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The 230-page thesis consists of the following three articles: [KS10b],
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In the thesis I extend parts of a new approach to infinite-dimensional
systems theory known as state/signal systems theory (see [Sta06] and its
references for an overview) from discrete-time systems to continuous-time
systems. In the state/signal approach there is a minimal distinction between
inputs and outputs, and this is an advantage, e.g., when one considers inter-
connections of systems and properties inherent in a system. Controllability,
observability, and passivity are examples of properties which can be defined
without distinguishing inputs from outputs.

All systems considered in the thesis are linear, and in general they are
infinite-dimensional. Therefore unbounded linear operator theory provides
the main tools for the study, and most of the substance of the thesis lies
in the technical details of the appended articles. The main emphasis is on
well-posed systems [KS10b], in particular passive and conservative systems
[Kur10a], and their interconnection theory [KZvdSB10].

I now describe the contents of the thesis in more detail.
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1 Introducing state/signal systems

First consider an input/state/output (i/s/o) system[
ẋ(t)
y(t)

]
=

[
A&B
C&D

] [
x(t)
u(t)

]
, t ≥ 0, x(0) = x0, (1.1)

with an unbounded system node [ A&B
C&D ] with state space X , input space U ,

and output space Y , all Hilbert spaces. See [Kur10b, Def. 2.4] for a definition
of the concept i/s/o system node.

In order to turn the system (1.1) into a state/signal (s/s) system, we first
combine the input u and output y into a single external signal w := [ y

u ].
Then we replace (1.1) by the condition ẋ(t)

x(t)
w(t)

 ∈ V, t ≥ 0, x(0) = x0, where

V =

 A&B[
1 0

][
C&D
[ 0 1 ]

]
 dom ([ A&B

C&D ]) .

(1.2)

In this way we obtain a system without a priori given inputs and outputs.
The external signal w can then easily be decomposed into an input u and
an output y in different ways, depending on what the situation demands.
The system properties are described in terms of geometrical properties of V ,
rather than in terms of [ A&B

C&D ], which is merely one of many i/s/o represen-
tations of the system. We return to this point later.

We now give the general definition of a continuous-time s/s system with-
out assuming an i/s/o representation of the type (1.2).

Definition 1.1. Let X be a Hilbert space and W a Krĕın space, and let V

be a closed subspace of
[
X
X
W

]
. The space V of classical trajectories generated

by V on R+ consists of all pairs [ x
w ] ∈

[
C1(R+;X )

C(R+;W)

]
, such that

[
ẋ(t)
x(t)
w(t)

]
∈ V for

all t > 0.
We say that (V ;X ,W) is a state/signal node if:

(i) The generating subspace V has the property
[

z
0
0

]
∈ V =⇒ z = 0.

(ii) Every vector in V can be chosen as initial data for a classical trajectory
on R+:

∀

 z0

x0

w0

 ∈ V ∃
[

x
w

]
∈ V :

 ẋ(0)
x(0)
w(0)

 =

 z0

x0

w0

 .
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A pair [ x
w ] ∈

[
C(R+;X )

L2
loc(R

+;W)

]
is a generalised trajectory generated by V on

R+ if there exists a sequence of classical trajectories that converges to [ x
w ] in[

C(R+;X )

L2
loc(R

+;W)

]
. We denote the space of generalised trajectories on R+ by W.

By the state/signal system induced by the s/s node (V ;X ,W) we mean
the triple (W;X ,W). �

Thus, a s/s system is essentially a subspace of
[

C(R+;X )

L2
loc(R

+;W)

]
, whose ele-

ments are generalised trajectories induced by the generating subspace V of
some s/s node (V ;X ,W).

Remark 1.2. By definition a s/s node (V ;X ,W) determines the s/s system
(W;X ,W) it induces uniquely, but at the time I wrote my thesis it was not
clear if the converse is true. In [KS10a], however, we establish that a s/s
system (W;X ,W) determines its inducing s/s node uniquely by

V =

{[
ẋ(0)
x(0)
w(0)

] ∣∣∣∣ [
x
w

]
∈ W ∩

[
C1(R+;X )
C(R+;W)

]}
. (1.3)

The equality (1.3) follows from the fact that every generalised trajectory,
which has the required smoothness, is in fact a classical trajectory. This
insight clarifies the continuous-time s/s theory significantly. In particular,
the concept of a maximal generating subspace, which was discussed in Section
6 of [KS10b], becomes superfluous. �

Every i/s/o system node [ A&B
C&D ] induces a s/s node

(
V ;X ,

[
Y
U

])
through

(1.2), but the converse is not true.

Definition 1.3. Let (V ;X ,W) be a s/s node.
If there exists a direct-sum decomposition W = U u Y , such that V can

be written on the form (1.2) for an i/s/o system node [ A&B
C&D ], then (U ,Y) is

said to be an admissible input/output (i/o) pair and ([ A&B
C&D ] ;X ,U ,Y) is the

corresponding i/s/o representation.
A s/s system (V ;X ,W) is well-posed if it has at least one well-posed i/s/o

representation, see [Kur10b, Def. 2.5] for a definition. �

The intuitive interpretation of passivity of a system is a lack of internal
energy sources, and a conservative system is a passive system with no internal
energy sinks. In i/s/o control theory, however, there are several different
kinds of passivity, such scattering and impedance, depending on how the
energy exchange with the surrounding world is takes place. One of the main
ideas of the s/s theory is to unify the theories of these types of passive i/s/o
systems, so that one single proof can be given for the s/s system, rather than
separate but similar proofs for every possible i/o case. We illustrate this
point in Section 3 below.
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2 Passive state/signal systems

We now proceed to study passivity in more detail, and the first step is to
define what passivity means in the s/s setting. We therefore need to turn

the ambient space
[
X
X
W

]
into a Krĕın space by introducing an indefinite inner

product that measures the power lost by the system at any given time.

Definition 2.1. Let X be a Hilbert space with inner product (·, ·)X and let
W be a Krĕın space with indefinite inner product [·, ·]W . The node space is

K :=
[
X
X
W

]
equipped with the sesquilinear power productz1

x1

w1

 ,

z2

x2

w2


K

:= [w1, w2]W − (z1, x2)X − (x1, z2)X . (2.1)

A s/s node (V ;X ,W) (and the system it induces) is passive if V is a
maximally non-negative subspace of K. By this we mean that [v, v]K ≥ 0 for
all v ∈ V and that V has no proper extension which preserves this property.

The s/s node is conservative if V coincides with its orthogonal companion

V [⊥] := {v′ ∈ K | ∀v ∈ V : [v, v′] = 0} . �

It follows from standard Krĕın-space theory that every conservative s/s
system is also passive. The condition that V is nonnegative is equivalent to
the condition that every classical trajectory of a passive s/s system satisfies
the inequality

[w(s), w(s)]W − (ẋ(s), x(s))X − (x(s), ẋ(s))X ≥ 0, s > 0.

Integrating this from 0 to t one obtains the equivalent condition that

‖x(t)‖2
X ≤ ‖x(0)‖2

X +

t∫
0

[w(s), w(s)]W ds, t ≥ 0, (2.2)

and this inequality extends to generalised trajectories as well. The maximal
nonnegativity ensures that there are enough trajectories in the sense that the
s/s system has an i/s/o representation, cf. Theorem 3.1 below.

If a s/s node Σ = (V ;X ,W) has an admissible i/o pair then the s/s
dual Σd = (V [⊥];X ,W) is a time-reflected s/s system. This means that the
trajectories of Σd evolve as t tends from 0 to −∞. More precisely, if we
denote the space of generalised trajectories generated by (V [⊥];X ,W) on R−
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by Wd and the function-reflection operator about 0 by R, then ( RWd,X ,W)
is the s/s system induced by the s/s node (V ′;X ,W), where

V ′ =

{[
−z
x
w

] ∣∣∣∣ [
z
x
w

]
∈ V [⊥]

}
.

Remark 2.2. In particular, a s/s system is conservative if and only if it co-
incides with its own s/s dual, and these systems can thus be solved both in
forward and backward time. See [Kur10a, Thm 4.11] for more details. �

If we drop the maximality condition then there is in general no guarantee
that i/s/o representations exist. For example, ({0} ;X ,W) is a s/s node with
the property that [v, v]K = 0, v ∈ V . The s/s dual of this node is (K;X ,W),
and since K is totally unstructured it has no meaning as a s/s system. In
particular, K does not satisfy condition (i) of Definition 1.1 if X 6= {0}.

3 Input/state/output passivity

Every Krĕın space W has a fundamental decomposition W = W+ u W−,
i.e., a direct-sum decomposition such that W+ is a Hilbert space, W− is an
anti-Hilbert space, and [w+, w−]W = 0 for all w± ∈ W±. For every such
decomposition we have

[w+ + w−, w+ + w−]W = ‖w+‖2
W+

− ‖w−‖2
|W−|, w± ∈ W±, (3.1)

where ‖w−‖2
|W−| = −[w−, w−]W− is a Hilbert-space norm.

The following theorem collects some of the results in [Kur10a].

Theorem 3.1. Let X be a Hilbert space, let W be a Krĕın space, and assume
that V is a maximally non-negative subspace of K with the property (i) in
Definition 1.1. Then Σ = (V ;X ,W) is a passive s/s system.

Moreover, every fundamental decomposition W = W+ uW− induces an
admissible i/o pair (W+,W−) for a passive s/s system Σ, and the correspond-
ing i/s/o representation is scattering passive. Indeed, from (2.2) and (3.1) it
follows that all classical trajectories with u(t) ∈ W+ and y(t) ∈ W− satisfy

‖x(t)‖2
X +

t∫
0

‖y(s)‖2
|W−| ds ≤ ‖x(0)‖2

X +

t∫
0

‖u(s)‖2
W+

ds, t ≥ 0. (3.2)

If Σ is conservative then the i/s/o representation is scattering conservative.
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Conversely, let [ A&B
C&D ] be a scattering passive (conservative) i/s/o system

with state space X , input space U , and output space Y, all Hilbert spaces.
Set W :=

[ {0}
U

]
u

[ Y
{0}

]
, with inner product[[

y1

u1

]
,

[
y2

u2

]]
W

:= (u1, u2)U − (y1, y2)Y .

Then W is a Krĕın space with fundamental decomposition W :=
[ {0}
U

]
u[ Y

{0}
]
, and defining V by (1.2), we obtain a passive (conservative) s/s node

(V ;X ,W) with i/s/o representation
(
[ A&B
C&D ] ;X ,

[ {0}
U

]
,
[ Y
{0}

])
.

Since every scattering-passive i/s/o system is well-posed, it follows that
every passive s/s system is a well-posed s/s system.

Now assume that W = U u Y is a Lagrangian decomposition of W , i.e.,
that U = U [⊥] and Y = Y [⊥]. Then there exist Hilbert-space inner products
on U and Y , and a unitary operator Ψ : U → Y , such that the Krĕın-space
inner product on W is given by[[

y1

u1

]
,

[
y2

u2

]]
W

= (y1, Ψu2)Y + (Ψu1, y2)Y . (3.3)

Combining (2.2) and (3.3), we obtain that the following inequality holds for
every trajectory of a passive state/signal node (u(s) ∈ U and y(s) ∈ Y):

‖x(t)‖2
X ≤ ‖x(0)‖2

X + 2Re

t∫
0

(Ψu(s), y(s))Y ds, t ≥ 0. (3.4)

We have the following variation of Theorem 3.1 for Lagrangian decom-
positions. Unlike fundamental decompositions, Lagrangian decompositions
do not always exist, and if they do, then they need not be admissible for
passive s/s systems. Even if a Lagrangian decomposition is admissible, the
corresponding i/s/o representation may not be well-posed.

Proposition 3.2. Let Σ = (V ;X ,W) be a passive s/s system. If the La-
grangian decompositionW = UuY is admissible for Σ then the corresponding
i/s/o representation is impedance passive, since all its classical trajectories
satisfy (3.4). If Σ is conservative then the i/s/o representation is impedance
conservative.

Conversely, let [ A&B
C&D ] be an impedance passive (conservative) i/s/o sys-

tem with state space X , input space U , and output space Y, all Hilbert spaces.
Set W :=

[ {0}
U

]
u

[ Y
{0}

]
, with inner product (3.4). Then W is a Krĕın

space, and defining V by (1.2), we obtain a passive (conservative) s/s node
Σ = (V ;X ,W). Furthermore, the Lagrangian i/o pair

([ {0}
U

]
,
[ Y
{0}

])
is ad-

missible for Σ and the corresponding i/s/o representation is [ A&B
C&D ].
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The energy inequalities (3.2) and (3.4) correspond to the fundamental and
Lagrangian decompositions of W , respectively, but the property of passivity
is characterised by the maximal non-negativity of V . Thus passivity is an
input/output invariant property of the state/signal node. Moreover, a passive
s/s system is characterised by the fact that V is a maximally non-negative
subspace of K with the property (i) in Definition 1.1. Comparing this to the
rather complicated definition of an i/s/o system node, we see that the s/s
definition is much simpler, in addition to being more general.

4 Port-Hamiltonian systems

In the second and shorter part of the thesis I discuss port-Hamiltonian sys-
tems in the Hilbert space setting. Port-Hamiltonian systems have their
historical roots in energy-based modelling and control of physical systems,
mainly non-linear finite-dimensional systems, and the theory has turned out
to be useful in applications; see for example the energy-efficient walking
robots developed by Duindam and Stramigioli [DS09].

A port-Hamiltonian system essentially consists of two parts: the Hamil-
tonian H, which measures the total energy of the system when it is in a
given state x, and the Dirac structure D. In the thesis only a quadratic
Hamiltonian of the type

H(x(t, ·)) =
1

2

∫
z∈Ω

‖x(t, z)‖2 dz

is considered, where Ω is the domain of the underlying partial differential
equation, because I only work with linear systems, but one can also use non-
quadratic Hamiltonians. The Dirac structure encodes the relations between
the system variables and it is essentially the port-Hamiltonian equivalent of
the generating subspace V .

The Dirac structure also describes how the system acts when it is in-
terconnected with another port-Hamiltonian system. Interconnection is a
fundamental operation in control theory, since plants are controlled by in-
terconnection with controllers. In the Port-Hamiltonian context, intercon-
nection is a generalisation of the feedback control found in classical control
theory. In the thesis I describe how interconnection of port-Hamiltonian
systems is carried out by composing their respective Dirac structures.

The article [KZvdSB10] aims at giving useful necessary and sufficient
conditions for the composition of two Dirac structures to be a Dirac struc-
ture, i.e., for the energy-preserving interconnection of two port-Hamiltonian
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systems to be a port-Hamiltonian system. In the finite-dimensional case the
composition of two Dirac structures is always a Dirac structure, but this
question is non-trivial in the infinite-dimensional setting.

The theoretical concepts discussed in the thesis are throughout illustrated
on the example of an ideal transmission line. In particular, I give an ex-
ample from [KZvdSB10], where the Telegrapher’s equations that describe
the dynamics of the transmission line are turned into a Schrödinger equa-
tion by composition with another Dirac structure along the spatial domain
Ω = (0,∞). On a more abstract level, the same example connects the port-
Hamiltonian system to its close relative, the conservative s/s system.
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