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Abstract. This article is devoted to a study of continuous-time passive
and conservative systems within the state/signal framework. The main
idea of the state/signal approach is to not a priori distinguish between
inputs and outputs, but rather to combine these two into a single exter-
nal signal. The so-called node space is introduced as the product of two
copies of the state space of the system and one copy of the space where
the external signals of the system live. This node space is equipped
with a sesquilinear product that makes it a Krĕın space. A generating
subspace is defined as a closed subspace of the node space which deter-
mines the trajectories of a state/signal system. One of the main results
of this article is that a subspace of the node space generates a passive
state/signal system if and only if it is a maximally nonnegative subspace
of the node space and it satisfies a certain nondegeneracy condition. In
this case the generating subspace can be interpreted as the graph of a
scattering-passive input/state/output system node.
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1. Introduction

In this paper we study continuous-time passive and conservative linear sys-
tems within the so-called state/signal framework. This framework allows us
to treat inputs and outputs on an equal basis. Indeed, a limitation of the
input/state/output approach to systems theory is that inputs and outputs
are considered to be ideal. When systems are interconnected, however, ev-
ery input also acts as an output and vice versa, because the subsystems will
always influence each other mutually. The state/signal formulation is useful
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for instance for modelling interconnections where a partial collapse of the
state space takes place. This situation, which is not covered by the standard
feedback theory, see [26], is illustrated in Example 4.9, where we model the
interconnection of two capacitors in parallel.

State/signal systems in continuous time were introduced in [14] and
in the present article we continue the development of their theory. The first
steps in the direction of conservative continuous-time state/signal theory were
taken already in Ball and Staffans [9], and Malinen and Staffans [18]. The
theory of discrete-time state/signal systems has been developed by Arov and
Staffans in [4, 5, 6, 7, 8]. For an overview how the state/signal theory unifies
the theories of different types of passive discrete-time systems; see [27]. The
present article mainly gives continuous-time analogues of some of the results
in [5].

The state/signal framework is similar to the behavioural theory devel-
oped by Jan Willems and his coauthors and followers; see [23] for a good
introduction. The main difference between these two formulations is that
the system state plays an important role in the state/signal setting, whereas
in the behavioural formulation this seems not to be the case. In addition,
the state/signal theory is much more developed than the corresponding be-
havioural theory for infinite-dimensional systems. Here we use mainly energy-
based methods, whereas the finite-dimensional behavioural theory is built
mostly using algebraic tools.

Another approach to modelling conservative systems, which is closely
related to the state/signal approach, uses the concepts of port-Hamiltonian
systems and Dirac structures. Van der Schaft and Maschke are two of the
main authors in this field, which originates from the modelling of conserva-
tive physical systems which are often nonlinear, see [15, 20, 21, 30]. Although
some work has been done to extend the port-Hamiltonian system approach
to distributed-parameter systems, most of the theory still concerns finite-
dimensional systems. In the port-Hamiltonian approach the existence of so-
lutions if often motivated by physical arguments, but in this article we are
also interested in mathematical proofs for existence of system trajectories.

The theory of boundary triplets and their application to solving bound-
ary control problems is now classical; see [13]. The concept of boundary
triplets has been generalised to that of boundary relations by a group of
authors in papers such as [10] and [12]. This work is also closely connected
to the state/signal theory.

Passive infinite-dimensional input/state/output systems in continuous
time have previously been studied a.o. in [1, 2, 3, 17, 18, 19, 24, 25, 29, 31].

We now proceed to describe the contents of the paper in more detail.
To avoid unnecessary repetition we introduce the abbreviations i/s/o for
input/state/output, i/o for input/output and s/s for state/signal.

A common model for a linear continuous-time time-invariant system is

Σ :

[
ẋ(t)
y(t)

]
=

[
A B
C D

] [
x(t)
u(t)

]
, t > 0, x(0) = x0. (1.1)
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Here A, B, C and D are linear operators, and ẋ = ∂
∂tx. The function x is

called the state trajectory, u is the input signal, y is the output signal, and
together they form an input/state/output (i/s/o) trajectory (u, x, y) of Σ. The
state trajectory x takes values in the state space X , the input u lives in the
input space U , and the output y in the output space Y. For the moment the
operator [ A B

C D ] is assumed to map [XU ] continuously into
[ X
Y

]
, but we will soon

replace [ A B
C D ] by an unbounded operator node, which we define in Definition

2.4, in order to allow a larger set of applications. A system reminiscent of
(1.1) is commonly known as an i/s/o system.

We formalise the idea of equal treatment of inputs and outputs in (1.1)
by considering the input space U and the output space Y to be closed sub-
spaces of a combined external signal space: W := U ∔ Y. We can always

achieve this by setting W :=
[ Y
U

]
and identifying Y =

[
Y
{0}

]
and U =

[ {0}
U

]
.

Then we rewrite the system (1.1) in graph form to get rid of the explicit
input u(t) and output y(t):




ẋ(t)
x(t)
w(t)


 ∈ V, t > 0, x(0) = x0, where (1.2)

V =









z
x

u + y




∣∣∣∣
[

z
y

]
=

[
A B
C D

] [
x
u

]




=




A B
1X 0
C D + 1U




[
X
U

]
.

(1.3)

We call a system of the type (1.2) a differential s/s model of the system Σ in
(1.1).

We now return to the general infinite-dimensional setting. In the study
of passive systems it is natural to require W to be a Krĕın space, as we will
see later. Some theory of Krĕın spaces and brief definitions of the function
spaces which we need throughout this article can be found in the appendix.
The following definition should be compared to (1.2).

Definition 1.1. Let I be a subinterval of R with positive length, let X be a

Hilbert space, and let W be a Krĕın space. Let V be a subspace of
[ X
X
W

]
.

The space V(I) of classical trajectories on I generated by V consists of

all pairs [ x
w ] ∈

[
C1(I;X )
C(I;W

]
, such that

[
ẋ(t)
x(t)
w(t)

]
∈ V for all interior points t in I.

We abbreviate V := V[0,∞).

If ẋ, x and w are all continuous on I, and

[
ẋ(t)
x(t)
w(t)

]
∈ V for all internal

points t of I, then the inclusion holds at every t ∈ I, with one-sided derivatives
at any end-points of I. Thus we often replace the statement that the inclusion
holds for all internal points t of I by the shorter statement that it holds for
all t ∈ I.
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The state space X in Definition 1.1 represents the internal memory of
the system, whereas the external signal space is used to interconnect the s/s
system to the outside world. The external signal space can be decomposed
into a direct-sum decomposition W = U ∔ Y of an input space U and an
output space Y in various ways and different decompositions yield different
i/s/o representations (1.1). Indeed, the operator [ A B

C D ] used to describe V
in (1.3) corresponds to the given decomposition W = U ∔ Y. The different
i/s/o representations can have different properties; they can for instance be
passive with respect to different supply rates.

More precisely, a direct-sum decomposition of W = U ∔ Y forms an
admissible i/o pair (U ,Y) for the subspace V if there exists an operator node[

A&B
C&D

]
, which we will define precisely in Definition 2.4, with input space U ,

state space X and output space Y, such that V can be written as the graph
of

[
A&B
C&D

]
in the following way:

V =




A&B[
1X 0

]

C&D +
[

0 1U
]


Dom

([
A&B
C&D

])
. (1.4)

Denote the projection of W onto U along Y by PYU and the complementary
projection by PUY . Then admissibility of the i/o pair (U ,Y) yields the fol-

lowing i/s/o representation: a pair [ x
w ] ∈

[
C1(R+;X )

C(R+;W)

]
is a classical trajectory

generated by V if and only if
[

ẋ(t)
PUYw(t)

]
=

[
A&B
C&D

] [
x(t)

PYU w(t)

]
, t ≥ 0,

where
[

A&B
C&D

]
is the operator node in (1.4). This is a very general representa-

tion of a linear time-invariant system with input signal PYU w, state trajectory
x and output signal PUYw. Operator node representations are studied in more
detail in Section 2.

We call any subspace V of the triple
[ X
X
W

]
a generating subspace, mean-

ing that it generates some space V of classical trajectories. Let us now im-
pose some additional structure on a generating subspace in order to make it
a state/signal node.

Definition 1.2. Let X be a Hilbert space and W a Krĕın space, and let V ⊂[ X
X
W

]
. We say that (V ;X ,W) is an ordinary state/signal node (shortly s/s

node) if V has the following properties:

(i) The space V is closed in the norm
∥∥∥∥∥∥




z
x
w





∥∥∥∥∥∥
=

√
‖z‖2
X + ‖x‖2

X + ‖w‖2
W ,

where ‖ · ‖W denotes an arbitrary admissible norm on W ; see Definition
A.3.

(ii) The space V has the property
[

z
0
0

]
∈ V =⇒ z = 0.
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(iii) There exists some T > 0 such that

∀




z0

x0

w0


 ∈ V ∃

[
x
w

]
∈ V[0, T ] :




ẋ(0)
x(0)
w(0)


 =




z0

x0

w0


 .

Comparing condition (ii) to Definition 1.1, we see that (ii) means that
the derivative of the current state is uniquely determined by the current state
and the current external signals at any given time. The condition in fact says
that we have chosen an appropriate state space, as we will see in Proposition
4.7. Condition (iii) implies that every trajectory on an arbitrary interval [0, T ]
can be extended in the forward-time direction to a trajectory on R+.

According to the following definition, a s/s system is essentially a col-
lection of trajectories generated by a s/s node, and as such it is a very general
object.

Definition 1.3. Let (V ;X ,W) be a s/s node and I a subinterval of R with
positive length.

The space W(I) of generalised trajectories generated by V on I is the

closure of V(I) in
[

C(I;X )

L2
loc

(I;W)

]
. By this we mean that [ x

w ] ∈ W(I) if and only

if there exists a sequence of [ xn

wn
] ∈ V(I) that tends to [ x

w ] in
[

C(I;X )

L2
loc

(I;W)

]
as

n → ∞. We abbreviate W[0,∞) by W.

The triple Σs/s = (W;X ,W) is called the state/signal system (s/s sys-
tem) induced by (V ;X ,W).

Any system can intuitively be called passive if it lacks internal energy
sources. We now describe how this translates to s/s systems. The energy
stored in state x0 ∈ X is given by the norm of x0 squared: ‖x0‖2

X = (x0, x0)X
and similarly we let the inner product on W describe how the trajectories
generated by V exchange power with the surroundings via the external signal
w, so that [w(t), w(t)]W measures the amount of energy absorbed from the
surroundings per time unit at time t. This energy exchange is inherently
indefinite, because energy can flow in both directions. Therefore we need to
allow W to have an indefinite inner product, i.e., we need to let W be a Krĕın
space.

We conclude that a passive s/s system should have the following prop-
erty: For every generalised (or equivalently for every classical) trajectory, the
energy stored in the state should at all times be at most the energy of the
initial state plus the total energy absorbed from the surroundings, i.e.,

∀
[

x
w

]
∈ W : ‖x(t)‖2

X ≤ ‖x(0)‖2
X +

∫ t

0

[w(s), w(s)]W ds, t ≥ 0. (1.5)

It follows from the proof of Proposition 4.3 that (1.5) is equivalent to the
statement

∀
[

x
w

]
∈ V : (ẋ(t), x(t))X + (x(t), ẋ(t))X ≤ [w(t), w(t)]W , t ≥ 0. (1.6)
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Noting that

(
ẋ(t), x(t)

)
X +

(
x(t), ẋ(t)

)
X =

(
∂

∂t

(
‖x‖2
X

))
(t), (1.7)

we can interpret (1.6) as a statement that the change of energy stored in the
state at no time instance exceeds the power input from the outside world.
We need to consider classical trajectories in (1.6), because the state part of
a generalised trajectory is in general not differentiable. Motivated by this
discussion we now introduce a so-called power product in order to be able
to measure the amount of energy dissipated by a given trajectory at a given
time.

Definition 1.4. Let X be a Hilbert space with inner product (·, ·)X and let W
be a Krĕın space with indefinite inner product [·, ·]W . The (continuous-time)

node space is K :=
[ X
X
W

]
equipped with the sesquilinear power product








z1

x1

w1



 ,




z2

x2

w2









K

:= [w1, w2]W − (z1, x2)X − (x1, z2)X . (1.8)

The power product in (1.8) can be interpreted in the following way. Let
[ x
w ] ∈ V be a classical trajectory, let t ≥ 0 and denote

p(t) :=






ẋ(t)
x(t)
w(t)


 ,




ẋ(t)
x(t)
w(t)







K

.

If p(t) > 0, then the trajectory [ x
w ] dissipates energy at a rate of p(t) per time

unit at time t. If p(t) < 0, then [ x
w ] accumulates energy at a rate of |p(t)| per

time unit and if p(t) = 0 then [ x
w ] preserves energy at time t. As a remark,

in Section 3 we introduce s/s systems systems whose trajectories evolve with
time going in the backwards direction. A trajectory of such a time-reflected
s/s system dissipates energy at time t if p(t) < 0, because a unit of time is
negative in this case.

It turns out that it is natural to define the dual of the s/s node (V ;X ,W)
by (V [⊥];X ,W), where the orthogonal companion V [⊥] of V in K is the space

V [⊥] := {k ∈ K | ∀v ∈ V : [v, k]
K

= 0} (1.9)

of vectors that are [·, ·]
K
-orthogonal to V . See Section 3 for a more detailed

exposition on the dual of a s/s node.
A s/s node (V ;X ,W) is passive if V is a maximally nonnegative sub-

space of the Krĕın space K. This means that [v, v]K ≥ 0 for all v ∈ V and that
V has no proper extension which preserves this property. The maximality re-
quirement is related to the fact that also the dual should be passive in the
time-reflected sense that V [⊥] ≤ 0. A s/s node (V ;X ,W) is conservative if
V = V [⊥], which means that all trajectories of the primal node as well as all
those of its dual preserve the energy at all times. Section 4 contains general
results on passive and conservative s/s systems.
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Theorem 4.5 yields that every triple (V ;X ,W), where V is a maximally

nonnegative subspace of K, such that
[

z
0
0

]
∈ V =⇒ z = 0, is a passive s/s

node. The theorem moreover says that every fundamental decomposition, as
defined in Definition A.1, of the external signal space W induces an admis-
sible i/o pair for a passive s/s node. Operator node representations arising
from fundamental decompositions of the external signal space W are called
scattering representations, because every scattering representation of a pas-
sive or conservative s/s node is scattering passive or scattering conservative,
respectively; see Definition 5.4. We study scattering representations and their
connection to passivity of s/s nodes in Section 5. There we also clarify how
passivity relates to the notion of L2-well-posedness, which was introduced in
[14]. If we drop the maximality assumption on the generating subspace V ,
i.e., we only assume that V ≥ 0, then by Example 5.3 there is no guarantee
of the existence of a scattering representation.

The particular citations to external results that we make in this article
are chosen because they are formulated suitably for our needs. Many of these
results have been formulated earlier in other contexts. The book [26] collects
much of the background that we need and for simplicity we often cite results
from this book. The reader may consult this source for further references to
the original versions of the various results.

The author is very grateful to Olof Staffans for his generous help with
this article.

2. Operator node representation of state/signal nodes

We begin this section by listing some useful properties of the classical trajec-
tories generated by a s/s node. Thereafter we move on to introduce operator
nodes and study how these can be used to represent s/s nodes.

In order to proceed in this way we need to introduce some operators for
manipulating trajectories. We denote the operator which shifts its argument
function to the left by an amount c ∈ R by τc, so that (τcf)(t) = f(t + c)
for all t such that t + c ∈ Dom(f). The operator that restricts its argument
function f to I ⊂ Dom(f) is denoted by ρI , so that (ρIf)(t) = f(t) for t ∈ I.
By ⋊⋉c we denote the concatenation operator at c ∈ R, i.e.:

(f ⋊⋉c g)(t) =

{
f(t), t < c, t ∈ Dom(f)

g(t), t ≥ c, t ∈ Dom(g)
.

Lemma 2.1. Let (V ;X ,W) be a s/s node with classical trajectories V. Then
the following claims are valid:

(i) For all −∞ < a < b < ∞ and c ∈ R:

V[a, b] = τc
V[a + c, b + c] and V[a,∞) = τc

V[a + c,∞).
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(ii) For all positive-length subintervals I ′ of the interval I we have ρI′V(I) ⊂
V(I ′) and, moreover,

∀b′ ∈ (a, b] : ρ[a,b′]V[a, b] = V[a, b′] and

∀b′ > a : ρ[a,b′]V[a,∞) = V[a, b′].

(iii) Let −∞ < a < c < b < ∞ and assume that [ x1
w1 ] ∈ V[a, c] and [ x2

w2 ] ∈
V[c, b]. Then [ x1

w1
] ⋊⋉c [ x2

w2
] ∈ V[a, b] if and only if x1(c) = x2(c) and

w1(c) = w2(c).
(iv) For all T > 0 we have

V =









ẋ(0)
x(0)
w(0)




∣∣∣∣
[

x
w

]
∈ V[0, T ]




 . (2.1)

This claim is also valid for T = ∞ in the sense that it remains true if
we replace V[0, T ] by V.

(v) The spaces V[0, T ], 0 < T ≤ ∞, are uniquely determined by V and vice
versa.

(vi) Property (iii) of Definition 1.2 holds for some T > 0 if and only if it
holds for all T > 0.

(vii) A pair [ x
w ] ∈

[
C1(R+;X )

C(R+;W)

]
lies in V if and only if ρ[0,T ] [

x
w ] ∈ V[0, T ] for

all T > 0.

Proof. All of these claims were proved in [14, Section 2], except for claim
(vii), which we now prove. If [ x

w ] ∈ V then ρ[0,T ] [
x
w ] ∈ V[0, T ] for all T > 0

by claim (ii). Conversely assume only that [ x
w ] ∈

[
C1(R+;X )

C(R+;W)

]
. If [ x

w ] 6∈ V,

then there by Definition 1.1 exists a t0 > 0 such that

[
ẋ(t0)
x(t0)
w(t0)

]
6∈ V . This

implies that ρ[0,t0] [
x
w ] 6∈ V[0, t0]. �

Property (iv) says that for every vector v0 ∈ V , we can find a trajectory

[ x
w ] on an interval of arbitrary length, such that the initial value

[
ẋ(0)
x(0)
w(0)

]
of

the trajectory is the given vector v0. A consequence of this result is given
in claim (ii), which says that classical trajectories can always be restricted
and extended in the forward-time direction to arbitrary intervals. Although
most of the results in this paper are given for the interval [0, T ], they can
be generalised immediately to all intervals [a, b], a < b, or [a,∞), because of
claim (ii) and the shift invariance property in claim (i).

An operator node is a relatively complicated mathematical object and
we therefore need to recall some terminology before we can define it properly.

Definition 2.2. Let A be a closed operator on the Banach space X .
The resolvent set Res (A) of A is the set of all λ ∈ C such that λ − A

maps Dom (A) one-to-one onto X .

Fix α ∈ Res (A), assume that X1 := Dom (A) is dense in X , and equip
X1 with the norm ‖x‖1 := ‖(α − A)x‖X . Denote by X−1 the completion of
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X with respect to the norm ‖x‖−1 := ‖(α − A)−1x‖X . This norm is weaker
than the norm ‖ · ‖X , because ‖x‖−1 ≤ ‖(α − A)−1‖‖x‖X for all x ∈ X .

The spaces X1 and X−1 defined above satisfy X1 ⊂ X ⊂ X−1 with
dense and continuous embeddings. This construction is sometimes referred
to as “rigging”. Different choices of α ∈ Res (A) give rise to the same triple
(X1,X ,X−1) of spaces, because although the norms on X1 and X−1 depend
on α, all the norms on X1 (all the norms on X−1) are equivalent. The norm
on X1 is also equivalent to the graph norm of A. If X is a Hilbert space, then,
so are X1 and X−1. The triple (X1,X ,X−1) is also called the Gelfand triple
induced by A, see e.g. [26, Sec. 3.6] for more details.

Assume that β ∈ Res (A). Then β − A maps X1 = Dom(A) isomorphi-
cally onto X . The operator A can also be considered as a continuous operator
which maps the dense subspace X1 of X into X−1 and we denote the unique
continuous extension of A to an operator X → X−1 by A|X . Then the op-
erator β − A|X maps X isomorphically onto X−1 and (β − A|X )−1 is the
continuous extension of (β − A)−1 from X to X−1.

Definition 2.3. Let X be a Banach space. A family t → At, t ≥ 0, of bounded
linear operators on X is a semigroup on X if A0 = 1 and As+t = AsAt for all
s, t ≥ 0.

The semigroup is strongly continuous, or shorter C0, if limt→0+ Atx0 =
x0 for all x0 ∈ X . A C0 semigroup A is a contraction semigroup if the norm
of A

t as an operator on X satisfies ‖At‖ ≤ 1 for all t ≥ 0.
The generator A : X ⊃ Dom(A) → X of A is the (in general un-

bounded) linear operator defined by

Ax0 := lim
t→0+

1

t
(Atx0 − x0) (2.2)

with Dom (A) consisting of those x0 ∈ X for which the limit (2.2) exists in
X .

The generator A of a C0 semigroup on X is closed and Dom (A) is
dense in X ; see [22, Thm 1.2.7]. Moreover, according to [22, Thm 1.2.6], a
C0 semigroup A is uniquely determined by its generator A in the following
way. For every x0 ∈ Dom(A), the function x : t → Atx0, t ≥ 0, is the unique
continuously differentiable solution of the initial value problem ẋ(t) = Ax(t),
t ≥ 0, x(0) = x0. The operators At, t ≥ 0, are then extended by continuity to
all of X . It may therefore be said that A generates A. From [26, Thm 3.2.9(i)]
we know that Res (A) 6= ∅ for every C0-semigroup generator. The following
definition is essentially Definition 4.7.2 of [26].

Definition 2.4. By an i/s/o-operator node (shortly operator node) on the triple
(U ,X ,Y) of Banach spaces we mean a linear operator

[
A&B
C&D

]
:

[
X
U

]
⊃ Dom

([
A&B
C&D

])
→

[
X
Y

]

with the following properties:

(i) The operator
[

A&B
C&D

]
is closed.
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(ii) The so-called main operator A : Dom (A) → X of
[

A&B
C&D

]
, defined by

Ax = A&B

[
x
0

]
on Dom(A) =

{
x ∈ X

∣∣
[

x
0

]
∈ Dom(S)

}
, (2.3)

has domain dense in X and nonempty resolvent set.
(iii) The operator A&B can be extended to an operator

[
A|X B

]
that

maps [XU ] continuously into X−1.

(iv) The domain of
[

A&B
C&D

]
satisfies the condition

Dom

([
A&B
C&D

])
=

{[
x
u

]
∈

[
X
U

] ∣∣ A|Xx + Bu ∈ X
}

.

An operator node
[

A&B
C&D

]
is called an i/s/o system node if its main

operator A generates a C0 semigroup. The operator node is a time-reflected
i/s/o system node if −A generates a C0 semigroup, and in this case we say
that A generates a C0 semigroup in backward time.

The triple (u, x, y) is said to be a classical i/s/o trajectory of
[

A&B
C&D

]
if

u ∈ C(R+;U), x ∈ C1(R+;X ), y ∈ C(R+;Y), and
[

ẋ(t)
y(t)

]
=

[
A&B
C&D

] [
x(t)
u(t)

]
for

all t ≥ 0.

We return to time reflection and motivate the choice of the term “time-
reflected i/s/o system node” in the next section. The following definition says
that admissibility of a given i/o pair for a generating subspace means that
the latter can be written as the graph of an operator node.

Definition 2.5. Let V ⊂ K and W = U ∔ Y.

We say that (U ,Y) is an admissible i/o pair of V if there exists an
operator node

[
A&B
C&D

]
on (U ,X ,Y), such that

V =




A&B[
1X 0

]

C&D +
[

0 1U
]


Dom

([
A&B
C&D

])
. (2.4)

In this case we call
[

A&B
C&D

]
an operator node representation of V and write

Vop =
([

A&B
C&D

]
;X ,U ,Y

)
.

If (V ;X ,W) is a s/s node and Vop =
([

A&B
C&D

]
;X ,U ,Y

)
, then we call[

A&B
C&D

]
an operator node representation of both the s/s node (V ;X ,W) and

of the s/s system Σ that the node generates.

An i/o pair (U ,Y) is admissible for the system Σ if it is admissible for
at least one of its generating s/s nodes.

An operator node representation is in a sense an input/state/output
representation of a s/s node, but for clarity we call it an operator node
representation, because the term i/s/o representation was given a different
meaning in [14, Def. 4.5]. Note that (V ;X ,W) is not necessarily a s/s node
even if V ⊂ K has an admissible i/o pair, because condition (iii) of Definition
1.2 might be violated. We proceed to investigate this issue.
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It follows from conditions (iii) and (iv) of Definition 2.4 that the top
half A&B of an operator node is a closed operator from Dom

([
A&B
C&D

])
to

X ; see the proof of [26, Lemma 4.3.10]. Therefore the domain of an operator
node is a Banach space with the graph norm of A&B:

∥∥∥∥
[

x
u

]∥∥∥∥
Dom

“h

A&B
C&D

i”

=

√∥∥∥∥A&B

[
x
u

]∥∥∥∥
2

X
+ ‖x‖2

X + ‖u‖2
U . (2.5)

The closedness of
[

A&B
C&D

]
implies that the operator node is continuous with

respect to this norm. If X is a Hilbert space and U has a Hilbert-space
topology, then the norm of Dom

([
A&B
C&D

])
determines a Hilbert-space inner

product by polarisation.
By taking u = 0 in (2.5) we obtain the following graph norm of A for

Dom (A):

‖x‖Dom(A) =

√
‖Ax‖2

X + ‖x‖2
X .

This norm makes A a Banach space, and if X is a Hilbert space, then the
norm defines a Hilbert-space inner product on Dom (A). The operator A is
trivially continuous with respect to this norm.

Lemma 2.6. Let A be a densely defined operator on the Hilbert space X such
that Res (A) 6= ∅. The homogeneous Cauchy problem

ẋ(t) = Ax(t), t > 0, x(0) = x0, (2.6)

has a unique solution x ∈ C1(R+;X ) for every initial value x0 ∈ Dom(A) if
and only if A generates a C0 semigroup on X .

A proof can be found for instance in [22, Thm 4.1.3]. The lemma allows
us to explain the difference between operator nodes and i/s/o system nodes,
i.e. the existence of a semigroup, in terms of existence and uniqueness of
classical trajectories. See Definition A.10 for a description of the function
space H1

loc(I;X ).

Proposition 2.7. Let I = [a, b] or I = [a,∞), where a < b, let V ⊂ K, and
let Vop =

([
A&B
C&D

]
;X ,U ,Y

)
be an operator node representation. Then the

following claims are all true:

(i) If
[

A&B
C&D

]
is a system node, then the triple (V ;X ,W) is a s/s node with

admissible i/o pair (U ,Y).
(ii) Assume that the pair [ x

u ], where x ∈ H1
loc(I;X ) and u ∈ L2

loc(I;U),
satisfies the equation ẋ(t) = A|Xx(t)+Bu(t) in X−1 almost everywhere
on I. Then [ x

u ] ∈ C
(
I; Dom

([
A&B
C&D

]))
if and only if x ∈ C1(I;X ) and

u ∈ C(I;U).

If these conditions all hold, then ẋ(t) = A&B
[

x(t)
u(t)

]
for all t ∈ I.

(iii) A pair [ x
w ] lies in V(I) if and only if

[ x
PY

U w

]
∈ C

(
I; Dom

([
A&B
C&D

]))

and [
ẋ(t)

PUYw(t)

]
=

[
A&B
C&D

] [
x(t)

PYU w(t)

]
for all t ∈ I. (2.7)
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(iv) For all xa ∈ Dom(A) there exists a unique classical trajectory [ x
w ] ∈

V(I), such that x(a) = xa and PYU w = 0, if and only if A generates a
C0 semigroup on X . In this case

[
A&B
C&D

]
is a system node.

Proof. Claim (ii) was shown to hold as a part of the proof of [14, Lemma
5.7].

We now show how claim (iii) follows almost directly from Definition 1.1

and claim (ii). Assume that
[ x
PY

U w

]
∈ C

(
I; Dom

([
A&B
C&D

]))
and that (2.7)

holds. Then PUYw ∈ C(I;Y) by [14, Lemma 5.6] and, moreover, (2.4) yields

that

[
ẋ(t)
x(t)
w(t)

]
∈ V for all t ∈ I. Thus [ x

w ] ∈ V(I). Conversely assume that

[ x
w ] ∈ V(I), so that

[
ẋ(t)
x(t)
w(t)

]
∈ V for all t ∈ I. According to Definition 1.1, we

have x ∈ C1(I;X ) and w ∈ C(I;W), and then PYU w ∈ C(I;U) because the

projection is continuous. The inclusion

[
ẋ(t)
x(t)
w(t)

]
∈ V again means that (2.7)

holds for all t ∈ I and thus
[ x
PY

U w

]
∈ C

(
I; Dom

([
A&B
C&D

]))
by claim (ii).

We use Definition 1.2 to prove claim (i). The graph V in (2.4) of any

operator node is closed by Definition 2.4, and moreover,
[

z
0
0

]
∈ V =⇒

z = A&B [ 0
0 ] = 0. Let now

[
z0
x0
w0

]
∈ V be arbitrary, so that

[
z0

PU
Y w0

]
=

[
A&B
C&D

] [
x0

PY
U w0

]
by (2.4). We need to construct a classical trajectory [ x

w ] ∈ V,

such that

[
ẋ(0)
x(0)
w(0)

]
=

[
z0
x0
w0

]
. According to [26, Lemma 4.7.8], we can define

u(t) := PYU w0 for t ≥ 0 and let [ x
y ] be the unique solution in

[
C1(R+;X )

C(R+;Y)

]

of the equation
[

ẋ(t)
y(t)

]
=

[
A&B
C&D

] [
x(t)
u(t)

]
, t ≥ 0, x(0) = x0, so that [ x

u ] lies

in C
(
R+; Dom

([
A&B
C&D

]))
by claim (ii). Then [ x

u+y ] ∈ V by claim (iii) and[
ẋ(0)
x(0)

u(0)+y(0)

]
=

[
z0
x0
w0

]
by construction.

We split the proof of claim (iv) into two parts: one for the case I = R
+

and one for the case I = [0, b], where b > 0. It is sufficient to consider these
two cases, because we can assume that a = 0 without loss of generality, due
to Lemma 2.1(i) and the shift invariance of the equation ẋ(t) = Ax(t).
Part 1: Assume that I = R

+. The operator A is densely defined in X and
Res (A) is nonempty by Definition 2.4. We may thus use Lemma 2.6.

Fix x0 ∈ Dom(A) arbitrarily. If [ x
w ] ∈ V and PYU w = 0, then x ∈

C1(R+;X ) and ẋ(t) = Ax(t) for all t ≥ 0 by claim (iii). Conversely, if x ∈
C1(R+;X ) and ẋ(t) = Ax(t) for all t ≥ 0, then [ x

0 ] ∈ C
(
R

+; Dom
([

A&B
C&D

]))

by claim (ii). Defining w(t) := C&D
[

x(t)
0

]
for all t ≥ 0 we then get [ x

w ] ∈ V,

according to claim (iii), and PYU w = 0 by construction.
The above argument shows that x ∈ C1(R+;X ) satisfies ẋ(t) = Ax(t),

t ≥ 0, if and only if there exists a w such that [ x
w ] ∈ V. This implies that

for every x0 ∈ Dom(A), there exists a unique [ x
w ] ∈ V, such that x(0) = x0
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and PYU w = 0, if and only if the equation ẋ(t) = Ax(t), t ≥ 0 and x(0) = x0,
has a unique continuously differentiable solution for all x0 ∈ Dom(A). By
Lemma 2.6, this holds if and only if A generates a C0 semigroup on X .

Regarding the last claim of (iv), if A generates a C0 semigroup, then the
operator

[
A&B
C&D

]
is a system node by Definition 2.4. This finishes the proof

of claim (iv) for the case I = [a,∞).
Part 2: Now assume that I = [0, b], where b > 0. We reduce this case to to
the case I = R+ by proving that there exists a unique [ xb

wb
] ∈ V[0, b], such

that xb(0) = x0 and PYU wb = 0 if and only if there exists a unique [ x
w ] ∈ V,

such that x(0) = x0 and PYU w = 0.
First assume that there for all x0 ∈ Dom(A) exists a unique [ x

w ] ∈ V,
such that x(0) = x0 and PYU w = 0. Then fix x0 ∈ Dom(A) arbitrarily and let

[ x
w ] ∈ V satisfy x(0) = x0 and PYU w = 0. By Lemma 2.1(ii), [ xb

wb
] := ρ[0,b] [

x
w ]

lies in V[0, b], and trivially xb(0) = x0 and PYU wb = 0. In order to prove

uniqueness, we let also [ xc

wc
] ∈ V[0, b] with xc(0) = x0 and PYU wc = 0. Then

xc(b) ∈ Dom(A) by claim (iii) and (2.3). By the assumption at the beginning
of this paragraph, there exists a

[
bx
bw

]
∈ V such that x̂(0) = xc(b) and PYU ŵ =

0. Claims (i) and (iii) of Lemma 2.1 yields that
[

ex
ew

]
:= [ xc

wc
] ⋊⋉b τ−b

[
bx
bw

]
∈ V

with x̃(0) = x0 and PYU w̃ = 0. We also assumed that the initial state ξ(0)

uniquely determines a trajectory [ ξ
ω ] ∈ V with zero input: PYU ω = 0. This

implies that
[

ex
ew

]
= [ x

w ] and therefore we obtain [ xc

wc
] = ρ[0,b] [

x
w ] = [ xb

wb
]. We

have shown that there for every x0 ∈ Dom(A) exists a unique [ xb

wb
] ∈ V[0, b],

such that xb(0) = x0 and PYU wb = 0.
Now conversely assume that there for every x0 ∈ Dom(A) exists a

unique [ xb

wb
] ∈ V[0, b], such that xb(0) = x0 and PYU wb = 0. In order to prove

that there for all x0 ∈ Dom(A) exists a unique [ x
w ] ∈ V, such that x(0) = x0

and PYU w = 0, we first fix x0 ∈ Dom(A) arbitrarily. By assumption we can
find a sequence [ xn

wn
] ∈ V[0, b], such that x1(0) = x0 and xn+1(0) = xn(b),

PYU wn = 0 for all n ≥ 1, since [ xn

wn
] ∈ V[0, b] implies that xn(b) ∈ Dom(A).

By claims (i), (iii) and (vii) of Lemma 2.1 we have that
[

x
w

]
:=

[
x1

w1

]
⋊⋉b τ−b

[
x2

w2

]
⋊⋉2b τ−2b . . . ∈ V

and obviously x(0) = x1(0) = x0 and PYU w = 0.

If also
[

ex
ew

]
∈ V with x(0) = x0 and PYU w = 0, then

[
x̃n

w̃n

]
:= ρ[0,b]τ

(n−1)b

[
x̃
w̃

]
∈ V[0, b], n ≥ 1,

according to claims (i) and (ii) of Lemma 2.1. Moreover, x̃1(0) = x1(0) and
PYU w̃n = 0 for all n ≥ 1. By assumption this implies that x̃1 = x1. Using

induction over n, we obtain that
[

exn

ewn

]
= [ xn

wn
] for all n ≥ 1 and thus we

arrive at
[

ex
ew

]
= [ x

w ]. The proof is now done. �

We end this section by describing in which sense this article also covers
boundary control. The following definition is [17, Def. 1.1].
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Definition 2.8. A triple (L, K, G) is a boundary i/s/o node on the triple
(U ,X ,Y) of Banach spaces if it has the following properties:

(i) The linear operators L, K and G have the same domain Z.

(ii) The operator
[

L
K
G

]
: Z →

[X
Y
U

]
is closed.

(iii) The operator G is surjective and has dense kernel N (G).
(iv) The operator A := L|N (G) has a nonempty resolvent set.

If all of these conditions hold and A generates a C0 semigroup on X , then the
boundary i/s/o node is internally well-posed. If the conditions (i)–(iv) hold
and −A generates a C0 semigroup, then the boundary i/s/o node is internally
well-posed in backward time.

Recall that if A generates a C0 semigroup on X , then Dom (A) = N (G)
is dense in X and the resolvent set is of A is nonempty. In this case (L, K, G)
satisfies conditions (iii) and (iv) of Definition 2.8 if G is surjective.

If (L, K, G) is a boundary i/s/o node on (U ,X ,Y) then we, according
to [17, Thm 2.3], always obtain an operator node on (U ,X ,Y) by defining[

A&B
C&D

]
:= [ L

K ]
[

1X
G

]−1
on Dom

([
A&B
C&D

])
= Ran

([
1X
G

])
. In this case the

operator node representation

V =




A&B[
1X 0

]

C&D +
[

0 1U
]


Dom(S) (2.8)

can be written as

V =




L
1X

K + G



Dom(L) .

This representation is formally independent of the i/o pair (U ,Y), but note
that conditions (iii) and (iv) in Definition 2.8 still depend on the choice of
i/o pair.

Example 2.9. Equip C with the usual Hilbert-space inner product
(
u1, u2

)
C

=

u1u2 and let X := L2(R+; C). Set Z := H1(R+; C). The elements of Z are
continuous and we may therefore define the point-evaluation operator at 0
on Z by δ0, so that δ0x = x(0) for all x ∈ Z.

In this example we show that Ξ :=

[
− ∂

∂z
δ0

]
with domain Z is a bound-

ary i/s/o node both on (C, L2(R+; C), {0}), i.e., with input space U = C and
output space Y = {0}, and ({0}, L2(R+; C), C), i.e. U = {0} and Y = C, by
checking the conditions listed in Definition 2.8. In the first case G = δ0 and
K = 0, and in the second case G = 0 and K = δ0. We prove that the first
of these two boundary i/s/o nodes is internally well-posed (in forward time)
and that the second one is internally well-posed in backward time.

Condition (i) of Definition 2.8 is met by Ξ according to the definition of
Ξ. We proceed to verify that Ξ satisfies condition (iii) in the case G = δ0. Note
therefore that the space of functions x ∈ C∞(R+; C), such that x(0) = 0,
is dense in Z and that every such function lies in N (G). Moreover, G is
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surjective, because for every a ∈ C, the function xa := a
1+z ∈ H1(R+; C) and

xa(0) = a. Condition (iii) is trivial in the case G = 0.
We now prove that Ξ satisfies condition (iv), beginning with the case

where G = 0. According to [26, Ex. 2.3.2, 3.2.3 and 3.3.1], the operator
∂
∂z : Z → L2(R+; C) has resolvent set C+ and it generates the incoming

left-shift C0 semigroup τ+ on L2(R+; C):

(τ t
+x)(z) = x(z + t), x ∈ L2(R+; C), t ≥ 0, for almost all z ≥ 0.

Consequently, the resolvent set of − ∂
∂z

∣∣
Z is C−.

We next look at the case where G = δ0. Example 3.5.11(ii) of [26]
yields that the operator − ∂

∂z : Z ∩N (δ0) → L2(R+; C) generates the adjoint
semigroup τ∗+ of τ+. This adjoint semigroup is the outgoing right-shift C0

semigroup on L2(R+; C):

(
(τ∗+)tx

)
(z) =

{
x(z − t), t ≥ 0, z ≥ t,

0, t ≥ 0, z < t,
for almost all z ≥ 0.

The operator − ∂
∂z

∣∣
N (δ0)

is therefore the adjoint of ∂
∂z

∣∣
Z , cf. [26, Thm

3.5.6(v)]. Thus the resolvent set of this operator is also C
+, because α ∈

Res (A) if and only if α ∈ Res (A∗).
Condition (ii) is satisfied by Ξ both when G = 0 and when G = δ0.

Indeed, by the above, the resolvent set of − ∂
∂z with domain Z is nonempty,

and therefore this operator is closed. Moreover, δ0 is continuous with respect
to the graph norm of − ∂

∂z , which is the standard Sobolev norm on H1(R+; C),
and therefore Ξ is a closed operator.

Thus

[
− ∂

∂z
δ0

]
is a boundary i/s/o node with both i/o space pairs

(C, {0}) and ({0}, C), i.e., with both G = δ0, K = 0 and G = 0, K = δ0,
respectively. In the first case, the boundary i/s/o node is internally well-
posed, because it has the semigroup τ∗+. The boundary i/s/o node in the

second case is internally well-posed in backward time since ∂
∂z

∣∣
Z generates

τ+. If the second boundary i/s/o node were to be internally well-posed also
in forward time, then the resolvent set of − ∂

∂z

∣∣
Z would have to contain some

right-half-plane; see [26, Thm 3.2.9(i)]. This is clearly not the case because
by the above we know that this resolvent set equals C−. The same argument
can be used to show that ∂

∂z

∣∣
Z∩N (δ0)

does not generate a C0 semigroup on

X .
According to [17, Thm 2.3], both

S := − ∂

∂z

[
1
δ0

]−1

:

[
L2(R+; C)

C

]
⊃ Dom(S) → L2(R+; C)

with domain
[

1
δ0

]
Z and its so-called flow inverse

S× :=

[
− ∂

∂z
δ0

]
: L2(R+; C) ⊃ Dom

(
S×

)
→

[
L2(R+; C)

C

]
,

Dom(S×) = Z, are therefore operator nodes.
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Summarising the example, we have established that S and −S× are
i/s/o system nodes, that −S and S× are time-reflected i/s/o system nodes,
and that all of these four operators are operator nodes.

Scattering- and impedance-conservative boundary i/s/o nodes are stud-
ied in [17] and [18]. In [16], Malinen studies five examples of boundary control
systems after developing the tools necessary for this task. Some results appli-
cable to interconnection of impedance-conservative boundary control systems
are given in [15]. We return to flow inversion at the end of Section 4.

3. Time-reflected and dual state/signal nodes

The dynamics of the systems we have considered so far evolve with increasing
time. The intuitive idea of a time-reflected s/s node, which we now introduce,
is a s/s node whose trajectories evolve in backward time. Later in this section
we study state/signal duals. Time-reflected and dual s/s nodes generalise the
corresponding notions given for i/s/o systems in [28].

Definition 3.1. Let V ⊂ K and T < 0. We call (V ;X ,W) a time-reflected s/s
node if V has the following properties:

(i) V is closed,

(ii)
[

z
0
0

]
∈ V =⇒ z = 0 and

(iii) for all v0 ∈ V there exists a [ x
w ] ∈ V[T, 0] such that

[
ẋ(0)
x(0)
w(0)

]
= v0.

Comparing Definition 3.1 to Definition 1.2, we see that the difference
between ordinary and time-reflected s/s nodes is that time-reflected s/s nodes
are initialised at the right endpoint of the time interval, t = 0 in this case,
and evolve in backward time. This determines the time direction of the s/s
node. Note, however, that the generating subspaces V in Definition 1.1 have
no time direction, because we only require that the generated trajectories

[ x
w ] should satisfy

[
ẋ(t)
x(t)
w(t)

]
∈ V for all internal points of the appropriate time

interval.

In order to be able to formulate the next proposition, we need to in-
troduce the time-reflection operator R, which reflects its argument func-
tion about zero, so that ( Rf)(t) = f(−t), for −t ∈ Dom(f). We denote
R− = (−∞, 0].

Proposition 3.2. Let T > 0, let V ⊂ K and let I be a positive-length subinter-

val of R. Define the so-called time-reflection V← of V by V← :=
[−1 0 0

0 1 0
0 0 1

]
V

and denote the space of classical trajectories generated by V← on I by V←(I).

Then [ x
w ] ∈ V[0, T ] if and only if R[ x

w ] ∈ V←[−T, 0], and [ x
w ] ∈ V if

and only if R[ x
w ] ∈ V←(R−). The triple (V←;X ,W) is a time-reflected s/s

node if and only if (V ;X ,W) is an ordinary s/s node and vice versa. We
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have

V =




A&B[
1 0

]

C&D +
[

0 1
]



Dom

([
A&B
C&D

])
⇐⇒

V← =




−A&B[
1 0

]

C&D +
[

0 1
]


Dom

([
A&B
C&D

]) (3.1)

and the sets of admissible i/o pairs for V and V← coincide.

Proof. By Definition 1.1, [ x
w ] ∈ V[0, T ] if and only if x ∈ C1([0, T ];X ), w ∈

C([0, T ];W) and

[
ẋ(t)
x(t)
w(t)

]
∈ V for all t ∈ (0, T ). This is obviously equivalent

to Rx ∈ C1([−T, 0];X ), Rw ∈ C([−T, 0];W) and



d
dt ( Rx)(−t)
( Rx)(−t)
( Rw)(−t)


 =




−ẋ(t)
x(t)
w(t)


 ∈ V←, t ∈ [0, T ],

i.e., to R[ x
w ] ∈ V←[−T, 0]. This computation remains valid if we replace

[0, T ] by R+ and [−T, 0] by R−.

Properties (i) and (ii) in Definition 3.1 are the same as in Definition 1.2

and they are invariant under premultiplication of V by
[−1 0 0

0 1 0
0 0 1

]
. Assume that

these conditions are met by V and note that
[ z0

x0
w0

]
∈ V if and only if

[−z0
x0
w0

]
∈

V←. Then V is a s/s node if and only if for all such elements, there exists a

trajectory [ x
w ] ∈ V[0, T ], such that

[
ẋ(0)
x(0)
w(0)

]
=

[ z0
x0
w0

]
. By the computation we

just made, that same trajectory then satisfies R[ x
w ] ∈ V←[−T, 0] and




d
dt ( Rx)(0)
( Rx)(0)
( Rw)(0)


 =




−ẋ(0)
x(0)
w(0)


 =




−z0

x0

w0


 .

Therefore (V ;X ,W) is a s/s node if and only if (V←;X ,W) is a time-reflected
s/s node.

The equivalence (3.1) is trivial. Looking at Definition 2.4, we see that
conditions (i), (iii) and (iv) are independent of the sign of A&B. Actually,
condition (ii) is also independent of the sign of A&B, because α ∈ Res (A)
if and only if −α ∈ Res (−A). Thus V has operator node representation
Vop =

([
A&B
C&D

]
;X ,U ,Y

)
if and only if V← has operator node representation

V←op =
([−A&B

C&D

]
;X ,U ,Y

)
. �

One can formulate properties of the trajectories generated by a time-
reflected s/s node similar to those listed in Lemma 2.1 using Definition 3.1
and Proposition 3.2.

Preparing for the next definition, we recall that V [⊥] denotes the space
of all vectors which are orthogonal to V in K, as given in (1.9).
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Definition 3.3. Let (V ;X ,W) be a (time-reflected or ordinary) s/s node. The
triple (V [⊥];X ,W) is the s/s dual of (V ;X ,W).

For any subinterval I of R with positive length, we denote the space of
classical trajectories generated by V [⊥] on I by Vd(I). By Wd(I) we denote
the space of generalised trajectories generated by V [⊥], i.e., Wd(I) is the

closure of Vd(I) in
[

C(I;X )

L2
loc

(I;W)

]
. We shortly write Vd := Vd(R−) and Wd :=

Wd(R−).

The following example shows that the dual of a s/s node is in general
neither a s/s node nor a time-reflected s/s node.

Example 3.4. The space V := {0} ⊂ C3 is a s/s node but V [⊥] violates

condition (ii) of Definition 1.2, because

[
C

{0}
{0}

]
⊂ V [⊥].

Note that the s/s node in Example 3.4 lacks operator node representa-
tions. We show that the s/s dual of a s/s node which has an operator node
representation is a time-reflected s/s node in Theorem 3.6.

Proposition 3.5. The dual of a s/s node is always closed. The double dual of

a s/s node is the s/s node itself. For all V ⊂ K, the property
[

z
0
0

]
∈ V [⊥] =⇒

z = 0 is equivalent to denseness of
[

0 1 0
]
V in X .

Proof. The first two claims follow from standard Krĕın-space theory, since

V [⊥] is always closed and (V [⊥])[⊥] = V . For the last claim, note that
[

z′

0
0

]
∈

V [⊥] if and only if
[[

z
x
w

]
,
[

z′

0
0

]]

K

= −(x, z′)X = 0 for all
[

z
x
w

]
∈ V , which is

equivalent to z′ ∈
([

0 1 0
]
V

)⊥
. This orthogonal complement contains

only the vector 0 if and only if
[

0 1 0
]
V is dense in X . �

We identify the dual X ′ of X with X itself, as is common for Hilbert
spaces, and moreover, we identify the dual of W with W itself as well. The
correctness of the following argument follows from [7, Sec. 2.3], where the
reader can also find more details. Note, however, that the dual of W is iden-
tified with −W in [6]. We explain this discrepancy after Definition 4.1.

By [7, Lemma 2.3], if W = U ∔ Y then also W = Y [⊥] ∔ U [⊥]. This
allows us to identify the duals U ′ and Y ′ of U and Y as

U ′ = Y [⊥] and Y ′ = U [⊥]

using the duality pairings

〈u, u′〉〈U ,Y[⊥]〉 = [u, u′]W , u ∈ U , u′ ∈ Y [⊥] and

〈y, y′〉〈Y,U [⊥]〉 = [y, y′]W , y ∈ Y, y′ ∈ U [⊥].
(3.2)
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We thus obtain the following duality pairings between [XU ] and
[X
Y

]
and

their respective duals:

〈[
x
u

]
,

[
z′

u′

]〉
D

[XU ],
h X
Y[⊥]

iE

= (x, z′)X + 〈u, u′〉〈U ,Y[⊥]〉 and

〈[
z
y

]
,

[
x′

y′

]〉
DhX
Y

i

,
h X
U [⊥]

iE

= (z, x′)X + 〈y, y′〉〈Y,U [⊥]〉.

(3.3)

Adjoint operators computed with respect to these duality pairings are
denoted by †. For instance, if S : [XU ] ⊃ Dom(S) →

[ X
Y

]
is densely defined,

then S† :
[ X
U [⊥]

]
⊃ Dom

(
S†

)
→

[
X
Y[⊥]

]
is the maximally defined operator,

such that for all [ x
u ] ∈ Dom(S) and

[
x′

y′

]
∈ Dom

(
S†

)
:

〈
S

[
x
u

]
,

[
x′

y′

]〉
DhX
Y

i

,
h X
U [⊥]

iE

=

〈[
x
u

]
, S†

[
x′

y′

]〉
D

[XU ],
h X
Y[⊥]

iE

.

(3.4)

Theorem 3.6. Let V ⊂ K and W = U ∔Y. Assume that there exists a densely
defined operator S =

[
A&B
C&D

]
: [XU ] ⊃ Dom(S) →

[X
Y

]
, such that V has the

graph representation

V =




A&B[
1 0

]

C&D +
[

0 1
]


Dom(S) . (3.5)

Let S† be the adjoint of S, as given in (3.4), and define

Sd :=

[
A&Bd

C&Dd

]
:=

[
−1 0
0 1

]
S†

[
1 0
0 −1

]
on

Dom
(
Sd

)
=

[
1 0
0 −1

]
Dom

(
S†

)
⊂

[
X
U [⊥]

]
.

(3.6)

Then V [⊥] is given by

V [⊥] =




A&Bd
[

1 0
]

C&Dd +
[

0 1
]


Dom

(
Sd

)
. (3.7)

If S is an operator node, then so are Sd and S†. In this case, the main
operator of Sd is −A∗, where A∗ is the adjoint of A as an unbounded operator
on the Hilbert space X .

If S is an ordinary i/s/o system node, then so is S† and in this case Sd

is a time-reflected i/s/o system node; see Definition 2.4.
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Proof. In the described setup,

[
z′

x′

u′+y′

]
∈ V [⊥] with u′ ∈ Y [⊥] and y′ ∈ U [⊥]

if and only if for all [ x
u ] ∈ Dom(S) we have:

0 =






A&B[
1 0

]

C&D +
[

0 1
]




[
x
u

]
,




z′

x′

w′






K

=

〈[
x
u

]
,

[
−z′

u′

]〉
D

[XU ],
h X
Y[⊥]

iE

−
〈[

A&B
C&D

] [
x
u

]
,

[
x′

−y′

]〉
DhX
Y

i

,
h X
U [⊥]

iE

.

(3.8)

Due to the assumed denseness of Dom (S) in [XU ], (3.8) holds for all [ x
u ] ∈

Dom(S) if and only if
[

x′

−y′

]
∈ Dom

(
S†

)
and

[
−z′

u′

]
= S†

[
x′

−y′

]
. The latter

condition is easily seen to be equivalent to (3.7).

According to [26, Lem. 6.2.14], the adjoint S† of an operator node S
is an operator node with main operator A∗, and S† is an i/s/o system node
if and only if S is an i/s/o system node. By Definition 2.4, it is immediate
that S† is an i/s/o system node if and only if Sd =

[−1 0
0 1

]
S†

[
1 0
0 −1

]
is a

time-reflected i/s/o system node. �

Remark 3.7. The operator S† =:
[

A&B′

C&D′

]
in (3.4) is usually referred to as

the causal dual of S. Looking at (3.6) and (3.7), we see that the s/s dual

(V [⊥];X ,W) corresponds to the so-called anti-causal dual
[
−A&B′

C&D′

]
of S.

Note that the Gelfand triple (X d
1 ,X ,X d

−1) induced by −A∗, the main

operator of the dual Sd, in general differs from (X1,X ,X−1) when A is un-
bounded on X . To be more precise, we identify the dual of X d

1 by X−1 and
the dual of X d

−1 by X1, using X as pivot space. The Gelfand triple induced

by A∗, the main operator of S† is the same as that induced by −A∗.
We have the following important corollary to Theorem 3.6.

Corollary 3.8. An i/o pair (U ,Y) is admissible for the (ordinary or time-
reflected) s/s node (V ;X ,W) if and only if the “dual i/o pair” (U [⊥],Y [⊥])
is admissible for the dual s/s node (V [⊥];X ,W).

In Theorem 3.6 we characterised the dual s/s node in terms of the primal
s/s node. We now characterise the classical trajectories of the dual in terms
of the classical trajectories of the primal s/s node.

Proposition 3.9. Let (V ;X ,W) be a s/s node, let T < 0 and let
[

xd

wd

]
∈

[
C1([T,0];X )
C([T,0];W)

]
. Then

[
xd

wd

]
∈ Vd[T, 0], i.e.,

[
xd

wd

]
is a trajectory generated by

V [⊥] on [T, 0], if and only if for all a and b, such that T ≤ a < b ≤ 0, and
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for all [ x
w ] ∈ V[a, b], it holds that:

(
x(b), xd(b)

)
X −

(
x(a), xd(a)

)
X =

∫ b

a

[
w(s), wd(s)

]
W ds. (3.9)

Moreover,
[

xd

wd

]
∈

[
C1(R−;X )

C(R−;W)

]
lies in Vd(R−) if and only if (3.9) holds

for all a < b ≤ 0 and for all [ x
w ] ∈ V[a, b].

Proof. First of all, (3.9) is equivalent to

∫ b

a






ẋ(s)
x(s)
w(s)


 ,




ẋd(s)
xd(s)
wd(s)






K

dr = 0, (3.10)

because

− d

dt
(x(s), xd(s))X = −(ẋ(s), xd(s))X − (x(s), ẋd(s))X

=








ẋ(s)
x(s)
0



 ,




ẋd(s)
xd(s)

0









K

.

If
[

xd

wd

]
∈ Vd[T, 0] then ẋd, xd and wd are all continuous on (T, 0) and

[
ẋd(s)

xd(s)

wd(s)

]
∈ V [⊥] for all s ∈ [T, 0], according to Definition 3.3. This implies

(3.10) for all T ≤ a < b ≤ 0. If
[

xd

wd

]
∈ Vd(R−), then for every a < 0 we

have ρ[a,0]

[
xd

wd

]
∈ Vd[a, 0] according to Proposition 3.2 and Lemma 2.1(ii).

Therefore (3.10) holds for every a < b ≤ 0.

Conversely, fix T < 0 and assume that (3.10) holds for all T ≤ a < b ≤ 0.

Fix a ∈ [T, 0) and b ∈ (a, 0] arbitrarily. By Definition 1.2, we can let
[

za

xa

wa

]
∈ V

be arbitrary and find a [ x
w ] ∈ V[a, b] such that

[
ẋ(a)
x(a)
w(a)

]
=

[
za

xa

wa

]
. Divide both

sides of (3.10) by b − a > 0 and let b → a+. By the assumed continuity from

the right of ẋ, x, w, ẋd, xd and wd at a we get that

0 =
1

b − a

∫ b

a








ẋ(s)
x(s)
w(s)



 ,




ẋd(s)
xd(s)
wd(s)









K

ds →








ẋ(a)
x(a)
w(a)



 ,




ẋd(a)
xd(a)
wd(a)









K

.

(3.11)

Thus the limit in (3.11) is zero for all

[
ẋ(a)
x(a)
w(a)

]
=

[
za

xa

wa

]
∈ V , which implies that

[
ẋd(a)

xd(a)

wd(a)

]
∈ V [⊥] for all a ∈ [T, 0). By the closedness of V [⊥] and continuity
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from the left of xd, ẋd and wd at 0 we obtain that also



ẋd(0)
xd(0)
wd(0)


 = lim

t→0−




ẋd(t)
xd(t)
wd(t)


 ∈ V [⊥].

We have now proved that
[

xd

wd

]
∈ Vd[T, 0].

We still need to show that if
[

xd

wd

]
∈

[
C1(R−;X )

C(R−;W)

]
and (3.9) holds for all

a < b ≤ 0, then
[

xd

wd

]
∈ Vd(R−). Combining Lemma 2.1(vii) and Proposition

3.2, we see that
[

xd

wd

]
∈ Vd(R−) if and only if ρ[T ′,0]

[
xd

wd

]
∈ Vd[T ′, 0] for all

T ′ < 0. Now fix T ′ < 0 arbitrarily and note that ρ[T ′,0]

[
xd

wd

]
∈

[
C1([T ′,0];X )

C([T ′,0];W)

]

and that (3.9) by assumption holds for all T ′ ≤ a < b ≤ 0 and for all [ x
w ] ∈

V[a, b]. The finite-interval case of this proposition yields that ρ[T ′,0]

[
xd

wd

]
∈

Vd[T ′, 0], and we have proved that
[

xd

wd

]
∈ Vd. �

We are now finally ready to introduce passive s/s systems properly.

4. Passive and conservative state/signal nodes

In this section we add the concept of passivity to the s/s framework and
study what additional structure passive and conservative s/s nodes have. We
begin with the following definition, which was motivated in the introduction
of the article.

Definition 4.1. An ordinary s/s node (V ;X ,W) is dissipative (in the forward-
time direction) if V ≥ 0. A time-reflected s/s node (V←;X ,W) is dissipative
(in the backward-time direction) if V← ≤ 0.

An ordinary or time-reflected s/s node (V ;X ,W) is energy preserving
if V is neutral: [v, v]K = 0 for all v ∈ V .

An ordinary or time-reflected s/s node is passive or conservative if both
(V ;X ,W) and its dual (V [⊥];X ,W) are dissipative or energy preserving,
respectively.

An ordinary or time-reflected s/s system is said to be dissipative, pas-
sive, energy preserving or conservative if one of its generating s/s nodes is of
the corresponding type.

In Definition 4.1 we deviate slightly from the terminology used by Arov
and Staffans in [5]. In the setting of [5] all systems evolve in forwards time,
and this makes it natural for Arov and Staffans to identify the dual W ′ of
W by −W . Theorem 3.6 implies that the dual of a s/s node often is a time-
reflected s/s node in our setting.

Arov and Staffans call a dissipative s/s node “forward passive” and by
a “backward passive” node they mean a s/s node whose dual s/s node is
forward passive. While the terminology of Arov and Staffans is appropriate
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in their setting, it becomes confusing when some systems evolve in backward
time. We also give the term “dissipative” a different meaning than Willems
in [32, 33]. More precisely, the class of s/s systems which are “dissipative” in
Willems’ terminology are precisely those which we call passive.

Recall that V ⊂ K is called maximally nonnegative if [v, v]
K

≥ 0 for
all v ∈ V and V has no proper extension that preserves this property. The
subspace V is neutral if and only if V ⊂ V [⊥] and it is Lagrangian if V = V [⊥];
see Lemma A.7. We have the following immediate corollary to Definition 4.1.

Corollary 4.2. An ordinary s/s node is passive or conservative if and only if
V is maximally nonnegative or Lagrangian, respectively. Every conservative
s/s node is passive.

Proof. According to Proposition A.8, a closed subspace V ≥ 0 is maximally
nonnegative if and only if V [⊥] ≤ 0. Trivially both V and V [⊥] are neutral,
i.e., V ⊂ V [⊥] and V [⊥] ⊂ V if and only if V = V [⊥]. In particular, V = V [⊥]

by Proposition A.8 implies that V ≥ 0 and V [⊥] ≤ 0. �

Let X 6= {0} and W = {0}. Note that V :=

[ X
{0}
{0}

]
is a Lagrangian

subspace of K, which does not satisfy
[

z
0
0

]
∈ V =⇒ z = 0. Therefore the

triple (V ;X ,W) needs not be a s/s node even if V is maximally nonnegative
or Lagrangian. This is in contrast to the discrete-time case described in [5,
Prop. 5.12].

We now characterise dissipative and energy-preserving s/s nodes in
terms of their trajectories.

Proposition 4.3. Let (V ;X ,W) be an ordinary s/s node and let I = [a, b],
with b > a, or I = [a,∞).

The s/s node (V ;X ,W) is dissipative if and only if the inequality

∀t ∈ I : ‖x(t)‖2
X − ‖x(a)‖2

X ≤
∫ t

a

[w(s), w(s)]W ds (4.1)

holds for all [ x
w ] ∈ V(I), or equivalently, for all [ x

w ] ∈ W(I).
The s/s node is energy preserving if and only if (4.1) holds with equality

instead of inequality for all [ x
w ] ∈ V(I), or equivalently, for all [ x

w ] ∈ W(I).

Proof. The proof is divided into two parts for readability.
Part 1: We begin by proving that (V ;X ,W) is dissipative if and only if all
[ x
w ] ∈ V(I) satisfy (4.1). Assume therefore first that (V ;X ,W) is dissipative,

i.e., that V ≥ 0. Select [ x
w ] ∈ V(I) and t ∈ I arbitrarily. Then we by (1.7)

for all s ∈ [a, t] have

0 ≤








ẋ(s)
x(s)
w(s)



 ,




ẋ(s)
x(s)
w(s)









K

= [w(s), w(s)]W − ∂

∂s

(
‖x(s)‖2

X
)

(4.2)

and integrating this from a to t we get that (4.1) holds for all [ x
w ] ∈ V(I).
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Conversely assume that (4.1) holds for all [ x
w ] ∈ V(I). Let

[
za

xa

wa

]
∈ V

be arbitrary and choose [ x
w ] ∈ V(I) such that

[
ẋ(a)
x(a)
w(a)

]
=

[
za

xa

wa

]
, cf. Lemma

2.1(iv). By (4.1) we for all h > 0, such that a + h ∈ I, have

1

h

∫ a+h

a

[w(s), w(s)]W ds − 1

h

(
‖x(a + h)‖2

X − ‖x(a)‖2
X

)
≥ 0. (4.3)

Letting h → 0+, we get (4.2) with s = a and thus





za

xa

wa


 ,




za

xa

wa







K

≥ 0 for all




za

xa

wa


 ∈ V. (4.4)

Part 2: If (4.1) holds for all [ x
w ] ∈ W(I) then (4.1) trivially holds for all

[ x
w ] ∈ V(I), because every classical trajectory is also generalised according

to Definition 1.3.

Now conversely assume that (4.1) holds for all [ xn

wn
] ∈ V(I), so that:

∀t ∈ I : ‖xn(t)‖2
X − ‖xn(a)‖2

X −
∫ t

a

[wn(s), wn(s)]W ds ≤ 0. (4.5)

Let [ x
w ] ∈ W(I) be arbitrary and let the sequence [ xn

wn
] ∈ V(I), n ≥ 1, tend

to [ x
w ] in

[
C(I;X )

L2
loc

(I;W)

]
. Then we for all t ∈ I have limn→∞ xn(t) = x(t) and

lim
n→∞

∫ t

a

[wn(s), wn(s)]W ds =

∫ t

a

[w(s), w(s)]W ds.

We now obtain (4.1) for all [ x
w ] ∈ W(I) by letting n → ∞ in (4.5).

The claim that V ⊂ V [⊥] if and only if (4.1) holds with equality for all
[ x
w ] ∈ V(I), or equivalently for all [ x

w ] ∈ W(I), is proved by replacing the
inequality signs in (4.1), (4.2), (4.3), (4.4) and (4.5) by equality signs. �

Note that the conditions in Proposition 4.3 hold for some subinterval
I ⊂ R of the type [a, b], b > a, or [a,∞) if and only if they hold for all such
subintervals, because the claim that the s/s node is dissipative (or energy
preserving) does not depend on the choice of I. In order to characterise also
passive and conservative s/s nodes, we need the following counterpart of
Proposition 4.3 for time-reflected s/s nodes.

Corollary 4.4. Let I = [a, b], where a < b, or I = (−∞, b]. A time-reflected
s/s node (V ;X ,W) is dissipative if and only if we for all [ x

w ] ∈ V(I), or
equivalently, for all [ x

w ] ∈ W(I) have:

∀t ∈ I : ‖x(b)‖2
X − ‖x(t)‖2

X ≥
∫ b

t

[w(s), w(s)]W ds. (4.6)

The s/s node is energy preserving if and only if (4.6) holds with equality
instead of inequality for all [ x

w ] ∈ V(I), or equivalently, for all [ x
w ] ∈ W(I).
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Proof. The argument is analogous to the proof of Proposition 4.3. First as-
sume that V ≤ 0 and integrate (4.2) with a reversed inequality sign from t
to b in order to obtain (4.6).

Conversely, assume that (4.6) holds and let h > 0 be such that b−h > a.
Letting t = b − h in (4.6) and dividing the inequality by h, we obtain V ≤ 0
by letting h → 0+. �

The following theorem is of fundamental importance for the theory of
passive s/s systems, because it establishes a.o. the very useful fact that every
fundamental i/o pair is admissible for a passive s/s node.

Theorem 4.5. Assume that V is a maximally nonnegative subspace of K, that[
z
0
0

]
∈ V =⇒ z = 0 and that W = (W+,W−) is a fundamental i/o pair.

The following claims are valid:

(i) The triple (V ;X ,W) is a passive s/s node for which (W+,W−) is ad-
missible.

(ii) In the operator node representation Vop =
([

A&B
C&D

]
;X ,W+,W−

)
, the

operator
[

A&B
C&D

]
:

[ X
W+

]
⊃ Dom

([
A&B
C&D

])
→

[ X
W−

]
is an i/s/o sys-

tem node with a contraction semigroup A on X . The generator A of A

satisfies C+ ⊂ Res (A).

Proof. We use [14, Prop. 6.7] to prove the claims we made. Define K± by

(A.2) and PK∓

K±
by (A.3) with α = 1, so that (K+, K−) is a fundamental

decomposition of K and PK∓

K±
the corresponding fundamental projections,

according to Proposition A.2. That proposition also yields that
[

−1 1 0

0 0 PW−

W+

]
V =

[
X
W+

]
, (4.7)

because PK−

K+
V = K+ by the assumed maximal nonnegativity of V and Propo-

sition A.8. The maximal nonnegativity also implies that V is closed; see Re-
mark A.6. Thus conditions (a) and (d) of [14, Prop. 6.7] are fulfilled by V .

Letting |W−| be as given in Definition A.1, we see that the nonnegativity
property V ≥ 0 means that:




z
x
w



 ∈ V =⇒ ‖PW−

W+
w‖2
W+

− ‖PW+

W−
w‖2
|W−| − 2Re (z, x)X ≥ 0. (4.8)

This implies that the space Vz :=

[
1 0 0
0 1 0

0 0 PW−
W+

]
V is closed, as we now show.

Let therefore
[

zn

xn

un

]
∈ Vz , n ∈ Z+, tend to some

[
z
x
u

]
in

[ X
X
W+

]
. The inclusion

[
zn

xn

un

]
∈ Vz means that there exists a sequence yn ∈ W−, such that

[ zn

xn

un+yn

]
∈

V . Then
[ zn

xn

un+yn

]
−

[ zm

xm

um+ym

]
∈ V for all m, n ∈ Z

+ and (4.8) yields that

‖yn − ym‖2
|W−| ≤ ‖un − um‖2

W+
− 2Re (zn − zm, xn − xm)X
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for all n, m ∈ Z+. The right-hand side tends to zero as m, n → ∞, because
zn, xn and un are all convergent, and thus Cauchy, sequences. Then also yn

is a Cauchy sequence which tends to some y in the complete space W−. By

the closedness of V , we have
[ z

x
u+y

]
∈ V , and from the closedness of W+

and W− we obtain that u ∈ W+ and y ∈ W−, i.e., that
[

z
x
u

]
∈ Vz . We have

proved that Vz is closed.
Another consequence of (4.8) is that V is given by

V =




A&B[
1 0

]

C&D +
[

0 1
]



Dom

([
A&B
C&D

])
(4.9)

for some operator
[

A&B
C&D

]
, which maps

Dom

([
A&B
C&D

])
=

[
0 1 0

0 0 PW−

W+

]
V ⊂

[
X
W+

]
into

[
X
W−

]
.

Indeed, if
[ z

0
y

]
∈ V and y ∈ W− then

0 ≤ −‖y‖2
|W−| − 2Re (z, 0) = −‖y‖2

|W−|,

i.e., y = 0, and thus
[

z
0
0

]
∈ V , which by assumption implies that z = 0.

Defining the main operator A and the observation operator C of
[

A&B
C&D

]
by

[
A
C

]
x :=

[
A&B
C&D

] [
x
0

]
, x ∈

{
x0

∣∣
[

x0

0

]
∈ Dom

([
A&B
C&D

])}
,

(4.10)

we obtain that
[ z

x
y

]
∈ V with y ∈ W− if and only if x ∈ Dom(A) and

[ z
y ] = [ A

C ] x.
It still remains to prove that A generates a contraction semigroup on X

and that C+ ⊂ Res (A). We use the Lumer-Phillips theorem [22, Thm 1.4.6]
for this purpose. We thus need to show that Dom (A) is dense in X , that
1 − A is surjective and that A is dissipative, i.e., that Re (Ax, x) ≤ 0 for all
x ∈ Dom(A). According to [22, Thm 1.4.6], denseness of Dom (A) is implied
by the two latter properties, because X is a Hilbert space.

It follows from (4.8), (4.9) and (4.10) that A is dissipative, because

x ∈ Dom(A) implies that
[

Ax
x

Cx

]
∈ V and then

‖0‖2
W+

− ‖Cx‖2
|W−| − 2Re (Ax, x)X ≥ 0 =⇒ 2Re (Ax, x)X ≤ 0.

Moreover, 1 − A is surjective, because by (4.7) and (4.9) there for all ξ ∈ X
exists a

[
z
x
w

]
∈ V , such that

[
−1 1 0

0 0 PW−

W+

] 


z
x
w


 =

[ [
1 0

]
− A&B[

0 1
]

] [
x

PW−

W+
w

]
=

[
ξ
0

]
,

which means that x ∈ Dom(A) and (1 − A)x = ξ.
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We have now proved that A generates a contraction semigroup on X
and by [22, Cor. 1.3.6] we have C+ ⊂ Res (A). According to Proposition
2.7(i), (V ;X ,W) is a s/s node with admissible i/o pair (W+,W−). This s/s
node is passive by Corollary 4.2, because V was assumed to be maximally
nonnegative. �

The next section deals with operator node representations that corre-
spond to fundamental i/o pairs. In the rest of this section we present a few
results which do not refer to specific i/o pairs.

Remark 4.6. According to Definition 1.2, Corollary 4.2 and Theorem 4.5,
the triple (V ;X ,W) is a passive s/s node if and only if V is a maximally

nonnegative subspace of K and
[

z
0
0

]
∈ V =⇒ z = 0.

We now show that the condition
[

z
0
0

]
∈ V =⇒ z = 0 is not crucial in the

context of passive s/s systems, because we can turn every maximally non-
negative subspace V ⊂ K into a s/s node by removing a certain “degenerate”
part of V and shrinking the state space.

Proposition 4.7. Let V be a maximally nonnegative subspace of K and define

X0 :=
{
z ∈ X

∣∣
[

z
0
0

]
∈ V

}
, V0 :=

[X0
0
0

]
and X1 := X ⊖ X0. Let K1 :=

[X1

X1

W

]

inherit the indefinite inner product from K and set V1 := V ∩ K1.
The following claims are true:

(i) We have V = V0 ∔ V1, where V0[⊥]V1 and V0 is neutral: V0 ⊂ V
[⊥]
0 .

(ii) The orthogonal companion V
[⊥]1
1 of V1 in K1 is given by V

[⊥]1
1 = V [⊥] ∩

K1 and, moreover, V [⊥] = V0 ∔ V
[⊥]1
1 .

(iii) The triple (V1;X1,W) is a passive s/s node, which is conservative if and
only if V is Lagrangian: V = V [⊥].

(iv) The spaces V and V1 generate the same trajectories: V = V1 and W =
W1. The only trajectory generated by V0 is the zero trajectory: V0 =
W0 = {[ 0

0 ]}.
Proof. First fix a fundamental decomposition W = (W+,W−) and let J :=

PW−

W+
−PW+

W−
be the corresponding fundamental symmetry, cf. Definitions A.1

and A.3. Then it is readily verified that







z1

x1

w1



 ,




z2

x2

w2









K

:= (z1, z2)X + (x1, x2)X + [w1, Jw2]W (4.11)

is the admissible inner product on K corresponding to the fundamental de-

composition (A.2) of K with α = 1. Also note that V0 = V ∩
[ X
{0}
{0}

]
.

(i) The maximal nonnegativity of the space V implies that it is closed, see
Remark A.6, and it is then immediate that also V0 is closed. Define

Ṽ1 := V ⊖ V0, where the orthogonality is taken with respect to the

Hilbert-space inner product (4.11). Then V = V0 ⊕ Ṽ1, by assumption
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we have V ≥ 0, and it clearly holds that V0 ⊂ V
[⊥]
0 . Lemma A.7 yields

that V0[⊥]Ṽ1 and Ṽ1 ≥ 0. We are done proving claim (i) once we have

established that Ṽ1 = V1.

Let
[

z
x
w

]
∈ Ṽ1 be arbitrary, and note that Ṽ1 ⊂ V , Ṽ1[⊥]V0 and

Ṽ1 ⊥ V0 imply that

(x, z0)X = −






z
x
w


 ,




z0

0
0






K

= 0 =







z
x
w


 ,




z0

0
0






K

= (z, z0)X

for all z0 ∈ X0. This yields that z, x ∈ X⊥0 , i.e., that
[

z
x
w

]
∈ V ∩K1 = V1.

Conversely, if
[

z
x
w

]
∈ V ∩ K1, then in particular z ∈ X1, which implies

that
[

z
x
w

]
∈ V ⊖ V0 = Ṽ1. We have proved that Ṽ1 = V1.

(ii) Applying a slight modification of the procedure in the proof of claim (i)
to V [⊥], which is maximally nonpositive by Proposition A.8, we obtain

that V [⊥] = V̂0 ∔ V̂1, where V̂0 = V [⊥] ∩
[
X
{0}
{0}

]
is neutral and V̂1 =

V [⊥] ∩ K1 is nonpositive.

By Lemma A.7, we have V0 ⊂ V [⊥] and by definition V0 ⊂
[ X
{0}
{0}

]
,

and therefore V0 ⊂ V̂0. The same argument applied to V̂0 yields that

V̂0 ⊂
(
(V [⊥])[⊥]

)
∩




X
{0}
{0}


 = V0

and we thus have V̂0 = V0. Furthermore, V̂1 ⊂ V
[⊥]1
1 , i.e. V̂1[⊥]V1,

because V [⊥] = V0 + V̂1 is orthogonal to V = V0 + V1. On the other

hand, assuming that v′1 ∈ V
[⊥]1
1 , we obtain

[v0 + v1, v
′
1]K = [v0, v

′
1]K + [v1, v

′
1]K1 = 0, vi ∈ Vi,

which implies that v′1 ∈ V [⊥] ∩ K1 = V̂1. Therefore V̂1 = V
[⊥]1
1 .

(iii) First note that if
[

z
0
0

]
∈ V1, then

[
z
0
0

]
∈ V0 ∩ V1 = {0} and thus z = 0.

We showed that V1 ≥ 0 in the proof of claim (i), the space V1 = V ∩K1

is closed since both V and K1 are closed, and the proof of claim (ii) then

yields that V
[⊥]1
1 ≤ 0. According to Proposition A.8, we have that V1 is

a maximally nonnegative subspace of K1, and Theorem 4.5 yields that
(V1;X1,W) is a passive s/s node.

If, moreover, V = V [⊥], then V is also maximally nonpositive
by Proposition A.8, and the above argument can be modified to yield

that V1 is a maximally nonpositive subspace of K1. Then V1 = V
[⊥]1
1

by Proposition A.8, and thus (V1;X1,W) is a s/s node and V1 is a
Lagrangian subspace of K1, i.e., (V1;X1,W) is a conservative s/s node.
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Conversely, if (V1;X1,W) is a conservative s/s node, then V1 =

V
[⊥]1
1 according to Corollary 4.2, and by claim (ii) we have V [⊥] =

V0 ∔ V
[⊥]1
1 = V0 ∔ V1 = V .

(iv) Every classical trajectory generated by V1 is trivially a classical trajec-
tory generated by V , because V1 ⊂ V . For the converse inclusion we
let [ x

w ] ∈ V be an arbitrary classical trajectory generated by V . Noting

that V0[⊥]V1 is equivalent to V ⊂
[ X
X1

W

]
, we obtain from Definition 1.1

that x(t) ∈ X1 for all t > 0. Therefore

ẋ(t) = lim
h→0

x(t + h) − x(t)

h
∈ X1, t > 0,

and thus

[
ẋ(t)
x(t)
w(t)

]
∈ V1 = V ∩

[X1

X1

W

]
for all t > 0.

Every classical trajectory [ x
w ] generated by V0 ⊂

[ X
{0}
{0}

]
trivially

satisfies x(t) = 0 and w(t) = 0 for all t ≥ 0. According to Definition 1.3,
V1 = V and V0 = {0} imply that W1 = W and W0 = {0}.

�

The following corollary follows directly from Proposition 4.7(ii).

Corollary 4.8. Assume that V is maximally nonnegative. Then
[

z
0
0

]
∈ V =⇒

z = 0 if and only if
[

z
0
0

]
∈ V [⊥] =⇒ z = 0.

We now demonstrate how Proposition 4.7 can be applied in practice by
connecting two capacitors in parallel.

Example 4.9. An ideal capacitor with capacitance Ci can be modelled by the
equation [

ẋi(t)
yi(t)

]
=

[
0 1/

√
Ci

1/
√

Ci 0

] [
xi(t)
ui(t)

]
, (4.12)

where xi is the charge in the capacitor divided by
√

Ci, ui is the current
entering the capacitor and yi is the voltage over the capacitor. This system
has generating subspace

Vi =




0 1/
√

Ci

1 0
1/

√
Ci 0

0 1


 C

2, (4.13)

where U =
[
{0}
C

]
and Y =

[
C

{0}
]
, cf. (1.2).

The appropriate external signal space in this case is W = C2, and we

equip W with the power product
[[

y1

u1

]
,
[

y2

u2

]]

W
= y1u2 + u1y2, because
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electrical power equals voltage times current. Therefore the node space is
Ki = C4 with the power product







z1

x1

y1

u1


 ,




z2

x2

y2

u2







K

= y1u2 + u1y2 − z1x2 − x1z2.

Corollary A.9 yields that Vi is Lagrangian, because Vi is easily seen to
be neutral and dimVi = 2, which is precisely half of the dimension of C4.
This reflects the well-known fact that an ideal capacitor conserves energy.

In Figure 1 we have drawn two capacitors, which are initially not inter-
connected. We consider these two capacitors as a single system, the so-called
product of the two individual capacitors. This product system has generating
subspace

V =




0 0 1/
√

C1 0
0 0 0 1/

√
C2

1 0 0 0
0 1 0 0

1/
√

C1 0 0 0
0 1/

√
C2 0 0

0 0 1 0
0 0 0 1




C
4,

which is a Lagrangian subspace of C8 with the appropriate power product
obtained as the sum of the power products on K1 and K2. We use the hori-
zontal lines to separate the two copies of the state space C

2 from the external
signal space C4.

C1

P

u1

y1

y

u

C2

u2

y2

Figure 1. Two initially disconnected capacitors C1 and C2,
which we interconnect by adding the dashed wire.
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We now connect the two capacitors in parallel. Making the dashed con-
nections in Figure 1 and applying Kirchhoff’s laws at the junction P, we get
the additional constraint that y1 = y2, i.e., x1/

√
C1 = x2/

√
C2. Moreover,

the total current flowing into the parallel coupling is u1 +u2. Let us therefore
define y := (y1 + y2)/2 and u := u1 + u2, so that y is the voltage over the

parallel coupling and u is the current flowing into it. Then the variables

[
z
x
y
u

]

of the interconnected system live in the subspace

V ′ =




0 0 1/
√

C1 0
0 0 0 1/

√
C2

1 0 0 0
0 1 0 0

1/2
√

C1 1/2
√

C2 0 0
0 0 1 1




×N
([

1/
√

C1 −1/
√

C2 0 0
])

.

(4.14)

The space V ′ is a Lagrangian subspace of K′ := C6 equipped with the
power product







z1

x1

y1

u1


 ,




z2

x2

y2

u2







K′

= y1u2 + u1y2 − (z1, x2)C2 − (x1, z2)C2 .

However, V ′ is not the generating subspace of a s/s system, because it does

not satisfy condition (ii) of Definition 1.2. Indeed,

[
z
0
0
0

]
∈ V ′ if and only if

z ∈
[
−√C2√

C1

]
C =: X0, and this space is nontrivial. One easily verifies that

X1 := X ⊖ X0 =

[ √
C1√
C2

]
C = N

([
1/

√
C1 −1/

√
C2

])

and setting [ z1
z2

] ∈ X1 in (4.14) yields that
[

z1

z2

]
=

[
u1/

√
C1

u2/
√

C2

]
=

[ √
C1√
C2

]
a, a = (u1 + u2)/(C1 + C2).

Defining V ′1 := V ′ ∩
[
X1

X1

C
2

]
, we thus obtain that

V ′1 =




0 0
√

C1/(C1 + C2)
0 0

√
C2/(C1 + C2)

1 0 0
0 1 0

1/2
√

C1 1/2
√

C2 0
0 0 1







[ √
C1√
C2

]
C

C


 .
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By Proposition 4.7(iii), the triple (V ′1 ;X1, C
2) is a conservative s/s node.

Obviously this s/s node has operator node representation

V ′1,op =

(
S′1;

[ √
C1√
C2

]
C,

[
{0}
C

]
,

[
C

{0}

])
, (4.15)

where the system node S′1 is given by the restriction to
[ X1

U
]

=

[ »√
C1√
C2

–

C

h {0}
C

i

]

of

[
A′1 B′1
C′1 D′1

]
=




0 0 0
√

C1/(C1 + C2)
0 0 0

√
C2/(C1 + C2)

1/2
√

C1 1/2
√

C2 0 0
0 0 0 0


 .

This example seemingly turns a simple task into very complicated one,
but it is interesting that the same approach can be applied to quite general
infinite-dimensional systems, using the tools developed in Sections 4 and 5.

Some first steps in the direction of interconnection of conservative sys-
tems, which are relevant for s/s systems, were taken in [15], but we will study
this topic in more detail and generality elsewhere. The operator node repre-
sentation (4.15) is a special case of a so-called impedance representation of

a s/s node, due to the fact that U =
[
{0}
C

]
= U [⊥] and Y =

[
C

{0}
]

= Y [⊥],

so that W = U ∔ Y is a Lagrangian decomposition. We will also study more
general impedance representations in a forthcoming article.

The next step is to characterise conservative s/s nodes, but in order to
do this we first need to write down the following lemma.

Lemma 4.10. If
[

A&B
C&D

]
is an operator node and α ∈ Res (A), then the oper-

ator

[ [
α 0

]
− A&B[

0 1U
]

]
maps Dom

([
A&B
C&D

])
one-to-one onto [XU ].

Proof. Under the given assumptions,
[

[ α 0 ]−A&B
[ 0 1U ]

]
is injective, because

[ [
α 0

]
− A&B[

0 1U
]

] [
x
u

]
= 0 =⇒ x ∈ Dom(A) and (α−A)x = 0,

and then x = 0 and u = 0.
Moreover the operator is surjective, as we will now show. Let therefore

z ∈ X and u ∈ U be arbitrary and let x be such that [ x
u ] ∈ Dom(S). Since

α ∈ Res (A), we can find an x′ ∈ Dom(A) such that

(α − A)x′ = z −
(

αx − A&B

[
x
u

])
∈ X .

Then
[

x+x′

u

]
= [ x

u ] +
[

x′

0

]
∈ Dom(S) and

([
α 0

]
− A&B

) [
x + x′

u

]
= z.

The proof is done. �
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Recall from Corollary 3.8 that if (U ,Y) is an admissible i/o pair for the
s/s node (V ;X ,W) then (U [⊥],Y [⊥]) is an admissible i/o pair for the s/s dual
(V [⊥];X ,W). In this case we denote the main operator of the operator node

representation V
[⊥]
op = (Sd,X ,U [⊥],Y [⊥]) by Ad, cf. Definitions 2.4 and 2.5.

If (U [⊥],Y [⊥]) is admissible also for the primal s/s node (V ;X ,W), then we
denote the corresponding operator node by S× and its main operator by A×.

Theorem 4.11. Assume that V ⊂ K has the property that
[

z
0
0

]
∈ V =⇒ z = 0.

Then the following claims are equivalent:

(i) The triple (V ;X ,W) is a conservative s/s node.
(ii) The space V is a Lagrangian subspace of K: V = V [⊥].
(iii) Both (V ;X ,W) and (V [⊥];X ,W) are ordinary s/s nodes and, for some

subinterval [a, b] ⊂ R of finite positive length, the spaces of classical tra-
jectories generated by V and V [⊥] on [a, b] coincide: V[a, b] = Vd[a, b].

(iv) Both (V ;X ,W) and (V [⊥];X ,W) are ordinary s/s nodes and, for every
positive-length subinterval I ⊂ R, the spaces of classical trajectories
generated by V and V [⊥] on I coincide: V(I) = Vd(I).

(v) The triples (V ;X ,W) and (V [⊥];X ,W) are both passive ordinary s/s
nodes, so that V and V [⊥] are maximally nonnegative.

(vi) Both (V ;X ,W) and (V [⊥];X ,W) are passive time-reflected s/s nodes:
V and V [⊥] are maximally nonpositive.

(vii) The following two conditions hold for some decomposition W = U ∔ Y:
(a) both (U ,Y) and (U [⊥],Y [⊥]) are admissible i/o pairs for (V ;X ,W),

and
(b) the operator node representations Vop = (S×;X ,U [⊥],Y [⊥]) and

V
[⊥]
op = (Sd;X ,U [⊥],Y [⊥]) coincide: S× = Sd.

(viii) The following three conditions all hold:
(c) the space V is neutral: V ⊂ V [⊥],
(d) there exists a decomposition W = U ∔ Y, such that (a) holds and
(e) the main operators of the operator node representations of V and

V [⊥] corresponding to the i/o pair (U [⊥],Y [⊥]), as given in (b),
have non-disjoint resolvent sets:

Res
(
A×

)
∩ Res

(
Ad

)
6= ∅.

Assume that (d) holds and let A be the main operator of Vop = (S;X ,U ,Y).
If either both A× and −A, or both −A× and A, generate C0 semigroups on
X , then (e) also holds.

Condition (a) of Theorem 4.11 needs some clarification. Let (V ;X ,W)
be a s/s node. By Definition 2.5, admissibility of the i/o pair (U ,Y) means
that V satisfies (2.4) for some operator node

[
A&B
C&D

]
with input space U

and output space Y. Thus there is no implication that A generates a C0

semigroup on X . As a consequence, there is no guarantee that A or A×

generate semigroups even if (a) holds.
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Proof Theorem 4.11. We begin by proving the last claim. Assume therefore
that A generates a C0 semigroup with growth bound ω; see [26, Def. 2.5.6].
By Theorem 3.6, −Ad = A∗ and, according to [26, Thm 3.5.6], A∗ generates
the C0 semigroup t → (At)∗, which also has growth bound ω. If −A generates
a C0 semigroup A

′, then (−A)∗ = Ad obviously generates the dual semigroup
(A′)∗.

Assume that A× and −A generate semigroups with growth bounds ω×

and ω, respectively. By the argument we just made, Ad generates a semigroup
with growth bound ω as well. Theorem 3.2.9(i) of [26] then yields that

{
λ ∈ C | Re λ > max

{
ω×, ω

}}
⊂ Res

(
A×

)
∩ Res

(
Ad

)
,

which obviously implies (e).
Now drop the earlier assumptions on A and A×, and instead assume

that both −A× and A generate C0 semigroups with growth bounds ω× and
ω, respectively. Then (e) again holds, because

{
λ ∈ C | Reλ < −max

{
ω×, ω

}}
⊂ Res

(
A×

)
∩ Res

(
Ad

)
.

The following implications prove the equivalence of the claims (i)–(viii)
listed in the theorem:
(i) ⇐⇒ (ii): If V = V [⊥], then V is maximally nonnegative by Proposition
A.8. In this case (V ;X ,W) is a (passive) s/s node by Theorem 4.5. The rest
was shown in Corollary 4.2.
(ii) =⇒ (iv) and (iv) =⇒ (iii): These implications are both trivial once we
know that (V ;X ,W) is a s/s node.

(iii) =⇒ (ii): Let
[

za

xa

wa

]
∈ V . By Definition 1.2, V is closed and there exists

a trajectory [ x
w ] ∈ V[a, b] such that

[
ẋ(a)
x(a)
w(a)

]
=

[ za

xa

wa

]
. This by assumption

implies that [ x
w ] ∈ Vd[a, b], i.e., that

[
za

xa

wa

]
∈ V [⊥]. Thus V ⊂ V [⊥]. For

the converse inclusion, we apply the same argument to V [⊥] and obtain that
V [⊥] ⊂ (V [⊥])[⊥] = V .
(ii) ⇐⇒ (v): Claim (ii) implies claim (i), which says that (V ;X ,W) is a
conservative s/s node. In this case (V [⊥];X ,W) = (V ;X ,W) is a passive s/s
node by Corollary 4.2.

Conversely, Corollary 4.2 yields that (V ;X ,W) and (V [⊥];X ,W) are
passive s/s nodes if and only if V and V [⊥] are both maximally nonnegative.
According to Proposition A.8 this is equivalent to V being Lagrangian.
(v) ⇐⇒ (vi): If V is maximally semidefinite, then V is closed by Remark
A.6. According to Proposition A.8, V is then maximally nonnegative if and
only if V [⊥] is maximally nonpositive.
(vii) =⇒ (ii): The assumptions (a) and (b) immediately imply that

V [⊥]
op = (Sd;X ,U [⊥],Y [⊥]) = Vop,

i.e., that V = V [⊥], cf. Definition 2.5.
(ii) =⇒ (viii): Assume that V = V [⊥]. Then trivially (c) holds and the
triple (V ;X ,W) is a passive s/s node by item (v). Thus every fundamental
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decomposition W = (W+,W−) is admissible for (V ;X ,W) and C+ ⊂ Res (A)
for the main operator of the corresponding operator node representation,
according to Theorem 4.5.

Theorem 3.6 yields that (W [⊥]
+ ,W [⊥]

− ) is admissible for V [⊥] and that the

corresponding operator node representation Sd has main operator Ad = −A∗.
One easily shows that (W [⊥]

+ ,W [⊥]
− ) = (W−,W+) and, by Corollary 3.8, this

i/o pair is also admissible for V , because V = V [⊥]. Thus (d) holds and Sd =
S× is immediate from V = V [⊥] and the notation in (b), see Definition 2.5
again. In particular, Ad = A× and C− ⊂ Res (−A∗) = Res

(
Ad

)
= Res (A×),

because α ∈ Res (A) if and only if α ∈ Res (A∗), which is equivalent to
−α ∈ Res (−A∗).
(viii) =⇒ (vii): Assume that V ⊂ V [⊥]. Then S× ⊂ Sd, again by the notation
in (b), and we are done if we can prove that Dom (S×) = Dom

(
Sd

)
.

Let now α ∈ Res (A×)∩Res
(
Ad

)
. By Lemma 4.10,

[
[ α 0 ]−A&B×

[ 0 1 ]

]
maps

Dom (S×) one-to one onto
[ X
U [⊥]

]
. The inclusion S× ⊂ Sd implies that also[

[ α 0 ]−A&Bd

[ 0 1 ]

]
maps Dom (S×) one-to one onto

[ X
U [⊥]

]
. Since the latter op-

erator maps Dom
(
Sd

)
one-to one onto

[ X
U [⊥]

]
, again by Lemma 4.10, we

conclude that Dom (S×) = Dom
(
Sd

)
. �

We made the following observation in the proof of Theorem 4.11. Let
(V ;X ,W) be a conservative s/s node. Then every fundamental i/o pair
(U ,Y) = (W+,W−) satisfies condition (a) of Theorem 4.11 and

C
− ⊂ Res

(
A×

)
= Res

(
Ad

)
,

where A× and Ad are as given in (b) with U [⊥] = W− and Y [⊥] = W+.

Theorem 4.11(vi) has the following consequence, which should be com-
pared to [19, Rem. 4.3]. Let W = (U ,Y) be an orthogonal i/o pair, i.e.,
let U [⊥]Y. Then U [⊥] = Y and if condition (a) holds for such an i/o pair,
then V has the operator node representations Vop = (S;X ,U ,Y) and Vop =
(S×;X ,Y,U). In this case S× has the interpretation of being the flow in-
verse of S, because (u, x, y) is a classical i/s/o trajectory generated by S if
and only if (y, x, u) is a classical i/s/o trajectory generated by S×, cf. Defi-
nition 2.4. The condition S× = Sd thus means that the flow inverse equals
the anti-causal dual of S introduced in Remark 3.7.

Flow inversion is described in more detail in [28] and Chapter 6 of
[26]. I/s/o representations corresponding to general orthogonal i/o pairs are
called transmission representations, and we will treat these in a forthcoming
article. We conclude this section with an example of a conservative s/s node
of boundary control type.

Example 4.12. We continue Example 2.9, using the notation we introduced

there. Defining V :=




− ∂

∂z
1
δ0



Z, we obviously get a subspace of K with the
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property
[

z
0
0

]
∈ V =⇒ z = 0, and we may thus use Theorem 4.11 to show

that (V ; L2(R+; C), C) is a conservative s/s node.
Combining the following short computation, where x′ = ∂

∂z x, with
Lemma A.7(i), we obtain that V satisfies Theorem 4.11(c):







−x′

x
x(0)


 ,




−x′

x
x(0)







K

= |x(0)|2 +

∫ ∞

0

(
x′(ζ)x(ζ) + x(ζ)x′(ζ)

)
dζ

= |x(0)|2 +

∫ ∞

0

(
∂

∂z
|x|2

)
(ζ) dζ

= |x(0)|2 + lim
z→+∞

|x(z)|2 − |x(0)|2 = 0.

From W = C we obtain C[⊥] = {0}. By Example 2.9, V has operator
node representations

Vop = (S; L2(R+; C), C, {0}) and

Vop = (S×; L2(R+; C), {0}, C).

The i/o pair (C, {0}) thus proves that V satisfies Theorem 4.11(d) as well.

Note that A× = − ∂
∂z

∣∣∣
Z

does not generate a C0 semigroup on X =

L2(R+; C), but −A× does. By the last claim of Theorem 4.11, condition
(e) of that theorem also holds, and we conclude that (V ; L2(R+; C), C) is a
conservative s/s node.

We now proceed to study operator node representations corresponding
to fundamental i/o pairs in more detail.

5. Scattering representations and passivity

In this section we introduce the so-called scattering representations and use
these to establish some additional properties of passive s/s systems. We also
give a few characterisations of passive s/s systems in terms of scattering
representations.

Definition 5.1. Let V ⊂ K and assume that the fundamental decomposition
W = (W+,W−) is an admissible i/o pair for V .

Then we call the the corresponding operator node representation a scat-
tering representation of V and write Vsca =

([
A&B
C&D

]
;X ,W+,W−

)
.

If (V ;X ,W) is a s/s node, then we call Vsca a scattering representation
of both (V ;X ,W) and the s/s system that the s/s node generates.

According to Definition A.1, every fundamental decomposition of a
Krĕın space is orthogonal. Thus a scattering representation is a special case
of a transmission representation, as it was introduced in the previous sec-
tion. The next theorem gives one characterisation of which dissipative s/s
nodes are actually passive. Dissipativity is of course a necessary condition for
passivity.
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Theorem 5.2. Let V be a nonnegative subspace of K and (W+,W−) a funda-
mental decomposition of W. Then the following claims are equivalent:

(i) The triple (V ;X ,W) is a passive s/s node.
(ii) The subspace V has scattering representation

([
A&B
C&D

]
;X ,W+,W−

)
.

The corresponding main operator A defined in (2.3) generates a con-
traction semigroup on X and C+ ⊂ Res (A).

(iii) The i/o pair (W+,W−) is admissible for V and the resolvent set of the
associated main operator given in (2.3) satisfies Res (A) ∩ C+ 6= ∅.

(iv) The space V is closed,
[

z
0
0

]
=⇒ z = 0 and for some α ∈ C+ we have

[
−1 α 0

0 0 PW−

W+

]
V =

[
X
W+

]
. (5.1)

(v) The space V is closed,
[

z
0
0

]
=⇒ z = 0 and (5.1) holds for all α ∈ C+.

Proof. We again divide the proof into a series of implications.

(i) =⇒ (v): By Definition 1.2, every s/s node (V ;X ,W) has the properties

that V is closed and
[

z
0
0

]
=⇒ z = 0. By assumption (i) and Corollary 4.2,

V is maximally nonnegative and, according to Propositions A.2 and A.8, we
then have (5.1) for an arbitrary α ∈ C+.

(v) =⇒ (iv) and (ii) =⇒ (iii): These implications are trivial.

(iv) =⇒ (i),(ii): By assumption the implication
[

z
0
0

]
∈ V =⇒ z = 0 holds. We

now show that V is maximally nonnegative, whereafter Theorem 4.5 yields
that claims (i) and (ii) are true.

Let α ∈ C+ satisfy (5.1) and let K = (K+, K−) be the fundamental

decomposition and PK−

K+
the projection given in Proposition A.2, so that

PK−

K+
V = K+. We assumed that V ≥ 0 and thus V is maximally nonnegative

according to Proposition A.8.

(iii) =⇒ (iv): By assumption there exists an operator node
[

A&B
C&D

]
, such that

(4.9) holds, and in particular the implication
[

z
0
0

]
∈ V =⇒ z = A&B [ 0

0 ] = 0

is valid. By Lemma 4.10, (5.1) holds for every α ∈ Res (A) ∩ C+. �

Conditions (ii)–(v) of Theorem 5.2 hold for some fundamental decom-
position if and only if they hold for all fundamental decompositions, because
condition (i) is independent of the fundamental decomposition.

As the following example taken from [5, Ex. 5.5] shows, there exist
energy-preserving s/s nodes, for which no fundamental i/o pair is admissible.
If there on the contrary existed such an i/o pair, then the system would be
passive by Theorem 5.2, because the condition Res (A) ∩ C+ 6= ∅ becomes
trivial when X = {0}.
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Example 5.3. Let X = {0} and W = C3 with the power product
[[

y1
1

y1
2

u1

]
,

[
y2
1

y2
2

y2

]]

W
= −y1

1y
2
1 + y1

2y
2
2 + u1u2.

Then V :=
[

1
0
1

]
C is neutral and (V ; {0},W) is an energy-preserving s/s node.

Moreover,
[

0
1
0

]
∈ V [⊥] and

[[
0
1
0

]
,
[

0
1
0

]]

W
= 1 ≥ 0, so that V [⊥] 6≤ 0.

This implies that V is not maximally nonnegative, i.e. that the s/s node is
not passive.

In Theorem 5.2 we characterised passivity under the assumption of dis-
sipativity. We now proceed to define a scattering-passive i/s/o system node in
order to be able to prove that every scattering representation of a passive s/s
node is of this type. The following definition uses classical i/s/o trajectories
of an operator node, as these were introduced in Definition 2.4.

Definition 5.4. Let
[

A&B
C&D

]
be an i/s/o system node on (U ,X ,Y).

The i/s/o system node
[

A&B
C&D

]
is L2-well-posed if there exists a T > 0

and a constant KT such that all classical i/s/o trajectories (u, x, y) of
[

A&B
C&D

]

satisfy

∀t ∈ [0, T ] : ‖x(t)‖2
X +

∫ t

0

‖y(s)‖2
Y ds ≤ KT

(
‖x(0)‖2

X +

∫ t

0

‖u(s)‖2
U ds

)
.

(5.2)
The i/s/o system node is scattering passive if it is L2-well-posed with

KT = 1, i.e., if all classical trajectories satisfy

∀t ∈ [0, T ] : ‖x(t)‖2
X +

∫ t

0

‖y(s)‖2
Y ds ≤ ‖x(0)‖2

X +

∫ t

0

‖u(s)‖2
U ds.

The i/s/o system node
[

A&B
C&D

]
is scattering energy preserving if (5.2) holds

with equality instead of inequality and KT = 1. The i/s/o node is scattering

conservative if both
[

A&B
C&D

]
and

[
A&B
C&D

]∗
are scattering energy preserving.

Comparing Remark 4.6 to Definitions 2.4 and 5.4, we see that a passive
s/s node is indeed much easier to describe than a passive i/s/o system node.
This is only one example of how it can be more natural to study systems
theory in the s/s framework than in the i/s/o counterpart.

Remark 5.5. Theorem 4.7.13 in [26] says that a system node
[

A&B
C&D

]
on

(U ,X ,Y) is L2-well-posed if and only if there exists a T > 0, KT > 0 such
that all i/s/o trajectories (u, x, y) of

[
A&B
C&D

]
on [0, T ] satisfy the following for

all t ∈ [0, T ]:

‖x(t)‖X +

√∫ t

0

‖y(s)‖2
Y ds ≤ KT


‖x(0)‖X +

√∫ t

0

‖u(s)‖2
U ds


 . (5.3)

Comparing this to (5.2), we see that the terms in (5.2) are the terms in (5.3)
squared. This difference is non-essential, however, because (5.2) corresponds
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to using the norm ‖[ a
b ]‖ =

√
|a|2 + |b|2 on R2 and (5.3) corresponds to using

the norm ‖[ a
b ]‖ = |a| + |b|, and all norms in R2 are equivalent. If we change

the powers, to which the terms in (5.2) are raised, then we may be forced to
increase KT , but the claim that there exists some constant KT is either true
in both cases or false in both cases.

We use (5.2) as the definition for L2-well-posedness, because it fits pas-
sive systems better than (5.3).

We now study passivity of s/s nodes which have a scattering represen-
tation.

Proposition 5.6. Let the subspace V ⊂ K have the scattering representation([
A&B
C&D

]
;X ,W+,W−

)
. Then the following conditions are equivalent:

(i) The triple (V ;X ,W) is a passive s/s node.
(ii) The subspace V ⊂ K is nonnegative and Res (A) ∩ C

+ 6= {0}.
(iii) We have V ≥ 0 and C+ ⊂ Res (A).
(iv) The operator

[
A&B
C&D

]
is a scattering-passive i/s/o system node.

The triple (V ;X ,W) is a conservative s/s node if and only if
[

A&B
C&D

]
is

a scattering-conservative i/s/o system node. In this case conditions (i)–(iv)
above hold.

Proof. We first note the following almost direct consequence of (4.9). It holds
that [ x

u+y ] ∈ V with u(t) ∈ W+ and y(t) ∈ W− for all t ≥ 0 if and only if
(u, x, y) is a classical i/s/o trajectory of

[
A&B
C&D

]
. If

[
A&B
C&D

]
is a i/s/o system

node, then it is scattering passive if and only if V ≥ 0, because (5.2) with
KT = 1 is equivalent to (4.1) with I = [0, T ] when U = W+ and Y = W−.

(iv) =⇒ (iii): By Definition 2.3,
[

A&B
C&D

]
has a C0 semigroup A. Theorem

3.2.9(i) of [26] yields that any α ∈ R+ greater than the growth bound of A

lies in Res (A) ∩ C+, which is thus nonempty, cf. the beginning of the proof
of Theorem 4.11. By the discussion at the beginning of this proof, V ≥ 0 and
Theorem 5.2(ii) then yields that C+ ⊂ Res (A).

(iii) =⇒ (ii): This implication is trivial.

(ii) =⇒ (i): This also follows from Theorem 5.2(iii).

(i) =⇒ (iv): Theorem 5.2 yields that the main operator A of
[

A&B
C&D

]
generates

a contraction semigroup, i.e., that
[

A&B
C&D

]
is an i/s/o system node. According

to Corollary 4.2, V is a (maximally) nonnegative subspace, so that (4.1) holds
for I = [0, T ], T > 0, by Proposition 4.3. Therefore (5.2) also holds with
KT = 1 and

[
A&B
C&D

]
is scattering passive.

The last claim follows from [9, Prop. 4.9] and Theorem 4.11. �

We now prove that all passive s/s nodes are L2-well-posed. In order to
do this, we first need to recall the definition of an L2-well-posed s/s node
from [14].
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Definition 5.7. The s/s node (V ;X ,W) is L2-well-posed if there exists a T > 0
and a direct sum decomposition W = U ∔ Y, such that V[0, T ] satisfies the
following conditions:

(i) The space
{
x(0)

∣∣ [ x
w ] ∈ V[0, T ]

}
is dense in X .

(ii) The operator
[

0 PYU
]

maps the space

V0[0, T ] :=

{[
x
w

]
∈ V[0, T ]

∣∣∣∣
[

x(0)
w(0)

]
= 0

}
(5.4)

densely into L2([0, T ];U).
(iii) There exists a KT > 0, such that all [ x

w ] ∈ V[0, T ] satisfy for all t ∈
[0, T ]:

‖x(t)‖2
X +

∫ t

0

‖w(s)‖2
W ds ≤ KT

(
‖x(0)‖2

X +

∫ t

0

‖PYU w(s)‖2
U ds

)
.

In this case we call (U ,Y) an L2-admissible i/o pair of the s/s node (V ;X ,W).

The notion of an L2-admissible i/o pair is related to the notion of ad-
missibility given in Definition 2.5, but neither type of admissibility implies
the other type. It follows from the following proposition that all of the theory
developed in [14] is applicable to passive s/s systems.

Proposition 5.8. Let T > 0 and let (V ;X ,W) be a passive s/s node with
generalised trajectories W[0, T ]. Then the following claims are true:

(i) Every fundamental i/o pair is L2-admissible for (V ;X ,W). In particu-
lar, the space V generates an L2-well-posed s/s system Σ.

(ii) The space V is maximal in the sense that all subspaces that generate the
same space W[0, T ] of generalised trajectories are contained in V .

(iii) For every T > 0, the space of classical trajectories generated by V on
[0, T ] satisfies

V[0, T ] = W[0, T ] ∩
[

C1([0, T ];X )
C([0, T ];W)

]
. (5.5)

(iv) The generating subspace V is uniquely determined by W[0, T ] through

V =









ẋ(0)
x(0)
w(0)




∣∣∣∣
[

x
w

]
∈ W[0, T ] ∩

[
C1([0, T ];X )
C([0, T ];W)

]


 .

Any of the spaces V , V[0, T ], V, W[0, T ] and W determine the other four of
these spaces uniquely.

Proof. We begin by proving claims (i) and (ii) and we therefore fix a funda-
mental i/o pair W = (W+,W−). By Theorem 5.2,

([
A&B
C&D

]
;X ,W+,W−

)
is a

scattering representation of V , and by Proposition 5.6,
[

A&B
C&D

]
is a scattering-

passive system node. Thus (5.2) holds with KT = 1 and therefore every scat-
tering representation of a passive s/s node node is L2-well-posed. Theorem
6.4 of [14] yields that (V ;X ,W) is an L2-well-posed s/s node, which is max-
imal in the sense that all other generating subspaces of the same s/s system
are included in V .
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Claim (iii) was proved in the proof of [14, Thm 6.4]. Combining (2.1)
with (5.5), we see that claim (iv) holds.

We fix T > 0 in order to prove the last claim. The generating subspace
V determines V uniquely by Definition 1.1, and V in turn determines W

uniquely by Definition 1.3. Moreover, W[0, T ] = ρ[0,T ]W by [14, Prop. 3.9],
and W[0, T ] determines V[0, T ] as in claim (iii). Finally, V[0, T ] determines
V through (2.1). �

One may ask if the converse of Proposition 5.8(ii) also is true, i.e.,
if assuming that V ≥ 0 contains all generating subspaces of the same s/s
system is enough to imply that (V ;X ,W) is passive. Example 5.3 shows that
the answer is no, and the explanation is the following. According to [14, Thm
6.4], the maximality of V as a generating subspace follows from the existence
of an arbitrary L2-well-posed i/o pair. However, for (V ;X ,W) to be passive
we need the i/o pair to be fundamental, which is a stronger condition, cf.
Theorem 5.2.

Appendix A. Some basics of Krĕın spaces

In this appendix we collect some standard terminology and results from the
theory of Krĕın spaces. More background can be found e.g. in [5] and [11].

Definition A.1. The vector space (W ; [·, ·]W), where [·, ·]W is an indefinite
sesquilinear product, is an anti-Hilbert space if −W := (W ;− [·, ·]W) is a
Hilbert space. In this case we denote the Hilbert space −W by |W|.

The space (W ; [·, ·]W) is a Krĕın space if it admits a direct-sum decom-
position W = W+ ∔ W−, such that:

(i) the spaces W+ and W− are [·, ·]W -orthogonal, i.e., [w+, w−]W = 0 for
all w+ ∈ W+ and w− ∈ W−, and

(ii) the space W+ is a Hilbert space and W− is an anti-Hilbert space.

In this case we call the decomposition W = W+ ∔ W− a fundamental de-
composition of W , and we always denote it by W = (W+,W−), so that the
second space in the pair is the anti-Hilbert space.

Let U and Y be subspaces of the Krĕın space W . By writing U [⊥]Y we
mean that U and Y are orthogonal to each other with respect to [·, ·]W . The
orthogonal companion of U is the space

U [⊥] := {w ∈ W | ∀u ∈ U : [u, w]W = 0} . (A.1)

We now prove that the node space K in Definition 1.4 is a Krĕın space.

Proposition A.2. Let α ∈ C+ and let W be a Krĕın space with fundamental
decomposition W = (W+,W−). Then the node space K in Definition 1.4 is a
Krĕın space with fundamental decomposition K = (K+, K−), where

K+ =




[
−α
1

]
X

W+


 and K− =




[
α
1

]
X

W−


 . (A.2)
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The projections of K onto K± along K∓ are given by

PK−

K+
:=




1

2Re α

[
−α
1

] [
−1 α

]
0

0 PW−

W+



 and

PK+

K−
:=




1

2Re α

[
α
1

] [
1 α

]
0

0 PW+

W−



 .

(A.3)

For every V ⊂ K, the condition PK−

K+
V = K+ is equivalent to

[
−1 α 0

0 0 PW−

W+

]
V =

[
X
W+

]
.

Proof. The subspace K+ is a Hilbert space, because X and W+ are both
Hilbert spaces by assumption and





[
−α
1

]
x

w+


 ,




[
−α
1

]
x

w+






K

= (w+, w+)W+ + (αx, x)X + (x, αx)X

= ‖w+‖2
W+

+ (2Reα)‖x‖2
X .

Replacing −α by α and w+ by w−, we get that K− is an anti-Hilbert space.
In particular K+ and K− are both closed. Moreover, K+[⊥]K−, because for
all x, z ∈ X and w± ∈ W± we have:





[
−α
1

]
x

w+


 ,




[
α
1

]
z

w−







K

= (αx, z)X − (x, αz)X + [w+, w−]W = 0.

Checking that PK−

K+
+PK+

K−
= 1W is trivial and it is also straightforward

to verify that PK∓

K±
are projections onto K±, i.e., that (PK∓

K±
)2 = PK∓

K±
and

Ran
(
PK∓

K±

)
= K±. This implies that K = K+ +K−, because any k ∈ K can be

written k = k++k−, where k± = PK∓

K±
k ∈ K±. The sum K = K++K− is direct,

because
[

z
x
w

]
∈ K+∩K− implies that z = αx = −αx and w ∈ W+∩W− = {0},

and then, in particular, (2Reα)x = 0. As Re α > 0, we get z = αx = 0.

The last claim is proved simply by noting that

PK−

K+
=




1
2Re α

[
−α
1

]
0

0 1




[ [
−1 α

]
0

0 PW+

W+

]

and that the first factor maps
[ X
W+

]
one-to-one onto K+. �
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Let W = (W+,W−) be a fundamental decomposition of the Krĕın space
W . Then it follows from Definition A.1 that all w1

++w1
−, w2

++w2
− ∈ W , where

w1
±, w2

± ∈ W±, satisfy

[w1
+ + w1

−, w2
+ + w2

−]W = [w1
+, w2

+]W+ + [w1
−, w2

−]W−

= (w1
+, w2

+)W+ − (w1
−, w2

−)|W−|.
(A.4)

Therefore we can turn W into a Hilbert space by changing the sign on the
restriction of [·, ·]W to W−, as described in the following definition.

Definition A.3. We call the Hilbert-space inner products on W that arise
from fundamental decompositions W = (W+,W−) through

(w1
+ + w1

−, w2
+ + w2

−)W = (w1
+, w2

+)W+ + (w1
−, w2

−)|W−| (A.5)

admissible inner products. The inner product (A.5) can be compactly written

(w1, w2)W = [w1, Jw2]W ,

where the so-called fundamental symmetry J is given by J = PW−

W+
− PW+

W−
.

A norm induced by an admissible inner product is called an admissible
norm.

Only Hilbert and anti-Hilbert spaces have unique fundamental decom-
positions, but all admissible norms are equivalent. Every admissible inner
product turns a closed subspace of a Krĕın space into a Hilbert space, and
thus in particular, every closed subspace of a Krĕın space is a reflexive Banach
space.

In contrast to Hilbert spaces, not every closed subspace U of a Krĕın
space W is itself a Krĕın space. Indeed, in the state/signal theory we often
encounter Lagrangian subspaces, which are closed non-Krĕın subspaces of
Krĕın spaces. More precisely, a closed subspace U is a Krĕın space if and only
if it is ortho-complemented: U ∔ U [⊥] = W ; see [11, Thm V.3.4].

The orthogonal companion (A.1) of any subspace U of W is a closed
subspace of W with respect to the admissible norms. Denoting the closure of
a subspace U ⊂ W with respect to any admissible norm by U , we have that
(U [⊥])[⊥] = U .

The following definition makes use of the continuous dual U ′ of a Banach
space U . Recall that this continuous dual is the space of all continuous linear
functionals on U .

Definition A.4. Let W = U ∔ Y be a direct-sum decomposition of a Krĕın
space. According to [7, Lemma 2.3], we can identify the continuous duals of
U and Y with Y [⊥] and U [⊥], respectively, using the following restrictions of
[·, ·]W as duality pairings:

〈u, u′〉〈U ,U ′〉 = [u, u′]W , u ∈ U , u′ ∈ Y [⊥] and

〈y, y′〉〈Y,Y′〉 = [y, y′]W , y ∈ Y, y′ ∈ U [⊥].



44 Mikael Kurula

Let T map a dense subspace of U linearly into Y. By T † we denote the
(possibly unbounded) adjoint of T computed with respect to these duality
pairings, so that T † : Y ′ → U ′ is the maximally defined operator that satisfies

∀u ∈ Dom(T ) , y′ ∈ Dom
(
T †

)
: 〈Tu, y′〉〈Y,Y′〉 = 〈u, T †y′〉〈U ,U ′〉. (A.6)

Here Dom
(
T †

)
is the subspace consisting of those y′ ∈ Y ′, for which there ex-

ists some u′ ∈ U ′, such that 〈Tu, y′〉〈Y,Y′〉 = 〈u, u′〉〈U ,U ′〉 for all u ∈ Dom(T ).

The condition (A.6) can also be written

∀u ∈ Dom(T ) , y′ ∈ Dom
(
T †

)
: [Tu, y′]W = [u, T †y′]W , (A.7)

but note that T is not densely defined on W in general, and therefore (A.7)
does not uniquely determine T † as an operator on W . However, if U = Y = W
and this is a Hilbert space with inner product (·, ·)W , then the construction in
Definition A.4 leads to an identification W ′ = W , using the standard Hilbert-
space duality pairing 〈w, w′〉〈W,W′〉 = (w, w′)W . In this case we denote the

adjoint T † of T by T ∗ in order to emphasise that the adjoint is computed
with respect to a Hilbert-space inner product.

Definition A.5. The subspace V ⊂ W is nonnegative (nonpositive) if [v, v]W ≥
0 ([v, v]W ≤ 0) for all v ∈ V . In both of these cases V is said to be semidefinite
and V is maximally semidefinite if V has no proper extension to a semidefinite
subspace of W .

A vector v ∈ W is neutral if [v, v]W = 0. The space V is neutral if all

v ∈ V are neutral and V is Lagrangian if V = V [⊥].

Remark A.6. The closure of a semidefinite subspace is semidefinite and,
therefore, every maximally semidefinite subspace is closed.

Obviously a subspace is neutral if and only if it is both nonnegative and
nonpositive.

Lemma A.7. Let W be a Krĕın space, let V0, V1 ⊂ W, and define V := V0+V1.
Then the following claims are true:

(i) The space V0 is neutral, i.e., [v, v]W = 0 for all v ∈ V , if and only if

V0 ⊂ V
[⊥]
0 , i.e., [v, v′]W = 0 for all v, v′ ∈ V0.

(ii) Let V0 be neutral. Then V is nonnegative or nonpositive if and only if
V1 is nonnegative or nonpositive, respectively, and V0[⊥]V1.

(iii) If V0 is neutral then V0 ⊂ V [⊥].

Proof. We prove claim (ii) first. Assume therefore that [v, v]W = 0 for all
v ∈ V0. Then we for all v0 + v1 ∈ V , vi ∈ Vi, have

[v1 + v0, v1 + v0]W = [v1, v1] + 2Re [v1, v0] + [v0, v0] = [v1, v1] + 2Re [v1, v0].
(A.8)

Thus, V1 ≥ 0 and V0[⊥]V1 immediately imply that V ≥ 0.
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Now conversely assume that V ≥ 0 and that [v, v]W = 0 for all v ∈ V0.
Then trivially V1 ⊂ V is also nonnegative. Moreover, if there exists vi ∈ Vi

such that [v1, v0]W =: α 6= 0, then for all s ∈ R− we by (A.8) have v1+sαv0 ∈
V and:

[v1 + sαv0, v1 + sαv0]W = [v1, v1] + 2s|α|2 ∈ R.

This expression tends to −∞ as s → −∞, which contradicts the assumption
that V ≥ 0 and therefore necessarily V0[⊥]V1.

We now give the proof of claim (i). If [v, v′]W = 0 for all v, v′ ∈ V0 then
trivially [v, v]W = 0 for all v ∈ V0. Conversely, if [v, v]W = 0 for all v ∈ V0,
then V0 = V0 + V0 is neutral and by item (ii) we have V0[⊥]V0, which is

equivalent to V0 ⊂ V
[⊥]
0 .

Regarding claim (iii), note that if V0[⊥]V1 and V0 ⊂ V
[⊥]
0 , then by claim

(i) we for all v0 + v1 ∈ V and v′0 ∈ V0 have that:

[v0 + v1, v
′
0] = [v0, v

′
0] + [v1, v

′
0] = 0.

Thus v′0 ∈ V [⊥], i.e., V0 ⊂ V [⊥]. �

The following characterisation of semidefinite subspaces of a Krĕın space
is useful. For proof, see Theorems 11.7, 4.2 and 4.4, and Lemma 4.5 of [11].

Proposition A.8. Let K = (K+, K−) be a fundamental decomposition. Let

V ⊂ K and define V± := PK∓

K±
V .

The space V is nonnegative if and only if there exists a Hilbert-space
contraction A+ : K+ → |K−|, such that V = (1 + A+)V+. The space V is
maximally nonnegative if and only if V+ = K+.

The subspace V is nonpositive if and only if there exists a contraction
A− : |K−| → K+, such that V = (1 + A−)V−. The space V is maximally
nonpositive if and only if V− = K−.

The subspace V is neutral if and only if it is nonnegative with an iso-
metric A+, which in turn is true if and only if V is nonpositive with an
isometric A−. The subspace V is Lagrangian if and only if it is both maxi-
mally nonnegative and maximally nonpositive, in which case A+ and A− are
both unitary.

Let V be closed and nonnegative. Then V [⊥] is nonpositive if and only
if V is maximally nonnegative. We can say even more, namely that

V = (1 + A+)K+ =⇒ V [⊥] = (1 + A∗+)K−,

where A∗+ is computed with respect to the inner product on |K−|, i.e., for all
w− ∈ K− and w+ ∈ K+:

(A+w+, w−)|K−| = − [A+w+, w−]
K

=
(
w+,A∗+w−

)
K+

.

It is elementary to characterise Lagrangian subspaces V of finite-dimen-
sional Krĕın spaces. Indeed, the following corollary to Proposition A.8 shows
that it suffices to check that V is neutral and has sufficiently large dimension.

Corollary A.9. Assume that K is a Krĕın space with finite dimension n. If
V ⊂ V [⊥] ⊂ K and dimV ≥ n/2 then V = V [⊥] and dimV = n/2.
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Proof. Assume that V ⊂ V [⊥] and let K = (K+, K−) be a fundamental decom-
position. Then V = (1 + A+)V+ for some isometric A+ : K+ → |K−|. More-
over, V+ ⊂ K+ and therefore necessarily n/2 ≤ dim V ≤ dimV+ ≤ dimK+.
Dually, V = (1 + A−)V− for some isometric A− : |K−| → K+ and V− ⊂ K−
with n/2 ≤ dim V ≤ dimV− ≤ dimK−.

From K = K+∔K− we now get that dimK++dimK− ≤ n, which implies
that dimK± = n/2. Then V± ⊂ K± with dim V± = dimK± = n/2, i.e.,
V± = K±. Thus dimV ≤ n/2 and Proposition A.8 yields that V = V [⊥]. �

We now end this paper by listing a few function spaces, which are fre-
quently used throughout the article.

Definition A.10. Let U be a closed subspace of a Krĕın space and let I = [a, b],
where b > a, or I = [a,∞).

(i) The space of continuous U-valued functions which are defined on I is
denoted by C(I;U). The space C([a, b];U) is a Banach space with the
supremum norm, whereas C([a,∞);U) is a Fréchet space with the fol-
lowing family of seminorms:

‖f‖n := sup
t∈[a,a+n]

‖f(t)‖U , n ∈ Z
+.

The space of U-valued functions with n ∈ Z+ continuous deriva-
tives on I is denoted by Cn(I;U).

(ii) By L2(I;U) we denote the space of all U-valued Lebesgue-measurable
functions f defined on I, such that

‖f‖L2(I;U) :=

(∫

I

‖f(t)‖2
U dt

)1/2

< ∞,

where ‖ · ‖U denotes some arbitrary given admissible norm on U .
(iii) The space L2

loc([a,∞);U) consists of all functions f that lie locally in
L2: ρ[a,b]f ∈ L2([a, b];W) for all b > a. This is a Fréchet space when
equipped with the following family of seminorms:

‖f‖n := ‖ρ[a,a+n]f‖L2([a,a+n];U), n ∈ Z
+.

(iv) The space of functions f ∈ L2(I;U) that have a distribution derivative
g in L2(I;U) is denoted by H1(I;U). By this we mean that f ∈ L2(I;U)
lies in H1(I;U) if and only if there exists g ∈ L2(I;U) such that

∀t ≥ a : f(t) =

∫ t

a

g(s) ds. (A.9)

If (A.9) holds for f, g ∈ L2
loc(I;U), then we write f ∈ H1

loc(I;U).

If W is a Krĕın space and I is a subinterval of R, then L2(I;W) is a
Krĕın space with the inner product [w1, w2] :=

∫
I
[w1(t), w2(t)]W dt, because

every fundamental decomposition W = (W+,W−) induces the fundamental
decomposition

L2(R+;W) =
(
L2(R+;W+), L2(R+;W−)

)
.

The space L2
loc(I;U) is the same as L2(I;U) for all finite intervals I ⊂ R.
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