0 and
PYw = u. Fix [ i ] € [0, T] arbitrarily, so that [ . } =gt [ ] For
any given ¢ € [0,T] we define

2] it
@ |70 pemmegPrw |

thus obtaining that [Z] — [#] lies in 205[0, 7] with pjo 4Py, (w — @) = 0.
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From (B8) we now get pjo.y [ Z] = pjo,g [ 4], which implies that:

@)l x + lwll e o,gowy = 1) || + |0 Lo (j0,45m)

<zl eqo,my:2) + 1w Le o, 77:1)

< =51 1ZO) |2 + [P @] o0, 77:20))
<15 I (l2(0)]lx + 70,0 Pg wll Lo (fo,7120))
< IZG 1 (2z(0)| 2 + [|Pwll Lo (o, 0:20)) -

We have shown that (V; X, W) induces an LP-well-posed s/s system (207; X', W).
By assumption, 20P[a, b] is the space of LP trajectories on [a,b] generated by V|
which implies that pjq, 7 *20P = 2WPa, b], according to Proposition B3 This is
equivalent to pjo p—q 207 = 72" [a, b] and an application of Proposition BEI0 now
yields that (BI3)) holds. O

Note that conditions (ii) and (iii) of Proposition BTl hold for some choice of
—00 < a < b < 0 if and only if they hold for all such a and b. If ¥ is known to be
well posed, then checking a given i/o pair for admissibility is quite simple, as the
following corollary shows.

Corollary 3.12. Let —oo0 < a < b < oo, let ¥/, = (2WP; X, W) be an LP-well-posed
s/s system and let W =U + Y. Then the following conditions are equivalent:

(i) The i/o pair (U,Y) is admissible for the s/s system 3.

i) (U,Y) is admissible for some well-posed s/s node which generates 3.
(i) U,Y) is admissible for every well-posed s/s node which generates X.
(iv) The operator [ 0 P | maps 2W}[a,b] one-to-one onto LP([a,b];U).

Proof. (i) <= (ii): This is Definition B3

(i) = (iii): According to Proposition BZZiv) P[0, 7] is dense in 204[0, T for
every well-posed s/s node (V; X', W) which generates ¥. By Lemma B4 condition
(ii) of Proposition BTIlis satisfied whenever (i, Y) is admissible for ¥. Proposition
BTI(i) then yields that (i,Y) is admissible for (V; X, W).

(#11) = (ii): This is trivial.

(i) <= (w): Again V[0, T is dense in WH[0, T] for any well-posed s/s node which
generates . Proposition BITIK(iii) yields that [BI4) is satisfied, because the space
in BTl does not depend on the i/o pair. Now the equivalence of claims (i) and
(iil) in Proposition BTl finishes the proof. O

Next we give a theorem which shows that the only example of a well-posed
s/s system with external signal space W = {0} is given by a Cy semigroup on X.
In order to formulate and prove this result we first need to recall some basic facts
about strongly continuous semigroups.
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Definition 3.13. Let X be a Banach space. A family t — AL, t > 0, of bounded
linear operators on X is a semigroup on X if A0 = 1 and ATt = AA for all
s,t > 0.

The semigroup is strongly continuous, or shorter Cy, if lim;_o+ Alzo = x0
for all xg € X.

The generator A : X D Dom (A4) — X of 2 is the (in general unbounded)
linear operator defined by

N I
Azg = t1—1>%1+ 2(91 xo — o), (3.15)
with domain consisting of those xy € X for which the limit exists.

The generator A of a Cy semigroup on X is closed and Dom (A™) is dense in
X for all integer n > 1, see e.g. [Paz83, Thm 1.2.7]. Moreover, according to [Paz83,
Thm 1.2.6], a Cp semigroup 2 is uniquely determined by its generator A and we
may therefore say that A generates 2. The following lemma is a part of [Sta05
Thm 2.5.4(i)].

Lemma 3.14. Let A be a Cy semigroup on the Banach space X. Then there exists
an wy € RU{—o0}, the growth bound of the semigroup A, such that:

t t
o Jo8U2D) . Tog)

w: =
R t— 00 t t>0 t

Moreover, for each w > weg(, we have that e~ “!||A|| — 0 as t — oo and there exists
some M > 1, such that

er2t <A < Me*! for all ¢t > 0.

Every contraction semigroup 2, i.e., a semigroup such that ||| < 1 for all
t > 0, has growth bound at most zero:

¢
oy Uy, ) 10
because the logarithm function is nondecreasing.

The proof of the next theorem depends on the following fact, which can be
proved by combining Theorem 3.2.1(iii) and Theorem 3.8.2(ii) of [Sfa0f]. Let A
generate the Cjy semigroup 2 on the Banach space X'. Then for all 2y € Dom (A)
the initial-value problem #(t) = Az(t), t > 0, £(0) = x¢ has the unique continu-
ously differentiable solution z(t) = Atxg, t > 0.

Theorem 3.15. Let X be a Banach space, let p € [1,00) be arbitrary, and let

V C [%]. Then the following claims are true:
(i) If V is the graph

V= [ i } Dom (A) (3.17)

of the generator A of a Cy semigroup 2 on X, then (V;X,{0}) is an LP-
well-posed s/s node for all 1 < p < co.
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(i) Conversely, if (V;X,{0}) is a well-posed s/s node for some 1 < p < oo, then
V is given by BID), where A: X D Dom (A) — X is a closed operator. The
operator A can be extended to the generator of a Cy semigroup on X.

(iii) If (V;X,{0}) is a well-posed s/s node, then it generates the LP-well-posed
s/s system (20P; X, {0}), where

WP ={z e C(RT;X) | x(t)=Aay, t >0, € X}.

Proof. Part 1 (Proof of (i)): Let T > 0 be arbitrary. By the discussion after
Definition BT3 the generator of any Cy semigroup is closed, i.e. V has property (i)

of Definition 3 From ([BI1) we have that ;O € Vif and only if zp € Dom (A)
0

and zg = Axg. In particular, condition (ii) of Definition EZ7(ii) holds.

For condition (iii), define = := t — Alxq for t € [0,T] and xy € Dom (A).
Then we obtain that @(t) = Az(t) for t € [0,T], so that x is a classical trajectory
of V on [0,T]. Moreover, this trajectory satisfies

#(0) | | Az(0) | | 20
o =L =[]

This proves that (V; X, {0}) is a s/s node, but we still need to show that it is well
posed.

The domain of any Cj semigroup generator A is dense and thus condition (i)
of Definition 27 is met. Condition (ii) becomes trivial in the case Y = W = {0}.
Considering condition (iii), we note that every classical trajectory of V is of the
form z(t) = Atz(0), t > 0. Lemma BT4 then yields that there exists constants M
and w > max {wy, 0} such that:

lz(®)] = 1A 2(0)| < |2 |[|l=(0)]| < Me*||z(0)]| < Me*T[|z(0)], ¢ € [0,T].

This shows that the s/s node (V; X, {0}) is L? well posed for all p € [1, 00), because
the only condition, which involves p, becomes trivial.

Part 2 (Proof of (ii) and (i)): By the definition of a s/s node we immediately
obtain that V' can be written as the graph [BIT) of a closed operator A, and that
there for every T > 0 and xy € Dom (A4) exists some z € U[0,T], such that
x(0) = zg. Moreover, as (V; X,{0}) is well posed, we know that Dom (A) is dense
in X and that there exists some Kp such that ||z(¢)| < Kr||z(0)| for ¢ € [0,T].
The latter implies that = € U0, T] is uniquely determined by z(0).

The above argument and the fact that every state trajectory is continuous
allow us to define the following family of bounded operators from Dom (A) to
X. For 2y € Dom (A) and t € [0,7] define a family ¢ — 2A* of bounded linear
operators by Atz := z(t), such that € U[0,T] and z(0) = zo. The conditions in
Definitions and EZ hold for every T' > 0 and we may extend the family ¢ — A
to all of RT by choosing an arbitrary T > ¢ for every ¢t > 0. Every 2! can moreover
be uniquely extended from Dom (A) to all of X by continuity.
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Let z,, € U[0,T]. From ||z(¢)|| < Kr||z(0)|], t € [0,T], we have z,,(0) — x(0)
in X if and only if 2,, — = uniformly on [0, T]. This proves that

WP[0,T) = {z € C([0,T); X) | x(t) = Az, t € [0,T], z0 € X}. (3.18)

In particular claim (iii) above holds for the family 2 of operators we have defined
above. We finish the proof by showing that 2 is a Cj semigroup.

We have 2%y = ¢ for all zp € X by the definition of 2. Moreover,
lim;_,o+ Alzg = lim,_ o+ 2(t) = =z, because every state trajectory z on [0,T]
is continuous from the right at 0. For the condition A°A? = A5t s,¢ > 0, we
make the following argument. Let o € X and s,t > 0 be arbitrary. By BIS)
there exists a unique = € 20”[0, s + t] such that x(0) = x¢. Then, by Corollary B2
in particular pjg g2 € 20P[0,t] and 7¢py 51z € WP|0, s]. From the construction of
2A we now get that

Vog € X @ ATlag =z(s+1t) = (7'2)(s) = A°(7'2)(0) = Az (t) = A Al zy.
Finally, we for all zp € Dom (A) have

1, 1 1
hlir& E(Q{ ~ Do = h1i>r101+ h (#(h) —2(0)) = hli%l+ h /o #(s) ds

h
= lim 1 /0 (Az)(s)ds = (Ax)(0) = Axg

by standard integration theory and the fact that & = Az is continuous on [0, T].
This shows that A satisfies (BIH), i.e. that A is the restriction of the generator of
2 to Dom (A), because by Definition the generator is the maximally defined
operator that satisfies (BXIH). The proof is complete. O

We finish the section with the following question, to which Proposition B
provides only a partial answer. A definite answer will be given in Theorem

Remark 3.16. Let T > 0 and W[0,T] be an arbitrary subspace of 5)(([[%’ ?1]]’);\})) } ,

C(RT; X) }b
L (RT; W)

loc

1 2 3
x T x _oT X

where X and W are Banach spaces. Define W+ C [

(3.19)

When is (WT; X, W) an LP-well-posed s/s system?

The reason for not using the notations 207[0, 7] and 207 in Remark BTH is

x
that we do not a priori know that they consist of LP trajectories of some V' C [ 1% ] .
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4. Input/state/output representations

In this section we first show how well-posed i/s/o0 systems may be used to represent
well-posed s/s systems. Thereafter we proceed by characterising the admissible i/o
pairs and giving their associated i/s/o representations.

The theory of well-posed i/s/o systems is due to Salamon, Smuljan, Weiss,
Lax, Phillips and many others. Selected results of these authors are collected in
[Stalb), Ch. 4], which we use as our standard reference also in this section.

In the following definition we need the function space L, (R;U). See Defi-
nition [A3 in the appendix for its definition. '

Definition 4.1. The space TIC}, (U;Y) consists of all continuous operators

DL

c,loc

(R7u) - L;Z,loc(R; y)a

which for all w € LY, (R;U) and t € R satisfy 7'Qu = D7lu (time invariance)

c,loc

and p_Dmyu =0 (causality).

If the domain and codomain of ® € TIC? |
then we sometimes briefly write ® € TIC?

loc*

(U,Y) are clear from the context,

Definition 4.2. Let X', U and Y be Banach spaces. By a causal, time-invariant and
LP-well-posed input/state/output system (well posed i/s/o system) on (X,U,D))
we mean a quadruple ([Q@l %] ;X,L{,y), such that:

(i) The map t — A is a Cy semigroup on X, cf. Definition [T13.

ii e operator : ’; — is continuous and it has the propert

ii) Th B LP(R—;U X d it h h Y
ABu = Bp_7ir_u for allu € LE(R™;U) and t > 0.

111 e continuous operator € : — ; satisfies r = py7"Cx for

iii) Th ) C: X Ly (RYY isfies €A LTI f
allz € X andt > 0.

v e operator 1€e8 in ; and it satisfies T_U = u for a

iv) Th N TICY (UY d P+ B ll
u € LE(R™;U).

Condition (ii) of Definition means that B intertwines the semigroup A
with the left-shift semigroup p_77_ on L2(R™;U). Condition (iii) means that €
intertwines the semigroup 2 with the left-shift semigroup p47 on LY (RT;Y).
Remark 4.3. For notational reasons, we usually interpret B as an operator defined
on ch))loc(R;L{), still denoting it by the same letter, by defining Bu := Bp_u for
ue LP, (R;U). We also sometimes interpret € as an operator with values in

c,loc
Lg)loc(R; V) by defining €x = 7, Cx.

The following definition is an adaptation of [Sta05l Def. 2.2.7].
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Definition 4.4. Let —00 < a < b < o0 and I = [a,b] or I = [a,00). We call the
x C(I X)

triple | y | € | LY (I;Y) | an LP trajectory on I of the LP-well-posed i/s/o
u U)

if

I;
loc(I
system ([23];X,U,Y)

z(t) = [ A~ Brt ] [ z() } for all ¢ € I and

Tru

y=pr[ 77°C D | [ f&) ] in L7, (1;)).

By shortly referring to a trajectory we mean an LP trajectory on RY.

In the following definition, the equality on the second line of {Z) should be
understood in the sense of [ETl)

Definition 4.5. Let ¥/, = (W7; X, W) be a well-posed s/s system, which has the
admissible i/o pair U,Y).
The i/s/o system ([% 3];X,U,Y) is an input/state/output representation
(i/s/o representation) of X correspondmg to (U, ) if for some —o0 < a < b < oo:
) ] ‘Vte[a,b]:
)

27 [a, b] = {[ e[ ZZ]]W)

A = Loree o ] [ |}
wa Pla b]T7a€ p[ayb]Q 7T[a7b]73£{)w ’

Our next task is to prove that to every admissible i/o pair of a well-posed
s/s system there corresponds exactly one i/s/o representation. We split the long
proof into a few lemmas for readability.

(4.2)

Lemma 4.6. Let T >0 and 1 < p < oo, let X and W = U + Y be Banach spaces.
C([0,T]; X) ’ +
Let W[0,T] C [ £2(0, T]: W) be arbitrary and define W+ by BI9).
Then the following claims are equivalent:

(i) The space W[0,T] is closed and the operator [ %

0
0 Py ] maps W[0,T] one-

et | v |
driom | =[5y ]

loc

(ii) The space W™ is a closed subspace of [

X
+ _to-
maps W™ one-to-one onto [ I (R*:U) }

loc
When the equivalent conditions (i) and (ii) hold, W0, T] = pjo,ryW ™.
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Proof. (i) = (ii): Let { Z}m ] be a sequence in W, which converges to some
m

T | . CRT; X
[ w } in [ Lp((RJr;VV)) ] Then for all n > 1:

zl e Tm n— x x”
[ " ] = pory7 "7 [ ] = ppay " VT [ } = [ o } as m — oo.

n
wyy, Wi w

By Corollary B2, [ iﬁl ] all lie in W[0, T'], which was assumed to be closed, and

w’ﬂ

[i]_{vﬁ}MTTT[iz]m‘ﬂf”{iz}wm (4.3)

and by the continuity of  we have 2"(T) = z(nT) = 2"*1(0) for all n > 1. From
BT we now get that [ ] € WT, i.e., that W is closed.
Let zo € X and v € L? (R*;U) be arbitrary. By assumption W0, 7] there

loc

therefore { . ] also lies in W0, T]. Moreover,

1
exists a unique { il } € W[0,T] such that z'(0) = zo and Pyw = pp1u.

n n+1
Similarly, we for every n > 1 and { Z}” } € WI0,T] may let { ZJ”“ } be the

unique element of W0, T}, such that 2"*1(0) = 2™(T') and P w"*! = pp 77" u.
Then [%] given in {@3) lies in W, cf. @IJ), 2(0) = x and Pjw = u. This

proves that
8wl | =

loc

Moreover, if (0) = 0 and 738,) w = 0, then an induction argument shows that

[ ;C)n ] = 0 for all n > 1. This means that [J,] = 0, i.e., that the restriction of

do O o
[ 0 738,) ] to W™ is injective.
y . = I N
(i) = (i): Denote Ty := N and let xp € X and u € LP([0,T];U)
0 Py lw+
. . x = o
be arbitrary. Definin | =% cW*, web et that
y g { = } 0| pamoru } y EID ¢
[ Z; } = plo,1] [ v ] € W10, T]. Moreover,

31 R kg | e P il
0 Py || w 0 pomPy | @ PI0,T) P+ T 0, 7] u
and thus the restriction of [ %0 P()y } to W10, T)] is surjective. We still need to

u

show that this restriction is also injective.
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- 1 -
Let [ z ] € W[0,T] be arbitrary and define [ xl } = [ z ] By the
w w w

b O

n
v we can find a sequence of elements xn of
0 Py

surjectivity of { } ‘
W10,T]

W([0,T], such that z(0) = 2" (T) and Pw"™ = 0 for all n > 2. Then [ Z} }

given in (@) lies in W according to [BIJ) and, by construction, [ Z | = po.7 [ ].

In particular, W0, T] C pjo,rjW* and the last claim of this lemma is valid, because

(ET9) immediately yields that W[0,7] D pjo. W ™. Now, if Z(0) = 0 and Pjw = 0,
d O
0 Py

d O } ‘

0 Py W[0,T)

In order to show that W[0,T] is closed, we let { fun ] € W[0,T] and get

n

then 2(0) = 0 and Pw = 0 and the injectivity of [ ] ‘ then implies
W+

=N

that [ i } = 0 and. In particular, [ & ] =0and [ is injective.

Tn ~ 2, (0) } ,
Tno | T e Wlo,T th
[ } Plo,71%0 { p 0. PYwn 0, 7] wi

50 0 In _ fn -
0 Py W, wn |) 7
which implies that { .
w

and, therefore, if [ i" ] — [ , then
x . Tn ) ~ 2, (0) ]

= lim ~ = lim T

[ w } noo [ Wn ] . [ P+ 0,11 PYWn

22.(0) }: p[OVT@O[ 2(0) ]

P+T[0,T] Plw

Ty lim
Plo,T] 0 oo { p+7T[0,T],PZ:}l)w"

lies in W0, T]. Thus W[0,T] is closed. O

The following Lemma will be used to prove existence of an i/s/o representa-
tion of a well-posed s/s system.

Lemma 4.7. Let T >0 and 1 < p < oo, let X and W =U + Y be Banach spaces

+.
LQ(FRJ;))(/L) } satisfies condition (i) of Lemma [0

loc

and assume that W+ C [
Furthermore assume that W is invariant under left shift on RT :

VE>0: partWtcwt. (4.5)
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Then there exists an LP-well-posed i/s/o system [% %}, such that

W+_{[Z]E{Lg(ﬁ;%) ] ‘wzo:

loc
z(t) | [ A Bt z(0)
Plw | | € p® TPy w ’
Proof. We use Theorem 2.2.14 of [Sfallh] in order to construct an i/s/o system
[% B ] which satisfies ([@CH). Assume therefore (d)—(f) and [EX).

Part 1 (Definition of AL, B° €% and DL ): Let —0o < a < b < oo be arbitrary
and define

(4.6)

Wla,00) :=7 W' and Wla,b] :=ppa 7 “WT. (4.7)
Then it follows that for all ¢ € R:
TWla,b] = Tcp[m,,]r*aW* = p[a_cyb_c]rf(afc)WJr =Wla—c¢,b—d. (4.8)

Moreover, for all ¢ € (a, b):

Pla,gWa,b] = pla.c1pan™ W = pla.g7 “WT =Wla, (] (4.9)
and, using {E3):
PleniWa,0] = pe)plas) ™ "W = pes)ple.coy™ T W (4.10)
= PlepT prT T W T Cpey T W = We, b.
By a combination of Lemma F6 and Corollary BZ(i), the operator

do O P a

B IRk
maps Wla, b] one-to-one onto [ Lp([a),(b];u) } Letting T° := [ % PO&; ] ’W[a)b],
we get from Lemma BAl that both [ % PO&; ] and %Z are continuous. Thus %g

maps any z, € X and u € LP([a,b];U) continuously into the unique element
(2] € Wla,b], such that z(a) = 2, and Pw = u.
We now define the quadruple of operator families

[Qels gfﬂ:[/’f )((R;W}H[L” )((R;w] by

c,loc c,loc

b %b} { 5 0 } ~ [ 1 0 }
o Dal._ g  a<b,
{QZ il 0 7uyPs | 7L 0 play ¢

and A2 ;= 1x, BY :=0, €7 := 0 and Dy := 0. These operators inherit continuity
from T°. We next prove the crucial implication

{Z}}eW[a,b] . { x(b) }_{ﬂﬁ %3H (a) } (4.12)

W[aﬂb]'])%’w Q:Z @Z w[ayb]’PLJ,}w

(4.11)
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Let therefore [ ] € Wa, b] be arbitrary, so that { v } = %Z [ xg}a) ] and
w Prw

2 3] 8 a2 o]
¢t Db W[a,b]PL)fw 0 7oy PY @ P[a,b}ﬂ[a,b]ﬂ)fw

R 0 x| x(b)
o 0 W[aﬂb]'])% w o W[a)b]'P%w ’

Part 2 (Some algebraic properties of AL, B &> and DY ): We now prove
that the operators A8, Bt ¢® and D have all the algebraic properties which are
assumed in [Sta05, Thm 2.2.14]. It is trivial that II) implies the equality

A W] [1 0 A4 B 1 0
[QZ 93}_{0 la, } [ ¢ D5 |0 My | (4.13)

We proceed by verifying the following time-invariance property:
Ao Bo] [ A, Byre
gb=e pb=c| — |regd Dbl
The case a = b is trivial and therefore we assume that a < b.

Let £ € X and w € LP([a — ¢,b — c];U) be arbitrary. By part 1 of this proof
we can find [Z] € W[a — ¢,b— ¢] such that Z(a — ¢) = £ and PYw = u. By EX)
we then have that [J]:=7"°[Z] is an element of W{a, b], and hence by (EI2):

Va <bceR: [ (4.14)

{mi’l‘z %ZZH 3 ]_{ #(b—c) }
€z DV || Maehel Tla—cbe) PYW
[ x(b) ]{%b %ZH z(a) ]
_Tcw[a_,bﬂ?gw T et b
o ® Z(a—c)
I reed repb } [ 7T[a7b]7"c73£;ﬁ ]
oA i H 3 }
[

TCCZ TCQZT_C

a—c,b—c]W

From TI) we get [

B . B —e
|: Dg :| T (W(foo,afc) +7T(b7c.,oo)) = [ @b ] (W(foo,a) +7T(b,oo))T =0.

b—e } (T(—o0,a—c) + T(b—c,00)) = 0 and

We have proved ([ET4), since T[q—cp—c + T(—o0,a—c) T T(h—c,00) = 1-
We proceed by verifying the following composition identities, valid for all
a<c<b:
Ay = AA;, By =B, + By, € = € + QAL
and D) =D¢ + cbBe 4+ DL
The cases where a = c or ¢ = b are trivial, so we treat only the case a < ¢ < b.
Let z, € X and u € LP([a, b];U) be arbitrary and let [, | be the unique element of

(4.15)
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W a, b] such that z(a ) = a and Pw = u. Then @) yields that pj, o [ 5] € W]a, ]
and by EID), piep (o] € W[c b]. Now we get from [IZ) that:

o] =L e 8 ][]
7T[a b]Py’LU - L Qb @b W[a)b]u ’
A B Tq
[W[acpyw Tl o ] { Tla,cU ] and
-2 2]
c,bpyw | ¢ D TMe,b) U

From these identities we eliminate z(c) in order to get EI3):

K %bH S [P B
< D0 | e Tlab PYw (Tleb) + Ta,e)) PR w
DICAND 1 z(c) + 0
Q:b @Z W[C)b]u W[Q)C]P%w

(A B A Biwa, L0 0 Ta
S\l @ @ 0 Ty €5 Dema, Tapt |
In addition, it is assumed in [Sfa05, Theorem 2.2.14] that lim;—.o+ A{zo = 2o
for all g € X. Also this condition holds because of the continuity of the state
component of a trajectory at zero, cf. @Il) and W[0,T] C { LCP’(([[S,%’%) ] .

x =r | =z : .
[ w ] =3t [ OO ] ew,T] = t£151+ﬂ6x0 = tE%1+x(t) = 2(0) = xo.

Part 3 (The i/s/o system [% 3]): As is pointed out in the comment in the
proof of [Sta05, Thm 2.2.14], combining {I3) and EIH) allows us to apply that

AL BL
theorem to Qf} @b in the following way. If we define
Alzy = Wbz, w0 € X,t >0, Bu= lim Bl _u, ue LL(R;U),
Cro = py blim Chrg, xo € X, Du = 111% Dbu, u e Lc 1oc (R U,

(4.16)
then the operators 2, B, € and © form an LP-well-posed i/s/o system by [Stal5),
Thm 2.2.14]. In particular, the three limits in @I8) exist. Moreover, by that same
theorem, for all a <0 < b, all zp € X and all u € LC 1oe (R U ):

2[25170 = leiaIOa %au = %pfﬂ[a,O]ua (4 17)

@8170 = 7o, €x0 and ’Dgu = TM[a,b) DT [q,b) U- '

The formulas [Sta05l (2.2.11) and Def. 2.2.6(iii)] corresponding to EIH) and

[ETD), respectively, look slightly different. This is because the convention in [Sta(5)

is that the domaln of B is L7, (R;U) and the codomain of € is L7, .(R;Y), cf
Remark E.3
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Denote the right-hand side of ([@B) by W. We first show that W+ c W+.
Let therefore [%] € W7 and t > 0 be arbitrary and denote u := P w and

y := PYw. It follows from () that po g [ ] € W0,]. Then (EIZ), @I, EEID)

and the equality p_7'mg, = p_7'm yield that:
x(t) = Ahz(0) + %éw[o)t]u = Ax(0) + ‘BgtTtw[O)t]u
=A'2(0) + Bp_m|_s 07 Tpo,gu = A2(0) + Bp_7'mp 4u
=A'z(0) + Bp_7'1iu.
This shows that the z-component satisfies the last line of (EH]).
We get from ([ET2) that the y-component satisfies
0,4y = €z (0) + Dgmpo pu, ¢ >0,

and hence, using the equality p;7m4+ = p4 on LZZOC(R; Y), we obtain that

y = p+ Hm o gy = p (tlggo 70,1 €x(0) + 7T[o,t]i)ﬂ[o,t]u) = €z(0) + p4 D7 u.
This shows that also the w-component satisfies the last line of M), and thus,
that [£] € WT.

Now we prove that W+ C W. Let [Z] € W be arbitrary and let [ %] € W
be the unique trajectory with z(0) = Z(0) and PYw = Pw. Then we, by the
inclusion W+ C W+, have that [%] € W+, i.e. that

- [;v(t)}_{&lt WH z(0) }

Pilw ¢ pi® T PYw
At Bt z(0) [z
a () er@ 7T+P8{}’[D a P%’LT) ’
which implies that [Z] =[&] € WT. O

The following lemma yields uniqueness of the i/s/o representation given an
admissible i/o pair.
C(RT; X)
L, (RT: W)

loc

Lemma 4.8. Let —oco < a < b < 0o and let W+ C { ] and define

Wla,b] := plap7 “WT. The following claims are true:
(i) If the well-posed i/s/o system |% B satisfies @H), then it also satisfies

W[a,b]—{{ v ] c { L(f,(([[zz]]f\j) } ‘Vte fa,b] :

A | Lnee s | e ]}
'P%w p[a_’b]T_GQ p[a)b]g W[ayb]Pgw )
(i) If % 0 W a,b] densely int X then at t

ii 0 P&’ maps Wla, ensely into L7 (ja, b:U) | en at most one

well-posed i/s/o system [ 3] satisfies [EIR).

(4.18)
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Proof. First we generally note that for any well-posed i/s/o system [% % ]:

V' >t %Ttw[t/)oo) = ’Bp_w[t/,t)oo)Tt =0
VEER:  Plcoot)DMt00) = p(_ooi)rft@Ttﬁ[t’OO) =7 _Dn, 7t =0

and, therefore, we have
Va<t<b: %Ttw[a)t]u = %Ttﬂ[a’b]u, u € LP([a,b];U),

VE>a: Brim,gu =BT M 00u, u € L] ([a,00);U) and (4.19)

VE>0: pog@Tiu = po,gPTp,qu, u € LfOC(R-’_;U).

We now proceed to prove claims (i) and (ii).
(i) We denote the right-hand side of EIH) by W[a,b] and use D) to prove

that W[a,b] = Plap T W,
Let [4] € W[a, b] be arbitrary and define

~ t t 1
R ey | i U
Then [g] € W+ by @d) and, moreover, pjq 57 * [g] =[] because:
[ (779Z)(t + a) ] B { At Bt } [ z(a) }
Plap)™ W | | playT € papT (1 +D) | | T Prw (4.21)

_[ Q(t+a)—a Brita } [ z(a) }
PlapT € plap(l+D) Tlap Py w

for all t + a € [a,b] and the second line obviously equals [#(t+a)] for all

t+a € [a,b], cf. @IF).

Conversely, let [§] € pia,p)7 *W*. This means that there exists some
(2] in W, such that [§] = pay7 *[Z]. This [Z] € W satisfies

z(t) At Brt z(a)
>0: b = —~
viz0 { @ ] [ ¢ pr(149) | | mPYa
by (EH). Using @IH) and 7%, 5w = To,p—q)W, we get for all ¢ € [0,b — a
that:
¢
BT :| 7T+P£{)’l/ﬁ

e Siem e
P10,b—a]P+ (1 +D) ru P10,b—a)(1 +D)

Brt o
[ P0,p—a) (1 +D) ] To,b—a) P W =

and, therefore, [g] coincides with [7%

E2) we get that
] € Wla,b].

) 8)

L —a
w = Pla,b)T
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(ii) The space Wa,b] determines the space W[0,b — a] uniquely through E3J).
Letting T := b—a, we get that W[0, b—a] determines the continuous operators

Q[t,t S [0, T], %TTW[()’T] = %W[,T)O]TT, p[oﬁT]Q and p[oyT]CDW[O’T] (4.22)

on dense subspaces of their domains through ([ZIX). Therefore the operators
in @ZA) are uniquely determined by W{a, b]. Furthermore, [Sfa05, Lemma
2.4.3] yields that this information uniquely determines the well-posed i/s/o
system [ % 3| through the equalities:

AL = ATUT p e 2T, t € nT, (n+ 1)T),

B = Z Q[nT%p_ﬂ'[,T’O]TinT,

n=0
¢=p4 Z TfnTw[O)T] eA™T and
n=0

o0

D= Z T_nT (7T+Q:%7T[_T7O] —+ W[O,T]QW[O,T])THT

n=—oo

We now arrive at one of the main results of this paper.

Theorem 4.9. Assume that ¥,/ = (WP, X, W) is a well-posed s/s system that
has the admissible i/o pair (U,Y). Then ¥ has a unique i/s/o representation
([%3]:X,U,Y) corresponding to this i/o pair. This i/s/o representation satisfies
@8) with W+ = 07

Proof. Proposition B0 yields that 207 is given by BI3) and Corollary BA(iii)
yields that ([H) holds. Lemma EEB(i) holds by Definition Bl and Proposition
B(i). The well-posed i/s/o system [¥ 3] that we constructed in the proof of
Lemma BT satisfies (X0). By Proposition B7Xi) and Lemma ER(ii), [% B ] is the
unique i/s/o system that satisfies [2). O

In Theorem B4 below we prove the converse direction of Theorem EEQ i.e.
that every well-posed i/s/o system on (X,U,U) generates a unique well-posed s/s
system (W*; X, [}]) through (@T).

In the sequel we need the concept of flow inversion and we now give an
adaptation of the version, which was presented in [Sta05].

Definition 4.10. Let X and W be Banach spaces, where W =U+Y, U = U, +Us
and Y = Y1 + V2. Let ¥ be an LP-well-posed s/s system on (X, W), for which
U } [ N1

the i/o pair (U,Y) = ({ U Y }) is admissible, and let the corresponding
2 2
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i/s/o representation be given by:

A By B U ¥y
Yijsjo = S D Do | A, { Z/{; } , [ y; } , (4.23)
C Doy Do

where, for instance, 12 is the restriction of 77)),}12@ to LY, (R;Us).
The i/s/o representation ;4 /, is partially flow invertible with respect to the
change Us < Vs if ({ th } , [ M }) is an admissible i/0 pair of X. In that case,

Yo U
the i/s/o representation Eﬁs/o of ¥, which corresponds to the admissible i/o pair

({ g; } , [ Z; }), is called the partial flow inverse of X;/,/,-

If Uy = {0} and Y1 = {0} then we say that the flow inversion is full.

By definition, flow inversion of an i/s/o representation results in another i/s/o
representation of the same s/s system. The core idea of the s/s approach is that
the external signals can be split into inputs and outputs in various ways without
changing the system itself. The i/s/o representations change under flow inversion,
but the relationships between all signals is preserved, and since we here define a
s/s system through its trajectories this means that the system itself is preserved.

The following proposition gives useful characterisations of flow invertibility.

Proposition 4.11. With —co < a < b < 0o and the same set-up as in Definition
EI0, the following conditions are equivalent:

(i) The i/s/o system ¥/, is partially flow invertible with respect to Uy « Y.
(ii) The operator Daa has an inverse in Tlcﬁ)c(yQ;L{Q).
(iii) The operator p pD22Ta,p) maps LP([a,b];Usz) one-to-one onto LP([a,b]; V).

If the above equivalent conditions hold, then Zi’/“s/o is given by

-1

A BT BT [ 2A Bir Byr 1 0 0
ar o D% =1 & D Do 0 1 0
(S 5 D5 0 0 1 & D
2 21 22 : E 2 21 22 (4.24)
1 0 —%27’ A %17’ 0
= 0 1 —@12 Ql @11 0
L 0 0 Dog —¢ %o 1
Proof. See [Sta05, Thms 6.3.5 and 6.6.1 and Cor. 6.6.3]. O

Note that condition (iii) of PropositionEETT holds for some a and b if and only
if it holds for all a and b, because condition (i) of the proposition is independent

of a and b.
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In order to prove the final theorem of this section we need to do the following
small trick. Let ¥;/,/, = ([Qéi gﬂ ;X,Ml,yl) be an i/s/o representation of an
LP-well-posed s/s system. Embed ¥ into a larger system X..,;, whose input and

output spaces are both W, by setting

V)=l p+<?f%yf;gj;>H:%]a 120, (425)

The system Y., is illustrated in Figure [

L [p0

w T+ <_l@

FIGURE 1. An i/s/o representation of the extended system Y.,
which has state trajectory z, input w and output w. The full flow
inverse of ¥+ is obtained by simply reversing the direction of the
two signals at the bottom.

Partial flow inversion of ¥,; will be the main tool in our proof of Theorem
EET3 which can be considered to be the main result of this section. First, however,
we need to to take a closer look at Ye¢.

Lemma 4.12. The system Y., defined in @2ZH) has the following five properties:
(i) The i/s/o system Eeg is LP well posed.
(ii) Fwvery trajectory [;} of Yext satisfies 738;1@ = Pglw.
w 1 1

x x
(iil) The triple P%llw s a trajectory of ¥ if and only if w s a
Piyw ngw

trajectory of eyt
(iv) For any T > 0 we have that

1
(po (L +D1PY ) m0,m1) = por(1 — 1P )07y, (4.26)

where both operators are bounded on LP([0,T]; W).
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(v) The system Y.nt is (fully) flow invertible in the sense that w can be chosen
as input and W as output. The corresponding i/s/o representation is

{ " ] = [ _Q[él p+(?1_7)%11;%1) ] [ o0 } Ctz0. (a27)

Proof. (i) We prove that X.,; has the properties listed in Definition EE2 by using
the corresponding properties of X, which we assumed to be well posed. The
semigroup 2; and the state/output map €; are the same in both systems
and thus X, has properties (i) and (iii) of Definition EE2

In proving properties (ii) and (iv) we need the fact that the almost
everywhere pointwise projection 733,)11 is time invariant and static, so that e.g.

PP = PYirt and w_ PPt = PYim_. We obtain that

Qlﬁ‘Bngll = %1p,Tt7r,73£{}11 = %1732?,}11/),7%, and

(4.28)
pr(L+DiPY)m- = pyDim Py = ©BI P

(ii) From ([ZH) and the fact that €;2(0) + p+©1’P1/3{)117r+@ lies in LP (RT;)),
we immediately get

Polw = PyH(€1z(0) + @ + py D1 Pl my @) = Pl

x
(iii) The triple w is by Definition EE4l a trajectory of X, if and only if
Pgllw
([EZ5) holds with @ = P} w, which is true if and only if

x(t) Q[;tl Byrt
0
Pg;w = | e pio [ _ ﬁggw } )
Py w 0 P+ T
x
This is obviously equivalent to P%llw being a trajectory of X.
Piyfw

(iv) This claim follows from the computation

Pl0,1) (13'3@173&}11 )m0,71P[0,1)(1 F @1731,3{}11)77[0,T]
= (L% po,1)D1Py, mpo,1) (L F plo,11D1 Py, mo,7)
=1- (p[O,T]lez?{?W[O,T])2 =1,

because ’P%l 7[0,71Pj0,71 D1 = 0. (Here 1 on the first line stands for the identity
operator in L?, (R;W) and on the other lines 1 stands for the identity in

c,loc

Lr([0, T|; W).)
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(v) By claim (iv) and Proposition EETT we have that Y., is flow invertible (with
the flow inverse being a well-posed i/s/o system). Using claim (ii) of this
lemma one sees that E21) is the flow inverse of ([E2H):

w=C2(0) + p4 (1 + D1 Py )miw =
W =w—€12(0) — py D1 Py Ty @
= —€12(0) + p+ (1 = D1PY ) mrw
and
a(t) = A z(0) + By P rimy @ = Az(0) + By Py rlmyw.
O

We now present a theorem, which characterises the admissible i/o pairs of a
well-posed s/s system and gives the corresponding i/s/o representations.
Theorem 4.13. Let 3 be an LP-well-posed s/s system with admissible i/o pair
(U1, Y1) and corresponding i/s/o representation ¥; /s, = ([%11 %1] ;X,Z/ll,yl).

Then the i/o pair (Us, Vo) is admissible for X if and only if

-1
NZ _ NZ NZ -1
(P +21) = (P2, + P2y, @0) " € TICE

loc

(Z/{Q;Lﬁ), (429)
or equivalently, if and only if
_ -1
@R =Py = (2P, ~PHily,) € TICKOudn). (430)

If the i/o pair (Uz,Y2) is admissible for X, then the corresponding i/s/o
representation ¥/, = ([Qég %Z] ; X, Us, y2) of ¥ is given by (for all t > 0):

AL BVort ] [ AL Bi7! 1 0 -
¢ Dy | | PR PR(+D) || PRE PR(l+D)

-1
A A BT
U N N% U .
0 Pyily, =217y, & D1Pu o, = Pyl

(4.31)
Proof. Let Ycyt be the i/s/o system in ([EZH) and write
~ Uy Uz
yl._|P o y|._| Py
[ﬂ}"[%’}}w w4 ]=| 8 |

Note that we use different decompositions of W for w and w. With respect to these
decompositions, [EZH) splits into

(1) 2 Lo B #(0)
BIRTE (B RN

(4.32)
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and [ZD) splits in a similar way into
Y Y
x(t) Aj B, [ PMHZh fpuf’)b ]Tt
K
y |: ¢, P+
x(0)

(
an
(4.33)

We swapped places of v and y between E32) and E3J) in order to be able to
apply [2Z4) directly to these formulas.

Corollary BT yields that (Uz, Y2) is an admissible i/o pair of ¥ if and only
if [0 738{}22 | maps 205[0, T] one-to-one onto LF([0,T];Us). We prove that the
latter condition is equivalent to condition [2H) using Proposition EETT, which
says that (E29) is equivalent to the statement that pjo 7 ng(l + D1)mo,7] MAps
L?(]0, T);Ur) one-to-one onto LP([0,T];Us). Proposition LTl says that bijectivity
of this operator is equivalent to (E24).

From BI0) and B4) we get that

T T
11~ fpan ] 1] [[ 2] 2. w00 =0},
Lemma EET(iii), T and E2H) then yield that

ain = {[ ]| [0 ] my v )
(4.34)

Z/l U |Z/[2y » 28 ‘yzy
L 9173“11)\“2 (Pyll - @1732411)‘312

with [ 0 PY | 205[0, T] = LP([0, T];Uy). Therefore,
[0 P2 J20500,T1 = pro,myPiy; (1 + D1)mpo,ry LP ([0, T1; 24r)

and it is obvious that [ 0 Py2 | maps 205[0, T onto Lp([O T);Us) if and only if
Plo, T]PZ/{2 (1 + @ ) T0,T] maps Lp([O T] Z/{l) onto Lp([O T] Z/{Q)
From 34 we also get that

Uy € Lp([O,T];Ul), w = p[oyT](l +©1)7T[01T]’u,1 <~ dr: |: ’L:Z; :| S QUS[O,T]

If ppo, T]Pz,{2 (1+D1)mo, 1) is injective, then [ 0 ’ng J[#]=0and[}] € 250, 7]
thus imply that p[O,T]Pz,[z (14 D1)mo,11 Pul w = 0, which implies that ’P%lw = 0.
Proposition BZ(ii) then says that [£] = 0, i.e., [ 0 738;22 ]
A similar argument shows that injectivity of [ 0 ’ng }

|mg o1] 18 mjective.

}wg 0,7] implies that

p[O,T]ng(l + ®1)mo,) is injective. This proves that (Uz,)%2) is admissible for
¥ if and only if [29) holds.
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In order to prove the equivalence of [E2Zd) and [30) we first note that

(onl 2 1[0 0em1[3 3] )

-1

Uz
e - (4.35)
= Plo,1] U1 “ u2y1 U1 “ yzyl To,T]
7 (Pyl - @1731/{1 )‘Z/lz (Pyl - @1732/[1 )‘yg )

in LP([0, T]; W), which can be checked by direct multiplication. All the operators in
([E33) are bounded maps between Banach spaces. We make the following argument
using [Sta0h, Lemma A.4.2](iii). If the top-left corner of the first operator matrix,
i.e, 733;22(1 + @,) is invertible, then the lower-right corner of the inverse, i.e. of

(Pgﬁ — @1738,}11)‘ y, is also invertible and vice versa. We have now proved that

EZ9) and E30) are equivalent.

The proof of the first line of [3I]) is now a simple application of the first
line of @Z) to {32), while the second line of [E3T]) is proved using the second
line of E2Z4) and E3J). One needs to set y = ’Pgllﬁ = O,Nbecause we consider
trajectories of X2, cf. Lemma EETA(iii). Moreover, computing @ is unnecessary when
determining the trajectories [,3,] of . O

In applications, a system is usually given in terms of the subspace V. In the
rest of the paper we therefore focus on obtaining necessary and sufficient conditions
on V for this space to be a generating subspace of a s/s system. In order to proceed
in this direction we need some results on i/s/o systems, which we develop next.

5. Input/state/output systems and their associated system nodes

In this section we recall the notion of an i/s/o-system node and study its connection
to the i/s/o system from which it is derived. For more details on the following
definitions, see e.g. [Sta0d, pp. 122—-123] or [Paz83|.

Let A be a closed and densely defined operator on the Banach space X. The
resolvent set Res(A) of A is the set of A € C such that A — A maps Dom (4)
one-to-one onto X. By the closed graph theorem, (o — A)~! is a bounded operator
on X for all & € Res(A). Fix a € Res(A) and define A3 := Dom (A) with the
norm ||z|]; := ||(¢ — A)z| x. Denote by X_1 the completion of X with respect to
the norm ||z||-1 = ||(o — A)~'z||x. This norm is weaker than the norm || - | x,
because ||z]|-1 < ||(a — A)7Y|||z]|x for all z € X.

The operator &« — A maps X; isomorphically onto X. The operator A can
also be considered as a continuous operator, which maps the dense subspace X}
of X into X_; and we denote the unique continuous extension of A to an operator
X — X_; by Alx. Then for any o € Res(A) the operator a — A|x maps X
isomorphically onto X_; and (a— A|x) ™! is the continuous extension of (a— A)~!
to Xfl.
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The spaces X7 and X_;, which we defined above, satisfy X; C X C X_;
with dense and continuous embeddings. This construction is sometimes referred
to as “rigging”. Different choices of & € Res (A) give the same triple (X7, X, X_1)
of spaces. The respective norms on the spaces depend on «, but the norms are
nevertheless equivalent to the each other. The norm on A& is equivalent to the
graph norm of A. If X' is a Hilbert space, then, so are X; and X_;.

We denote Cf := {\ € C | R\ > a}, for o € R, and abbreviate C* := C{.
Let A generate a Cy semigroup 2 with growth bound wg on some Banach space
X, cf. Lemma BT Then [Sfa0f, Thm 3.2.9] says that Cf, C Res (A4), so that the
resolvent set is non-empty. Moreover, the domain of every Cp-semigroup generator
is dense, according to [Paz83, Thm 1.2.7]. Thus the following definition of an i/s/o-
system node is one of the many versions equivalent to [Sta05l Def. 4.7.2]. See also
[SW(2].

Definition 5.1. By an input/state/output-system node (i/s/o-system node) on the
triple (X,U,Y) of Banach spaces we mean a linear operator

- [48](§]mm0- 3]

with domain Dom (S), which has the following properties:

(i) The operator S is closed.
(ii) The operator A: Dom (A) — X, which is defined by

T

Aa:_A&B{ 0] onDom(A)_{xeX’ {HeDom(S)},

generates a Cy semigroup on X.

(iii) The operator A&B can be extended to an operator [ Alx B ], which maps
(V] continuously into X_;.

(iv) The domain of S satisfies the condition

x
u

Dom(S)ZH }E[g}}Aux—i—BueX}. (5.1)

We now show how to construct an i/s/o-system node [ A¢B ] from a given
i/s/o system ([%3];X,U,Y). Let therefore A have growth bound wgy, choose
a > wy and define the function e, by e, (t) := et for t € R. We call the generator

A of 2 the main operator of the system node [égg] Define the control operator
B:U— X_; by

Bu:= (a— Alx)B(equ), ucl.

In [Sta05 Lemma 4.4.1] it is shown that €z is continuous for all z € Dom (A).
Thus we may define the observation operator C : X; — ) by Cx := (€x)(0).
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For all u € U and X € C}, there exists a y € Y, such that D(exu) = exy
almost everywhere, according to [Sta05, Lemma 4.5.3]. We define the transfer
function D(N) for A € Cf, and u € U as the map D(A)u := y, which satisfies
D(eau) = ey almost everywhere. Then [STa05, Lemma 4.5.3] says that D()) is a
bounded linear operator from U to Y, i.e. D : Ch, — LWU; ).

Lemma 5.2. With A, B, C and ® given above, let Dom (S) be given by 1) and
define

A&B:=| Alx B] ‘Dom(s) and

C&D[i]:=C(z — (a — Alx) ' Bu) + D(a)u, Dom (C&D) = Dom (S).

Then C&D does not depend on o € Cf_ and the operator S = [AEE] is an
i/s/0-system node on (X,U,Y).
Moreover, for any 1 < p < co the norm

[l = (e ]

makes Dom (S) a Banach space. If p = 2 and X and U are both Hilbert spaces,

then this norm makes Dom (S) a Hilbert space.

The operator [égg] maps Dom (S) equipped with the norm in @&2) contin-

uously into [ﬁﬂ .

P 1/p
el + ||u||5) (5.2)
X

_ ~1
For every A € Cf_, the operator [ (A /ib() B } maps U into Dom (S)
u
and the transfer function D is given by
~ _ -1
BN _O&D[ (A "i'” B } (5.3)
u

Proof. The definition of B is from [Sfa05, Thm 4.2.1], while C is from [Sta05,
Thm 4.4.2]. The transfer function D is given in [Sta0h, Def. 4.6.1]. The i/s/o-
system node S is constructed in [Sfa05l Def. 4.6.4] and, according to [Sfa0h, Thm
4.6.7], the operator C&D is independent of « as long as Ra > wg. The operator
S has all the properties in Definition Bl as proved in [Sta05, Prop. 4.7.1].

The completeness of Dom (S) with respect to the norm (B2) is proven in
[Sta05, Lemma 4.3.10] for the case p = 2. Using Lemma .8 we may extend the
result to any p € [1,00). Continuity of S now follows from the assumed closedness
of S. .

For the last claim, [Sta05, Lemma 4.7.3] yields that { (A= /15() B
U into Dom (S) for every A € Res (A). The formula (B3) is given in [Sfal5, Thm
4.6.7). O

maps

From now on, we always assume that Dom (S) has the norm in ([2). We pro-
ceed by giving an example of an i/s/o-system node. The example is an expansion

of [Sta02al, Ex. 4.8].



Well-Posed State/Signal Systems in Continuous Time 47

Example 5.3. Let A generate a contraction semigroup 2 on the Hilbert space X.

Then A is mazimally dissipative, i.e. R (Azx,z) < 0 for all x € Dom (A) and

C* C Res (4), according to the Lumer-Phillips Theorem, see e.g. [Paz&83, Thm 3.9

and 4.3]. In the most interesting case the operator A is closed but unbounded.
The linear operator

S'—{ Al/\’ A|X }
’ —Alx -Alx

Dom(S)
with domain

T
u

Do (5) = { |

is an i/s/o-system node:

]e { N ] |x+u€Dom(A)}

(i) We prove that S inherits closedness from A. If [ in ] € Dom (S) converges

mn

to some [ v ] mn [ X ] andS{xn } tends to some [ N ] mn [ X },then
U X U y X
T, + Uy, € Dom (4) and

S{xn}_{_ll ]A|X(In+un)—{_11 ]A(ﬂc,ﬁ—un)—»{ : ]

Up, —z

This implies that x, +u, — x+u and that A(x, +u,) — z. By the closedness

of A we then have that x + u € Dom (4) and z = A(x + u), which implies

that [ “ ] € Dom (S) and [ : ] = [ ¥ } :S[ N } We have proved that
u Yy —z u

S is closed.

(ii) From the definition of Dom (S) we have that { 3 } € Dom (S) if and only

if € Dom (A), in which case S [ g ] = A|lxx = Ax. The operator A by

assumption generates a Cy semigroup on X.

(i) Let o € Res(A) be the constant used in the rigging construction described
at the beginning of this section, so that (o — A|x)~! is a bounded operator
on X_1. By definition, A&B is the restriction of [ Alx Alx | to Dom(S)

and the norm of [ Alx Alx } as an operator from [ - } to X_1 is finite,

X
because ||x + ul| < M ||[%]|| for some M > 1 and

[ Alx A|X][$:| (a—Alx)"1 [ Alx A|X]|:$:|

. .
= ll(a = Alx) " Alx (@ +u)llx = [ (ala — Alx) ™" = (@ +u)|x

< M (|of [[(a — Alx) 1] + 1) H{ " H

cf. LemmaZ4.

u (7

)

[%]
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(iv) Recall that 1 — A is a bijection from Dom (A) to X, since A is mazimally
dissipative by assumption. This implies that

ze€Dom(A)«—= (1-A)ze X <= (1-Alx)z € X < Alxz € X,

because (1 — A) = (1 — A|x and z € X. Thus

)}Dom(A)

Dom(S)_H ﬂ |x+u€Dom(A)}

_{HH[AM A|X]{ﬂex}.

We are done proving that S is a system node.

Combining [Sta05, Thms 4.7.11 and 4.7.13], we see that the following defini-
tion of well-posedness of an i/s/o-system node is consistent with [Sta05], although
the input signal, state trajectory and output signal of an i/s/o-system node are
defined slightly differently in [Sta05l Def. 4.7.10].

Definition 5.4. Let I be a subinterval of R and let [% %} be an i/s/o system on
(X,U,Y) with i/s/o-system node S = [AEB ] constructed in Lemma B2

x CHI; X) A B
The triple | vy | € | C(L;Y) 1s a classical trajectory of [ ¢ D } on
u C(L;U)

I if for all t € T we have
i Jevem ([ Gen ) e [0 | = Gen ][ n ]

with one-sided derivatives at any end points of I.

Let now 1 < p < co. The i/s/o-system node S is LP well posed if there exist
T >0 and K > 0, such that every classical trajectory of S on [0,T) satisfies

(@)l x + 1yl oo, < Kz (120) ||l x + [[ull o o,20)) (5.4)

for allt € 0,T).

We remark that there exist some T' > 0 and Kp > 0 such that (B4 holds if
and only if there for every T > 0 exists a K7 > 0 such that (&2 holds. The proof
is very similar to the proof of Lemma ETO(iii).

We now study well-posedness of the system node in Example

Example 5.5. In Example[i3, if A is bounded, then S is LP well posed for all finite
p > 1, as was shown in [Sta0bl, Prop. 2.3.1]. We now prove that if A is unbounded,
then S is LP ill-posed for all p.
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In BI4) we proved that the growth bound of any contraction semigroup is
at most zero and [B3) then yields that the transfer function of S for at least all
A € Ct is given by
(/\ — A|X)7lB

1

= —Alx (A= Alx) " Alx +1) = —Alx AN - Alx) M, = —ANA = A) 7

D(\) = C&D

[ Al Al ][ B ADT AR

~

For any u € Dom (A) we then have limy_,ooc D(A)u = —Au, according to [Stalil
Thm 3.2.9(iii)]. This shows that © cannot be bounded on any right half-plane and,
therefore, [Staldl, Lemma 4.6.2] yields that S is LP ill posed for every 1 < p < oo.

In Example below we show that the ill-posed i/s/o-system node S of
Example can still be modelled as a well-posed s/s system.

Lemma 5.6. Let I be a subinterval of R and let S = [égg] be any continuous
linear operator from Dom (S) C [¥] to [§]. Assume that [}] € C"(I;Dom (S))
for somen € Z*. Then

@lEeels)

and for all 0 < k < n we have

A\"[A&B ] [2] _[A&B ] (d\'[ = (56)
dt C&D u | | C&D dt u :
everywhere on I, with one-sided derivatives at any end points of I.

Proof. The proof uses only the definition of the derivative, the continuity of S and
induction over k. (]

The rather technical lemma that we now present connects classical and gen-
eralised state trajectories of i/s/o systems. See Definition [A-3 in the appendix for
a definition of the space W,"?(I;U).

loc

Lemma 5.7. Let I = [a,b] or I = [a,00) and assume that [ 3 | is an LP-well-posed
i/s/0-system on (X,U,Y) with i/s/o-system node S = [ A£5].
(i) For all z, € X and w € LY (I;U) the function

loc
o(t) =A%, + Brirru, tel (5.7)

is the unique solution in C(I;X) NWYP(I; X_1) of the equation

loc
xz(a) = x4 and (t) = A|lxx(t) + Bu(t) in X_1 a.e. in I, (5.8)

where the derivative & of x is taken in the distribution sense, i.e., for all
tel, z(t) = fjaj(s) ds in X_;.
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(i)

(iii)

Proof. (i) Tt is well known that L?
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Assume that &) holds with © € WLP(I; X_1) and u € L (I;U). Then
r € CHI;X) and v € C(I;U) if and only if [£] € C(I;Dom (S)). In this
case ©(t) = A&B {28} in X for allt € I, with one-sided derivatives at the
end point(s) of 1.

Assume that &) holds. If u € WLP(I;U) and [ Ta } € Dom (S) then

u(a)
[] € C(I; Dom ().

P (L;U) C L, (I;U) for all 1 < p < co. Thus,
if I = [a,00) then it suffices to combine Definition 3.8.1 and Theorem 4.3.1
of [Sta05] in order to prove claim (i).

In the case I = [a,b] we first note that 7, oy7r = 77, which implies

that
T(t) =A%, + Brlriu, tE |a,o00) (5.9)

is the unique solution in C([a, c0); X)N W/llo’f([a, 00); X_1) of the initial-value
problem

Z(a) =z, and Z(t) = AlxZ(t) + B(mu)(t) in X, (5.10)

for almost all ¢ € [a, 00), by claim (i) of this lemma for the case I = [a, 00).

Comparing (1) and (BEJ) we see that © = pj 7 and ([EF) is then
obtained as a special case of ([&I0), i.e., the function x in (&) solves ().
Replacing the interval [s,00) by the interval [a,b] in the proof of [Sfalfl
Thm 3.8.2(ii)], we see that the equation (BF)) has only one solution z in
WP ([a,b]; X_1) N C([a,b]; X), namely the function z in (7).
Assume first that z € CY(I;X), u € C(I;U) and that (EX) holds. Then
& € C(I;X_1), because the norm on X_; is weaker than the norm on X.
Moreover, [ Alx B | maps [;7] continuously into X_1, by Definition Bl of
an i/s/o-system node, and thus also the function t — A|xx(t) + Bu(t) lies in
C(I; X_1). This implies that actually &(t) = A|xz(t) + Bu(t) in X_; for all
t € I, instead of only for almost all ¢.

The assumption z € C1(I; X) also implies that i (t) = A|xx(t) + Bu(t)

lies in X instead of only in X_;. This implies that [28] € Dom (S) and that

z(t) = A&B [ig” for all ¢ € I. Recalling that the norm in Dom (S) is
x(t) _ a(t)
[y e S ey

(t)
= l2@ON% + =% + lu@®)lz
we get that [§] € C(I;Dom (5)), cf. the proof of Lemma PZ(i).
Now, conversely assume that (BF) holds with [5] € C(I;Dom (S5)).
From ([&TIIl) we get that € C(I; X) and v € C(I;U). By Definition BTl

p p

+lz@Ol% + lu®)lz
X

Dom(S) (5.11)
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[igg] € Dom (5) implies that A|xx(t) + Bu(t) lies in X and that
Al

x
u(t)
From ([&TIT) it immediately follows that A&B maps Dom (S) continuously
into X and Lemma B0l then yields that A&B[5] € C(I; X).

Equation (E&R) implies that & = A&B[5] in X_; almost everywhere in
I, i.e., that

Alxz(t) + Bu(t) = A&B [

(v)
Dividing this identify by ¢t — s and letting ¢ — s tend to zero, we for all t € I get
that &(t) = A&B [z(t) }, with one-sided derivatives at the end point(s) of T,

2(t) — x(s) :/: A&B[ z(v) ] dv, s,tel

u(t)

due to the continuity of the function A& B [%] on I. In particular & € C(I; X).
(iii) Now assume that u € V[/li’f(l;u) and [ uaEZ) ] € Dom (5). In the case
I = [a,b] we start by extending u to a function (which we still denote by
u) in WP ([a,00);U) by setting u(t) = u(b) for all t > b. Define & by (&3
with I = [a,00). Combining @TIJ) and [Stalh, Thm 4.3.7] we get that the
function Z lies in C*([a, 00); X). We again have z = p;¥ and this function

obviously lies in C*(I; X).
We finally note that W,o?(I;U) € C(I;U) C L?, (I;U) and, combining

oc loc

claims (i) and (ii) of this lemma, we get that [§] lies in C(I;Dom (S)). O
As the following theorem shows, every classical trajectory of an i/s/o-system
is also an LP trajectory of the same i/s/o system. The converse is also true in

the sense that every LP trajectory of an i/s/o system, which has the necessary
smoothness, is actually classical.

Theorem 5.8. Let I = [a,b] or I = [a,00), let ([2 5 ];X,U,Y) be an LP-well-posed
i/s/o system and let S = [ A¢B| be the i/s/o-system node in Lemma 52
(i) Assume that x € CY(I; X), u € C(I;U) and y € LY (I;)) satisfy

loc

[ x(t) ] _ [ Ame B! ] [ z(a) } for all ¢ € I. (5.12)

Yy prT ¢ pr® T

Then [3] € C(I;Dom (5)) and (t) = A&B [28} for allt € I. Moreover, y

coincides with the continuous function C& D [28 } ,t € I, almost everywhere.
Vtel: [ (1)

(ii) If[%] € C(I;Dom (S)) and
ygt) } - [ Sﬁg ] [ 28 ] : (5.13)

then x € CY(I; X), w € C(I;U), y € C(I;Y) and [BID) holds.
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Proof. Lemma B yields that the first line of (EI2) holds with z € C'(I; X) and
u € C(I;U) if and only if the first line of (2I3)) holds with [§] € C(I;Dom (5)).
Now assume that these conditions hold and define

0] [0 ] aw e

Denote the output y given in (BI2) by y. An application of [Sta0h, Thm 4.6.12]
yields that y coincides almost everywhere on I with the function

i(t) = %C&D [ z1(t)

ua () }, tel.

Moreover, [ Zl ] obviously lies in C1(RT; Dom (S)) and applying the second lines

of (EH) and (ifﬂi]) with &k = n = 1 we obtain that y is continuous on I and
y(t) =C&D [28” for all t € I. Thus y coincides with y given in (&I3) on I. This
proves that the functions y given on second lines of (I2) and ([BI3)) are equal
almost everywhere, and that the latter is continuous on 1. (I

It is now time to return to s/s systems. In the next section we define maximal-
ity of a s/s node and show that maximality gives some quite useful extra structure
to well-posed s/s nodes.

6. Maximal s/s nodes

In this section we prove the existence of a unique maximal generating s/s node for
any given well-posed state/signal system. We derive an expression for this maximal
s/s node in terms of i/s/o-system nodes. The results in this section also provide
us with some tools for proving that a given subspace V' generates a well-posed
s/s-system.
In the next definition we denote the space of classical trajectories on [a, b] of
the s/s node (Viae; X, W) by
1 . r
Vyasla, b] = [ ’ ] e [ g(&“b’]’]x} ] } v | € Cla,b: Vinas) b (6.1)

w
Definition 6.1. The s/s node (Vinae; X, W) is a maximal generating state/signal
node of a well-posed s/s system ¥,/ = (WP; X', W) if the following two conditions

hold:
(i) The s/s node (Vimaz; X, W) generates 3, i.e., Vmaz[0,T] = ppo, 2P for some
| C(0,T]; X)
T > 0, where the bar denotes closure in [ (0, T W) |

(ii) The generating subspace Viyaz is a mazimal one among the generating sub-
spaces, i.e., V.C Vipaz for all s/s nodes (V; X, W) that generate X.

We have the following immediate observation.
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Lemma 6.2. If a mazimal generating subspace Vinax of ¥g/s = (WP; X, W) exists
then it is unique. Every space [0, T| of classical trajectories of ¥ is then contained
in Vinaz [0, T).

Proof. 1f Vi and V; are both maximal and 2:[0,T] = 2[0,T| = pjo,1)20?, then

by definition we have both V4 C V5 and Vo C Vi, which implies that V; = V5.
The second claim follows from comparing Definition 21l to ([&1I), taking into

account that V' C V4. ]

As we shall see later, every well-posed s/s system has a maximal generat-
ing s/s node (Vipaz; X, W), where Via. can be defined e.g. as in the following
preliminary lemma.

Lemma 6.3. Let 1 < p < oo and T > 0. Assume that ([%%] ;X U,Y) is an
LP-well-posed i/s/o system with system node S = [AE8 ] given in Lemma D,
Define
A&B
[1x O]
C&D
[0 1y |

Vinaz := Dom (S5). (6.2)

Then the image of the space

Vrnaz0[0, T = H : } € By 0,7 ’ [ j}((?) } _ o} (6.3)

under [ 0 P ] is dense in LP([0,T];U).

] maps Vimaz[0,T] one-to-one onto [ X ]

Moreover, [ L2([0, T): )

o O
0 Py
Proof. Part 1 ([56) 7%;} maps Brnaz[0,T] onto [LP([O%(T};M)})-' We first recall that
the space

Co([0,T);U) := {u € C'([0,T};U) | u(0) =0} .
is dense in LP([0, T);U) for all 1 < p < co. Moreover, the domain of A is dense in X

e i) X
by Definition BJl Thus, for all u ] € { ([0, T}: )

[ &n ] in { Dom (4) ] which tends to [ ff ] in {

} we can find a sequence

Un C&([Ou T);U) . For every

element of this sequence we have that

o el et | e pomes).

Lr([o, T U) }

Defining
T (t) = A&, + Brimg run, tE€ 10,7, (6.4)
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Tn

we thus get from Lemma b7 that [ " ] € C([0,T]; Dom (5)). We can then define

n

the functions vy, by

yn(t) = C&D{ z:g ] te[0,7]. (6.5)

Lemma B0l yields that y, is continuous on [0,7] and combining Lemma B with
Theorem we now get that

e [ 50 [one soro [Lnim ] 0
The continuity of € and © implies that
Yn — po,71€T0 + Plo,7)DP 0, 1)U =: Y, N — 00.
We now show that x,, converges uniformly to the function
x(t) :=A'wo + Brlmpru, t€[0,T], asn— oo.

Noting that B7_7 is a continuous, and hence bounded, operator from
LP([-T,0);U) to X we for all ¢ in [0,T] get that

lzn(t) = 2(t)ll2x = A (& — @0) + B 70,4 (un — u)l|x
< U N&n = ol + IB7—1,017" 70, (un — u)l|x
< 22 7|gn — wollx + |Brr o 17 70,6 (wn — W)l Lo (-0
< e 71& — ol|x + |B—r,0ll|wn — ull oo, 720
(6.7)
cf. @I9) and Lemma B4 The last line of (E1) tends to 0 as n — oo and the

convergence does not depend on ¢, which implies that the convergence is uniform
in t. We have shown that [,5y] € Dimaz[0, 7] with

b O x | =
0 PY | |luty ] | u "

Part 2 (The other two claims): We first prove that [ 0 ’ng } Vmaz,0[0,T]
is dense in LP([0,T];U). Let u € LP([0,T];U) be arbitrary, let u,, € CL([0,T];U)
tend to w in LP([0,T);U) and take &, = 0 for all n. As in part 1 of this proof,
define z,, by @d) and y, by EXH), so that [ " Ji:y } € Vmaz[0,T]. More-
over, u,(0) = 0, since we took u, from C([0,T];U), z,(0) = &, = 0 and

yn(0) = C&D [ zzgg; ] = 0. We have proved that { w, _:yn ] € Vmaz,0[0,T]
with [ 0 ’Pg{} } [ u ?—zy }_unau.
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b O

We finally show that the restriction of v

} t0 Vimaz[0,T] is injec-

Tn

tive. Let { ] € Va0, T], let , tend to z uniformly and let w,, — w in

LP([0,T); W). Assume that (0) = 0 and that Pw = 0. Define u,, := Pw, and
Yp 1= ’P% wy,. Then &, x,, u, and y, are all continuous and by (E2) we have that

T (t A& B T (t
5 [82][ 5] rono
Theorem B8 yields that ([G6]) holds. Arguing as in part 1 of this proof we then get
that

T, (t) — A0+ %TtTF[OyT]O =0, te]l0,T]
and y = limy,, = 0. This implies that z(¢) = 0 for all ¢ € [0,T] and by assumption
we have u = limu,, = 0. This shows that [,},] = 0, i.e., that [§] € V(0,7

d O 2 x|
and{o Pg}{w]—()lmplythat[w}—(). O

The following theorem is the main result of this section. In the formulation
of the theorem we have two Banach spaces i/ and ), which we identify with the

{0} Y Y : .
subspaces [ U and (0} of u respectively. In this way the Carte-

sian product [%} is identified with the direct sum U + ), cf. the discussion after
Definition 223

Theorem 6.4. Make the same assumptions as in Lemmalfd and let Viae be given
by @2). Then (Vimaw; X, [}]) is a mazimal LP-well-posed s/s node. The i/o pair
(U,Y) is admissible for the s/s system X generated by Ve and the corresponding
i/s/o representation is X;/5/0 = (|2 3] X,U, ).

Proof. We first fix T' > 0 arbitrarily.
Part 1 (Vimaz; X, [2]) is an LP-well-posed s/s node with i/o pair (U,Y)):
We first check that V,,., satisfies the conditions of Definition The space Vipax

is closed, because it is essentially the graph of [ éﬁ‘cg], which is a closed operator

z

by Definition Bl Furthermore, {8} € Vinas implies that z = A&B[§] = 0.

0
20
For an arbitrary To € Vinaz, define ug := ’Pgwo and let u be the
wo
constant function w(t) := wug for ¢ € [0,7]. This function u obviously lies in

loc

WLP([0,T);U). By ) we moreover have that [ io } € Dom (S), and defin-
0

ing z(t) := Alwo + Br'npru, t € [0,T], we obtain from Lemma BTiii) that
[#] lies in C([0,T]; Dom (S)). Claims (i) and (ii) of Lemma BT then yield that

z € CL[0,T); X), u e C([0,T]; X) and i(t) = A&B {jgm for all t € [0, 7).



56 Mikael Kurula and Olof J. Staffans

We now define y(t) := C&D [igi”, t € [0,T], and thus get that

(t) [ A&B | [ «(t)
[ y(t) } | c&D } { u(t) ] t€[0,T]. (6.8)
Moreover, denoting w := [¥] we get that [ L] € Ve [0, T] with
. A&B
gl I RS BEE
w(0) Sl R

This proves that (Vinee; X, W) is a s/s node.
Regarding the well-posedness of (Vi,42; X', W), we note that [ 0 738,) } maps

the space
z(0) = O}

one-to-one onto LP ([0, T];U) by LemmalE3 Then LemmaBH in combination with
Lemma yields that Uynaz,0[0, 7] given in @) is dense in 2030, T]. Thus the
conditions in Proposition BIIKii) are satisfied. Now Proposition BT1(i) says that
(Vinaz; X, W) is L? well posed with the admissible i/o pair (U, )).
Part 2 (S50 = ([%3];X,U,Y)): In part one of this proof we showed
that the i/s/o system ([%‘ %] ;X,L{,y) induces some LP-well-posed s/s system
Y/ = (WP; X, W), which satisfies U,a2[0,T] = ppo,r)20P and has the admissible
i/o pair (U, ).

Denote the space of all [ i} ] € [

wio.r={| 7 | e T

go(([[%:?]];; /;}V)) ] that satisfy EIl) with

y = PYw, u= PYw and I = [0,T] by W[0,T]. We now prove that W[0,7] is a
C([0,T]; X)
LP([0, T W)

et [l Lo ]emon=[ ol |

If [ j}’; ] € W[0,T] and [ w ] [ } then z,,(0) — x(0) in X and PYw,

closed subspace of [ } First note that

tends to Pp/w in LP([0,T];U). By the argument in part 1 of the proof of Lemma
we then have that

vt e [0,T]: a(t) =A'z(0) + BrimorPyw and
PSw = pjo,1€x(0) + po, D0,y Py w,

which implies that [ ] € W0, T}, i.e., that W[0,T] is closed.
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Definition EEH says that we only need to show that W[0,T] = pjo 207 in
order to prove that [c 9} is the i/s/o representation of ¥ with respect to (U, )).
According to Theorem L8 we have that

CH([0,T}; X)
c(o, T w)

By part 1 of the proof of LemmalG3 for every [ ] € W0, T] we can find a sequence
[ ;EU" } € Vnas[0,T], such that z,, — x uniformly and w, — w in LP([0,T]; W).

w0, T] N [ } = Vrnaz[0, T

n

This proves that [ %] € B,naz[0, T] and, therefore, that
Binaz]0, T] € W[0,T] € Brnan0, 1.
Since W10, T] is closed, this implies that
W0, T] = Brmaza[0,T] = pjo,7)20”

and we are done proving that ¥;/5,, = ([23];X,U,)).
Part 3 (V C Viax for any generating subspace V' of ¥): Let V generate 2

20
and let | zp | € V be arbitrary. Due to () we can find a classical trajectory
Wo
(0) 20
(2] € B[0,T] of V such that | #(0) | = | 2o |. Denoting u := PYw and
w(0) wWo
y := P{w we obtain from [,] € B[0,T] C pjo,12? that

Vit e [0,T]: [ }

by part 2 of this proof. Moreover &, x, u and y are continuous on [0, 7] for any

[ A&B ] [ Eg; ] according to Theo-

T
A Tt z(0) ]
, 6.9
[ p,11€ p[OT]© ] [ [0, T]U (6:9)
X

classical trajectory, and thus [ E(())g

C&D
&(0)
rem We have established that 3:0 = | z(0) | € Vipae and, therefore,
wo w(0)

that V C Vg
Part 2 of the proof of Theorem [ yields that the maximal space Unqz[a, U]

of classical trajectories of a well-posed s/s system (20P; X', W) satisfies
C*([a, b]; X)
C([a,0]; W)
Using Lemma Z4 we can then recover V4, from pjq 5207 through
i(a)
x *([a, 0]; X) ]
Vinas = z(a € PlapT WP N >
@ || [ ] eomormra Qi)

w(a)

SU7na;E[a/ b] _pab —ampm |:
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Proposition 6.5. Every LP-well-posed s/s system has a unique maximal generating
s/s node. This mazimal s/s node is LP well posed.

Proof. By Theorem L every well-posed s/s system has some i/s/o representation
([%‘ %} s XU, y). Theorem B4 then says that this s/s system has a well-posed
maximal generating s/s node. According to Lemma this maximal generating
s/s node is unique. O

We now answer the question in Remark BT6

Theorem 6.6. Let T > 0 and 1 < p < oo, and let X and W = U + Y be Banach
C([0,T]; X) + CR*; X)
spaces. Let W10,T] C [ £#(0, T): W) and W+ C I (RSW) |
Then the following conditions are equivalent:
(i) The triple (W*; X, W) is an LP-well-posed s/s system, which has the admis-
sible i/o pair (U,Y), and W0,T] = ponyW+.
(ii) The following four conditions all hold:

(a) The space W[0,T] is a closed subspace of [ LC;(([[(())’ 11:]]’ X)) }

(b) The operator [ %3 ,Poy ] maps the space W10,T| one-to-one onto the
u
a X
PACE | ro (0, T):U) |
(c) The space W satisfies [BI9), i.e.,
) C(RT; X)
T )
Wt = (W[0,T] xp 7~ "W[0,T] Mo ...) N [ o ®5wW) |
(d) The space W satisfies pym' W+ C W for all t > 0.
(iii) The following four conditions all hold:

) C(RT; X)
+ b
(e) The space W is a closed subspace of { P (RW) |
S 0 ] { X }
f) The operator maps W one-to-one onto .
w ! [ 0 Py Y Ly, (R*:U)

(g) We have that W[0,T] = pjofWT.
(h) Condition (d) above holds.

Proof. (i) = (ii): The necessity of conditions (a), (b) and (d) was shown in the
proof of Theorem EEA The necessity of (¢) follows from Propositions B and B0
(i) = (iii): Lemma Ed yields that (a)—(c) imply (e)—(g).

(i1i) = (i): According to LemmaB (e), (f) and (h) imply the existence of a well-
posed i/s/o system [ 3 B | that satisfies (0). Theorem B2 then yields that [3 3 |
induces a well-posed s/s system ¥/, = (207; X, W) which has i/s/o representation
Sisro = ([235]:X,U,Y). Applying Theorem BT to ¥ we get that (EH) holds
also with W replaced by 207 and thus W+ = 207 O
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One can apply Theorem B8 to a space W' of trajectories on any interval
[a, b] or [a,0), where —00 < a < b < 0o, by considering 7*W’, which is a space of
trajectories on [0,b — a] or RT, respectively.

We now give a direct characterisation of the subspaces V' of [5?\/} , which are
graphs of i/s/o-system nodes in the sense of (EZ). Let therefore X and W be
Banach spaces and let V' C [%] Define the subspace V,, of V' by

z X
V, = x| eV Pjw=0p=Vn|X|. (6.10)
w Yy

If V is the graph of an i/s/o-system node S in the sense of ([@2), then [ eV

implies that z,y = 0, and we may define the operators A : X D Dom (4) — X
and C : Dom (4) - Y onDom (4):=[0 1 0]V, CX by

< on
—

z
= [ N } , such that | = | € V. (6.11)
Y )

Wz € Dom (A) : { ar }

Proposition 6.7. Let X and W = U + Y be Banach spaces. Then the following
claims are valid:

(i) The space V considered in @IO) is given by @) for some (not necessarily
well-posed) i/s/o-system node S = [AEB] : [¥] D Dom (S) — [$] if and
only if the following four conditions are met:

(a) The subspace V is closed.
10 0

= |01 0 ;
(b) The subspace V,, := {0 : 733,’] V is closed.

(¢) The operators A and C' are well-defined by @Il) and A generates a Cy
semigroup on X.
(d) For all w € U there exists an [Za}} €V such that PYw = u.

(ii) If, in addition to (a)-(d), Condition (iii) of Definition[2.] is satisfied, then
S is LP-well posed, and then V is the mazimal generating subspace of an
LP-well-posed s/s system, which has has the admissible i/o pair (U,Y).

1) In particular, if the following two extra conditions are satisfied, then condition

iii) I icular, if the followsi diti isfied, th diti
(i) in Definition [2] is met:

(e) For all w € U there exists an [é} €V with ’Pgw =u.
(f) The operator C given in @I) is bounded.
Condition (e) obviously implies condition (d).

Proof. (i) We begin with the implication (<=). Condition (c¢) implies that V is

the graph of some operator S := [ A¢B | in the sense of ([E2) and that:
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& Je=loch] [ 6] e

xeDom(A):{xeX] {g}eDom(S)}.

Since A generates a Cy semigroup on X, it follows, in particular, that A has
a nonempty resolvent set and a dense domain. Condition (a) is equivalent to
closedness of [ A5 ] and condition (b) is equivalent to closedness of A&B.
Condition (d) is equivalent to the statement that for all u € U there exists
an z such that [7] € Dom (S). From [Sfa05, Def. 4.7.2 and Lemma 4.7.7] we
obtain that [ A¢5 ] is an i/s/o-system node.

Regarding the implication (=), if V' is the graph of an i/s/o-system
node, then by the above, V' has all properties (a)—(d).
If (ZT2) holds, then S is well posed by Definition B4l By Theorem [E4] any
i/s/o-system node generates a well-posed s/s system, which has the admissi-
ble i/o pair (U, D).
Condition (e) means that [{8}] C Dom (S), which implies that Dom (.5)
decomposes into [DOI;(A)] and that S accordingly splits into S = [4 B].
Closedness of [B] follows from closedness of S and by the closed graph the-
orem, [ 8] is bounded in this case. If also C' is bounded (condition (f)), then
S is an LP-well-posed i/s/o-system node, for 1 < p < oo according to [Stal5l,
Prop. 2.3.1].

O

We remark that conditions (e) and (f) of Proposition are sufficient for

well-posedness, as stated in the proposition. However, they are far from necessary
unless X is finite-dimensional. Passive systems form a very important class of
systems which are well posed in the s/s setting. These systems will not, in general,
satisfy the conditions (e) and (f) of Proposition BEZd A proper definition and a
more elaborate treatment of passive systems will be presented elsewhere.

We now conclude the paper with two examples. The first example shows that

the ill-posed i/s/o-system node of Example B3 induces a well posed s/s system.

V=

Example 6.8. With the same set-up as in Example B3, let W = [%], U = [{/—?(}L
[{g}}. Following Theorem [6] we define the subspace V C [%} by:
Alx Alx
1 0
V= “Alx “Alx Dom (5),
0 1

where Dom (S) = {[%] € [¥] | # + v € Dom (A)}.
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With respect to the presumptive i/o-pair ([{2}] , [{f)‘}}), the space V is es-

sentially the graph of the i/s/o-system node S. The main point of this example is
to show that V indeed generates a well-posed s/s system ¥ on (X, W), in spite of
the fact that S is an ill-posed i/s/o-system node. The ill-posedness of S is due to
the fact that Definition [Z7](iii) is not satisfied and thus ([{g}} , [{%(}D cannot be
an admissible i/0 pair of ¥.

In order to obtain an admissible i/o pair of V we replace the original de-
composition W = [{2}} + [{)0(}] by a new decomposition W = U' + V', where
U =[1X and Y = [ '] X. Then 738{): =1[Y[11] and PY, = S -1l

2 1
U u’
Identifying [ 7,;%/):2 } =w= { ,Py//w
u

o~ ] as in [ZH), we obtain that the space V is
u w
identified with V' given by:

z 1 0 O Alx Alx
01 0 1 0
’_ € _ ,
V= y eV, = 00 PY Al “Alx Dom (S5).
’ 00 P 0 1

Carrying out the multiplication on the right-hand side, we get that

[ /?2; 64|X ]
_f}[Au 1+ Alx | {{i}|x+u€DmﬂM}. (6.12)
1

D]k -4

N[

[N

We now check that V' has properties (a)—(c), (e) and (f) listed in Proposition

2
Condition (a) is trivially satisfied, because V' is isomorphic to the graph of
an i/s/o-system node. For condition (b) we recall from Ezample [Z3 that we have
1 € Res(A), because A is assumed to generate a contraction semigroup. Then
1 0 X o
1 € Res(Alx) and [ Al 1-Alx }Dom(S) = [ Py } Taking into account
that (1 — Alx) tA|lx = A(1 — A)~! and that

[ 1 0 - [ 1 0 ]
“Ale 1=Alx |y LAG=4H7 @-a ]

we obtain that:

Alx Alx ] A=A [1 1] ¥
V! = 1 0 Dom (S) = 10 [X]
—Alx 1-Alx | 0 1

This space is obviously closed, because it is the graph of a bounded operator with
closed domain.
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Condition (e) also holds. This is because [0] € Dom (S) if and only if u lies
in Dom (A), see equation [@IZ), which then yields that:

S W

cv' = {”(1-A|X)Dom(/1)_ { 1 ]X_u'.

DN =

u/€U|

IS

~ 0~

We now finally turn our attention to the conditions (¢) and (f). Note that

u' =0 if and only if [L] e N ([ —Alx 1-A4Alx ]) = { AQ —1A)_1 } X. Thus
we obtain
[ [ A[|X AHX ]
, 10 [ 1 ]
Vy— B - X
P ey RACAT
[ A(l_A)_l Al
_ ' 1 x=|1|x
{‘1 ]A(l—A)—l '

Both A" and C' are bounded, and so condition (f) is met. Moreover, condition (c)
is met, because A’ generates the uniformly continuous group (A')t = et on X,
according to [Stalb, Example 3.1.2].

Thus V' generates an LP-well-posed s/s system, which has the admissible i/o
pair ([11X, [ 71] X) by Proposition[67} Recalling that we identify V =V’ finishes
the proof of our claim.

The technique we used in the above example amounts to the replacement of
the original impedance representation of (V; X', W) by a scattering representation,
which is always L? well posed. See [Kur(9] for details.

The next example, which includes PID controllers, shows that the systems in
IKSO7 are well-posed s/s systems, although they are not well posed in the i/s/o
sense. We refer the reader to J[AH95| for more information on PID controllers.

Xo

Example 6.9. Let X = [
X

} ,U and Y be Banach spaces and assume that Aq
. i) .i'o .
generates a Cy semigroup Ay on Xy. Let { . }, [ i ], uw and y be continuous
1 1

on RT. Consider the system
Io(t) 0 0 BO xo(t

)
i) | =] 0 A B z(t) |, t>0, {“’0(0)} given,  (6.13)
y(t) Co Ci D u(t)
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where B;, C;, D1 are bounded and By, Cy have closed range. In this example we
study in which case BI3) determines the space of classical trajectories of a well-

Xo Yy
posed s/s system X on <[ X, } ,[ U })

First we observe that x¢(0) = Bou(0) and thus, if By does not have dense
range, then we may not choose the starting state { z0(0) ] densely in [ %o
X1 (O) Xl
thus X is ill posed, because condition (i) of Definition [Z] is violated. If Cy is not
injective, then x9(0) = 0, z1(0) = 0, w(0) = 0 does not imply that ©9(0) = 0
and thus ¥ is ill posed, by condition (ii) of Definition [Z3. From now on we thus
assume that By is surjective and Cy is injective with closed range.
Moreover, if 29(0) = 0 then u(0) € N (By) := Uy and it seems reasonable that
Uy := USU, is not part of any input space. On the other hand, x¢(0) = 0, 1(0) =0
and w(0) = 0 only imply that y € Ran (Cy), which hints at Y1 := Ran (Cp) being
part of an input space. Then Yy := Y © Y1 could be part of an oulput space. In
accordance with these splittings of U and Y, the equation [@I) splits into:

and

zo(t) 0 0 0 Bg o(t)

.Il(t) _ 0 Al B11 BlO .Il(t) (6 14)
vit) | | Cio Cun D Dio ur(t) |’ :
Yo(t) 0 Cor Dot Do uo(t)

where Bog and Cig are bijective. Thus By and Cg have bounded inverses by the
closed graph theorem.
Let 1 < p < oo be arbitrary. We will now use Proposition [6.] to show that

o 1 0 0 0 Xo

1 0 A Bu By &

xo 0 0 0 Boo Xo Xo

U N 1 O R B Dom (41) | _ | &
' Yo 0 Co1 Do1 Do U Yo
(') 0 0 0 1 Uo Uo

Y1 Cio Cun Dii Dio W

w ) Lo o 1 0o | |

generates an LP-well-posed s/s system with admissible i/0 pair ({ 51 ] ) [ 50 ]) .
1 0

One may generally show that if H is a closed operator and K is a bounded

Dom (H) | .

Dom (K) } is closed.

If moreover Dom (H) C Dom (K), then [£] with domain Dom (H) is also closed.

This immediately gives that V' has properties (a) and (b) given in Proposition[6.]
0 0 0  Boo

because V' is a trivial permutation of the graph of C(io éll gi giz

0 Coi Do Dy

operator with closed domain, then [ H K ] with domain {

and
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0 Ay B BBy
0 Con Do1 DooByy
the rest of the operators are bounded with closed domains. For condition (e) we
obtain that

V., is essentially the graph of [ ], where Ay is closed and

F T
Z1
0
n ) 0 Cio Du Xo | |
|: Uy :| }ElZOaZlvyO;uO' m ev D) |: 0 1 :| |: ul - ul )
Uo
Y1
(- /LL1 .
by the surjectivity of Chg.
-
zo
We still need to check conditions (¢) and (f). We have | 3¢ | € V if and only
160
0
if
Z0 1 0 0
z1 O Al BlO 20 2
i) 0 0 BOO
o = 0 1 0 zl and zl GN([ CIO Cll Dy D
Yo 0 Cor Doo 0 0
Uo 0 O 1

Due to the invertibility of Cho we may write the null space as

—01_01011 _Ol_olDlo [ Dom (A;) ]
1 0 .
0 1 Ho

After some straightforward computations, which use the fact that Uy = B&}Xo, we
obtain:

—C'DioByyt —C'Cn

B1oBgyy Ay
Vo 1 0 X
DooByg! Co1
By 0
-1 -1 -1
The operator A" := [ Cg %91300 C;i’ O ] is a bounded perturbation of
10L¢0 1

the operator { 00

0 A }, which generates the Cy semigroup t — { L0 } on
1

0 A
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[ io } . From [Kaf93, Thm IX.2.1] we know that A" generates a Cy semigroup on
1
—1
%o . The operator DOOEOO Cox is bounded and thus conditions (c) and
X, By 0

(f) of Proposition [6.] are also met.

Concluding the example, we assumed that Ay generates a Cy semigroup on
X1 and the operators B;, C;, Dy are bounded, where By and Cy in addition have
closed range. Under these assumptions we showed that @I3) determines a s/s
system which is LP-well-posed for all 1 < p < oo if and only if By is surjective and
Cy is injective.

As we shall see in [Kur(l9], one can replace the boundedness conditions on
the involved operators by other conditions related to passivity and still obtain a
well-posed s/s system.

7. Conclusions

We have introduced the new class of continuous-time LP-well-posed linear s/s
systems. The definition of this class is based on the idea of equal treatment of
inputs and outputs, which is inherent to network theory. We have presented the
most important basic properties of these s/s systems and showed how to work with
them, mainly using their trajectories. We also indicated some advantages of our
approach. One of the central notions in the paper is the i/s/o representation, from
which we have derived an explicit expression for the maximal generating subspace
of any given well-posed s/s system.

We will return elsewhere with a study of passive s/s systems as an extension
of Example R All passive s/s systems are L? well posed in the sense of the current
article and these systems have a rich additional structure. Interconnection of s/s
systems in the spirit of [KZvdSB0OS| is also a main point of interest, which still
remains to be explored.

Appendix A. Background
This appendix provides notation and some general background for the paper.

Definition A.1. Let I, I, Iy and I, be subsets of R and let U be a Banach space.

(i) The vector space of functions defined everywhere on I with values in U is
denoted by U'.
(ii) For f € U' and a € I we define the point-evaluation operator 4, through
dof = fla).
(iii) For all t € R we define the shift operator 7¢, which maps functions in U'
into functions in UL, by (7' f)(v) = f(v+1t) for f eU! andv+t e 1. If
t > 0 then 7t is a left shift by the amount t.
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(iv) The operator 71 : U — UR is defined by

] flv), wvel
(1) (v) ~—{ 0, veR\I
We briefly write 71 1= g o0) and T 1= T(_s0,0)-

(v) For I' O I, the restriction operator p; : U — U is given by

(prf)(v) = f(v), vel, ie pif=fli, feu'.

We abbreviate p4 1= p[g,o0) aNd p— = p(_o0,0)-
(vi) For f eUls, g eUls and c € R we define the concatenation f X, g of f and
g at ¢ as the function

flv), t<c(,tely)
gv), t>c(tel,)’

(f e g)(v) = {

We note that 70 = 1 and that for all s,¢t € R we have 757t = 7%, Thus, the
shift operators ¢t — 7! form a group on UX. If s,t > 0 then p,7°p, 7t = p, 751
and p_rSm_p_ttr_ = p_75Ttr_ ie. py7 is a semigroup on U® and p_7r7r_ is a
semigroup on UX .

The following spaces of continuous functions are used frequently.

Definition A.2. Let U be a Banach space and let —oo < a < b < 0.
(i) The space of continuous U-valued functions defined on [a,b] is denoted by

C([a,b];U). This space is equipped with the supremum norm

I fll ez == sup [|f ()]l
tea,b]

(i) The space of all U-valued functions defined on [a,b] with n € ZT continuous
derivatives is denoted by C™([a,b];U) and equipped with the norm

£l s = Y IF® N cam- (A1)
k=0
(iii) The space of U-valued functions defined on [a,00) with n € Z* continu-
ous derivatives is denoted by C™([a,00);U). This space is equipped with the
compact-open topology induced by the family

£ 1o 2= [1pa,6) f lom (o500
of seminorms, which is indexed by b > a. By writing C([a, c0);U) we mean
C%(la, 00);U).

The space C™([a, b];U) is a Banach space and C™([a, 00);U) is a Fréchet space
for all n € Z*. Convergence to zero of a sequence f,, in a Fréchet spaces means
that || fn]ls — 0 for all b > a.
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Definition A.3. Let U be a Banach space and let I = [a,b] or I = [a,0).

(i) By LP(I;U) we denote the space of all U-valued Lebesgue-measurable func-
tions f defined on I, such that

1/p
W Flran = ( [l dv) < oo (A.2)

(ii) The space LY (I;U) consists of all Lebesgue-measurable functions, which map
I into U, such that p ) f € LP([a,b];U) for all bounded subintervals [a,b] of
I. A family of seminorms on LY ([a,00);U), which is indexed by b > a, is

loc
given by
I £l == ”p[a,b]fHLP([a,b];u)-

(iii) By Wll’p(I;L{) we denote the space of such f € LY (I;U), for which there

oc loc

exists some f € LP (I;U) that satisfies:

loc
b
Va,be I : f(b)—f(a):/ f(s)ds.

(iv) The subspace LE(R™;U) of LP(R™;U) consists of all functions with bounded
support.
(v) A function f € LY (R;U) lies in L

loc c,loc(R;u) Zf p*f € LQ(R77Z/{)

The functions in L? have compact support, hence the choice of the notation
L?. The elements of L? , (R;U) can equivalently be thought of as being functions
in LP (R;U) with support bounded to the left. This means that f € L?, (R;U)

c,loc
if and only if there exists a ¢t € RT such that p.77'f € L (RT;U).

loc
The space L?(I;U) is a Banach space for p € [1,00). For finite intervals [a, b],
the spaces L} ([a,b];U) and LP([a,b];U) coincide. The spaces LY ([a,00);U) and

WP ([a, 00);U) are Fréchet spaces, whereas LE(R™;U) is not a Fréchet space. In
LE(R™;U), fn — 0if there exists some s € R such that supp (f,) C [s, 0] for all n
and || fnl e &2y — 0.

The operators 7, 7, p and x of Definition [AJ] have obvious extensions to the
LP spaces in Definition Moreover, we may also apply the pointwise-projection
operator Pg to a function, which belongs to an LP-type space, by setting Pg w=1u
if and only if PYw(t) = u(t) almost everywhere. We often apply some of these
operators to such a space of functions, meaning e.g.

p+7 L (RYU) = {ps' f | f € Lp, (RTU) T,

loc loc

for some t > 0.
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