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1. Introduction

We give an introduction to the basic theory of state/signal systems
via boundary control. More precisely, we discuss the connection be-
tween some basic notions of boundary control state/signal systems on
one hand, and classical boundary triplets on the other hand. Bound-
ary triplets and their generalizations have been extensively utilized in
the theory of self-adjoint extensions of symmetrical operators in Hilbert
spaces, see e.g. [Gorbachuk and Gorbachuk, 1991], [Derkach and Malamud, 1995],
[Behrndt and Langer, 2007], and the references therein.

The notions related to standard input/state/output boundary con-
trol systems are discussed in Section 2, where we also introduce the
boundary control state/signal system. In Section 3 we briefly discuss
the concept of conservativity in the state/signal framework and in Sec-
tion 4 we illustrate the abstract concepts using the example of a finite-
length conservative LC-transmission line with distributed inductance
and capacitance.

We conclude this chapter in Section 5, where we recall the definition
of a boundary triplet for a symmetric operator and compare this object
to a boundary control state/signal system. In particular, we show
that every boundary triplet can be transformed into a conservative
boundary control state/signal system in impedance form, but that the
converse is not true. We make a few final remarks about common
generalizations of boundary triplets, which leads over to Chapter ??,
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where we treat more general passive state/signal systems, not only
conservative systems or systems of boundary-control type. There we
show how conservative state/signal systems are related to boundary
relations.

2. Boundary control systems

In this section we introduce boundary control state/signal systems
by first describing their predecessors, input/state/output systems of
boundary-control type.

In boundary control one often investigates systems that can be ab-
stractly written in the form

(2.1) Σi/s/o :


ẋ(t) = Lx(t),

u(t) = Γ0x(t),

y(t) = Γ1x(t),

t ∈ R+, x(0) = x0 given,

where R+ = [0,∞) and ẋ = dx
dt

. Here the initial state x0 and the current
state x(t) belong to the Hilbert state space X , the input u(t) belongs
to the Hilbert input space U , and the output y(t) belongs to the Hilbert
output space Y . The main operator L is an unbounded operator in X
with domain dom (L), and the boundary control operator Γ0 is an un-
bounded operator X → U with the same domain as L. The observation
operator Γ1 : X → Y may be bounded or unbounded, and it is defined
at least on dom (L). All of these operators are linear. We denote the
system (2.1) with these properties by Σi/s/o = (L,Γ0,Γ1;X ,U ,Y).

In order for (2.1) to generate a dynamical system with good prop-
erties at least the properties listed in the following definition need to be
assumed; see e.g. [Salamon, 1987], [Staffans, 2005], or [Malinen and Staffans, 2006]
for details.

Definition 1. Assume that Σi/s/o = (L,Γ0,Γ1;X ,U ,Y) is as described
above. Then Σi/s/o is a boundary control input/state/output (i/s/o)
node if Σi/s/o satisfies the following conditions:

(1) The input operator Γ0 is surjective and strictly unbounded in
the sense that ker (Γ0) is dense in X .

(2) The restriction A := L|ker(Γ0) of L to ker (Γ0) generates a C0-
semigroup t 7→ At, t ∈ R+.

A boundary control state/signal system is analogous to a boundary
control i/s/o system, but we no longer specify which part of the “bound-

ary signal” w(t) :=
[
u(t)
y(t)

]
is the input, and which part is the output.

Instead we combine the input and output spaces into one signal space
W :=

[
U
Y
]

= U × Y , and denote Γ :=
[

Γ0
Γ1

]
. Then Γ: dom (L) → W ,
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and (2.1) can be rewritten in the form

(2.2) Σ :

{
ẋ(t) = Lx(t),

w(t) = Γx(t),
t ∈ R+, x(0) = x0 given.

As before, the initial state x0 and the current state x(t) belong to
the Hilbert state space X . The (interaction) signal w(t) belongs to
the signal space W , which we take to be an arbitrary Krĕın space (the
reason for this will be explained below). We thus no longer assume
that W is of the form W =

[
U
Y
]
, where U and Y are the input and

output spaces of a boundary control i/s/o node. The main operator L
is still an unbounded operator X → X with domain dom (L), and the
boundary operator Γ is an unbounded operator X → W with the same
domain as L. We denote this system by Σ = (L,Γ;X ,W).

Note that (2.2) can be written in the graph form:

Σ :

 ẋ(t)
x(t)
w(t)

 ∈ V, t ∈ R+, x(0) = x0,

where the generating subspace V is the graph of [ LΓ ]:

(2.3) V :=

{[
Lx
x

Γx

] ∣∣∣∣ x ∈ dom (L)

}
.

The unbounded operator [ LΓ ] is assumed to be closed, and this is
equivalent to assuming that V is a closed subspace of the node space
X × X ×W . The generating subspace is the key to generalizing the
state/signal theory beyond boundary control, as we shall see in Chap-
ter ??. We define the dynamics of a state/signal system using the
generating subspace V .

Definition 2. Let V be a closed subspace of X × X ×W .

(1) The pair [ xw ] is a classical trajectory generated by V on R+ if

x ∈ C1(R+;X ), w ∈ C(R+;W), and

[
ẋ(t)
x(t)
w(t)

]
∈ V for all t > 0.

(2) The pair [ xw ] is a generalized trajectory generated by V on R+

if x ∈ C(R+;X ), w ∈ L2
loc(R+;W), and there exists a sequence

of classical trajectories [ xnwn ] such that xn → x uniformly on all
bounded intervals [0, T ] and wn → w in L2

loc(R+;W).

Note that

[
ẋ(t)
x(t)
w(t)

]
∈ V for all t > 0 in item (1) of Definition 2 if and

only if

[
ẋ(t)
x(t)
w(t)

]
∈ V for all t ∈ R+ when we interpret ẋ(0) as the right-

sided derivative of x at zero. We are now ready to define a boundary
control s/s system.

Definition 3. A boundary control state/signal (s/s) node is a quadru-
ple Σ = (L,Γ;X ,W) such that:
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(1) The space X is a Hilbert space and W is a Krĕın space.
(2) The operator [ LΓ ] : X → [ XW ] is closed and densely defined.
(3) The range of Γ is dense in W .

By the boundary control state/signal system induced by a boundary
control s/s node (L,Γ;X ,W) we mean this node together with the sets
of classical and generalized trajectories generated by V in (2.3) on R+.
We denote both the node and the system by Σ = (L,Γ;X ,W).

In Definition 4 below we will equip the node space X ×X ×W with
an indefinite inner product which makes it a Krĕın space.

3. Conservative state/signal systems in boundary control

In this chapter we shall focus our attention on s/s systems Σ whose
classical trajectories on R+ satisfy the power equality

(3.1)
d

dt
‖x(t)‖2

X = [w(t), w(t)]W , t ∈ R+.

Here ‖x(t)‖2
X stands for (two times) the internal energy stored in the

state x at time t and [w(t), w(t)]W represents (two times) the power
(energy flow per time unit) entering the system through the signal w(t)
at time t. This explains why we need to takeW to be a Krĕın space: we
must allow the inner product [·, ·]W in W to be indefinite: if the inner
product inW is non-negative, then no energy can leave the system via
the (interaction) signal, and if the inner product in W is non-positive,
then no energy can enter the system via the signal.

The equality (3.1) says that the system has no internal energy sources
or sinks. However, the equality is not enough to make the system Σ
conservative: we need an additional hypermaximality condition. We
give the full definition of a conservative boundary control s/s system
in Definition 5 below.

After integration over the interval [s, t] ⊂ R+, one can rewrite (3.1)
in the equivalent form

(3.2) ‖x(t)‖2
X − ‖x(s)‖2

X =

∫ t

s

[w(v), w(v)]W dv, s, t ∈ R+, s ≤ t.

By the continuity of the inner product this inequality remains valid for
generalized trajectories as well.

Carrying out the differentiation in (3.1), we get a third equivalent
condition in terms of classical trajectories, namely

(3.3) −(ẋ(t), x(t))X − (x(t), ẋ(t))X + [w(t), w(t)]W = 0, t ∈ R+.

Using item (1) of Definition 2, we see that (3.3) always holds if

(3.4) −(z, x)X − (x, z)X + [w,w]W = 0,
[
z
x
w

]
∈ V.

It is now natural to make the following definition:
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Definition 4. Let X be a Hilbert space and W a Krĕın space. The
corresponding node space is the product space K = X×X×W equipped
with the indefinite inner product induced by the quadratic form in
(3.4):

(3.5)
[[

z1
x1
w1

]
,
[
z2
x2
w2

]]
K

= −(z1, x2)X − (x1, z2)X + [w1, w2]W .

Note that the the quadratic form in (3.4) is strictly indefinite, i.e.,
it takes both positive and negative values whenever X 6= {0}. Fur-
thermore, the inner product in (3.5) makes the node space K a Krĕın
space.

The equality (3.4) says that V is a neutral subspace of K with respect
to the inner product (3.5), i.e., that [v, v]K = 0 for all v ∈ V . The
condition that a subspace V is a neutral subspace of K can equivalently
be written V ⊂ V [⊥], where

(3.6) V [⊥] :=
{
k ∈ K

∣∣ [k, k′]K = 0 for all k′ ∈ V
}
.

If instead V [⊥] ⊂ V , then V is called co-neutral, and if V [⊥] = V , then
V is called Lagrangian or hypermaximal neutral.

Definition 5. A boundary control s/s system Σ = (L,Γ;X ,W) is con-
servative if its generating subspace V in (2.3) is a Lagrangian subspace
of the node space K, i.e., if V = V [⊥].

Since every orthogonal companion is closed, necessarily every La-
grangian subspace is closed. Moreover, in [Kurula et al., 2010, Thm
4.3] it was proved that if V in (2.3) is Lagrangian then ker (Γ) is dense
in X and ran (Γ) is dense in W . Since ker (Γ) ⊂ dom (Γ) = dom (L),
the operator [ LΓ ] is closed and automatically densely defined. Thus the
conditions in Definition 3 are satisfied for every Lagrangian subspace
V of the type (2.3). See also [Derkach et al., 2006, Cor. 2.4].

Remark 6. In the boundary control case the neutrality condition V ⊂
V [⊥] means that

(3.7) (Lx, x)X + (x, Lx)X = [Γx,Γx]W , x ∈ dom (L) .

However, if V is only neutral, then V might for instance be the degen-
erate trivial system {0}. This case is excluded by the hypermaximality
condition V ⊃ V [⊥], which in the case of boundary control means that
(3.8)

(z1, x)X + (x1, Lx)X = [w1,Γx]W , x ∈ dom (L) =⇒
[
z1
x1
w1

]
∈ V.

Letting X be a Hilbert space, W be a Krĕın space, and [ LΓ ] : X →
[ XW ], we thus have that Σ = (L,Γ;X ,W) is a conservative boundary
control s/s system if and only if the conditions (3.7) and (3.8) are
satisfied.
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4. An example: the transmission line

An ideal transmission line of length ` can be modeled by the following
equations, where ξ ∈ [0, `] and t ∈ R+:

(4.1)

∂

∂t

[
i(ξ, t)
v(ξ, t)

]
=

[
0 − 1

L(ξ)
∂
∂ξ

− 1
C(ξ)

∂
∂ξ

0

][
i(ξ, t)
v(ξ, t)

]
,

w(t) =

[
i(0,t)
v(0,t)
−i(`,t)
v(`,t)

]
,

[
i(ξ, 0)
v(ξ, 0)

]
=

[
i0(ξ)
v0(ξ)

]
.

Here i(ξ, t) and v(ξ, t) are the current and voltage, respectively, at the
point ξ ∈ [0, `] at time t ∈ R+. The functions L(·) > 0 and C(·) > 0
represent the distributed inductance and capacitance, respectively, of
the line. For simplicity we assume that C(·) and L(·) are continuous
on [0, `], which implies that C and L are both bounded and bounded
away from zero. The transmission line is illustrated in Figure 1.

ξ0 `

i(0, t)

v(0, t)
v(ξ, t)

i(ξ, t)

L(ξ) dξ
−i(`, t)

v(`, t)C(ξ) dξ

ξ + dξ

Figure 1. An ideal LC-transmission line of length `
with distributed inductance L and capacitance C. Here
i(ξ, t) and v(ξ, t) denote the current and the voltage, re-
spectively, at the point ξ ∈ [0, `] at time t ∈ R+.

The natural state at time t of this transmission line is the current-
voltage vector x(t) =

[
i(·,t)
v(·,t)

]
, t ∈ R+, and the initial state is x(0) =[

i(·,0)
v(·,0)

]
=
[
i0(·)
v0(·)

]
=: x0. We take the state space X to be L2

(
[0, `];C2

)
with inner product (·, ·)X defined by([

i1(·)
v1(·)

]
,
[
i2(·)
v2(·)

])
X

=

∫ `

0

(
L(ξ)i1(ξ)i2(ξ) + C(ξ)v1(ξ)v2(ξ)

)
dξ.(4.2)

In our setting the corresponding quadratic form (x(t), x(t))X is equiv-
alent to the standard inner product on L2([0, `];C2) and its value is
two times the energy stored in the state x(t) of the transmission line
at time t.

The operator L is given by

L :=

[
0 − 1

L(ξ)
∂
∂ξ

− 1
C(ξ)

∂
∂ξ

0

]
, dom (L) := W 1,2([0, `];C2),
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where W 1,2([0, `];C2) is the Sobolev space of absolutely continuous
functions in L2([0, `];C2) which have a distribution derivative in L2([0, `];C2).
The signal space W is C4 equipped with the indefinite inner product
(4.3)[[

i01
v01
i`1
v`1

]
,

[
i02
v02
i`2
v`2

]]
W

=

([
i01
v01
i`1
v`1

]
, JW

[
i02
v02
i`2
v`2

])
C4

, JW =

[
[ 0 1

1 0 ] 0
0 [ 0 1

1 0 ]

]
.

The boundary operator Γ has the same domain as L, and it is given by

Γ
[
i(·)
v(·)

]
=

[
i(0)
v(0)
−i(`)
v(`)

]
.

The operator [ LΓ ] is closed as an operator from X to [ XW ] with domain
dom ([ LΓ ]) = dom (L) = W 1,2([0, `];C2). With these definitions, the
transmission line can be modeled as an example of a boundary control
s/s system in the sense of Definition 3, as we now show.

We next derive the appropriate Lagrangian identity. Combining

x(t) =
[
i(·,t)
v(·,t)

]
, (4.1), and (4.2), we make the following computations

for t > 0:

d

dt
‖x(t)‖2

X = 2Re (x(t), ẋ(t))X

= 2Re

∫ `

0

(
L(ξ)i(ξ, t)

∂

∂t
i(ξ, t) + C(ξ)v(ξ, t)

∂

∂t
v(ξ, t)

)
dξ

= −2

∫ `

0

Re

(
i(ξ, t)

∂

∂ξ
v(ξ, t) +

∂

∂ξ
i(ξ, t)v(ξ, t)

)
dξ

= −2

∫ `

0

Re
∂

∂ξ

(
i(ξ, t)v(ξ, t)

)
dξ

= −2Re
[
i(ξ, t)v(ξ, t)

]`
ξ=0

= 2Re i(0, t)v(0, t)− 2Re i(`, t)v(`, t)

=

([
i(0,t)
v(0,t)
−i(`,t)
v(`,t)

]
,

[
[ 0 1

1 0 ] 0
0 [ 0 1

1 0 ]

][ i(0,t)
v(0,t)
−i(`,t)
v(`,t)

])
C4

= [Γx(t),Γx(t)]W ,

where we have used that (′ denotes spatial derivative)

2Re (iv′ + i′v) = iv′ + i′v + iv′ + i′v = 2Re (iv)′

in the fourth equality. Thus, [w(t), w(t)]W = [Γx(t),Γx(t)]W is two
times the power entering the transmission line through the terminals
at the ends ξ = 0 and ξ = ` of the line at time t ≥ 0.

These computations tell us that the generating subspace V is a neu-
tral subspace of the node space K, i.e., that (3.7) holds. It is not difficult
to show that this subspace is not only neutral, but even Lagrangian, so
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that (3.8) also holds; see Example 11 below for the proof idea. Thus,
the transmission line gives rise to a conservative boundary control s/s
system.

Remark 7. Set U := C2, R := iL|ker Γ, and

(4.4) Γ0

[
i(·)
v(·)

]
:=
[
i(0)
−i(`)

]
and Γ1

[
i(·)
v(·)

]
:=
[
v(0)
v(`)

]
.

Then R is a closed, densely defined and symmetric operator in the
Hilbert space X , and the triple (Γ0,−iΓ1;U) is a boundary triplet for
R∗ = −iL in the standard sense; see below. The boundary triplet and
its connection to boundary-control state/signal systems is the topic of
the last section of this chapter.

Recall that [w(t), w(t)]W is two times the power entering the trans-
mission line through the terminals at the ends ξ = 0 and ξ = ` of the
line at time t ≥ 0. The decomposition in (4.4) of Γ into an input map
Γ0 and an output map Γ1 corresponds to choosing the current entering
the system at ξ = 0 and ξ = ` as input and the voltages at both ends
as output, cf. (2.1). We refer to this as an impedance decomposition of
the external signal w.

Several other choices of input and output would have been possible,
such as for example

(4.5)

Γ̃0

[
i(·)
v(·)

]
:=

1√
2

(
Γ1 + Γ0

) [ i(·)
v(·)

]
=

1√
2

[
v(0)+i(0)
v(`)−i(`)

]
and

Γ̃1

[
i(·)
v(·)

]
:=

1√
2

(
Γ1 − Γ0

) [ i(·)
v(·)

]
=

1√
2

[
v(0)−i(0)
v(`)+i(`)

]
, or

(4.6) Γ̂0

[
i(·)
v(·)

]
:=
[
i(0)
v(0)

]
and Γ̂1

[
i(·)
v(·)

]
:=
[
−i(`)
v(`)

]
.

In (4.5) we have∥∥∥Γ̃0

[
i(·)
v(·)

]∥∥∥2

C2
−
∥∥∥Γ̃1

[
i(·)
v(·)

]∥∥∥2

C2
=
[
Γ
[
i(·)
v(·)

]
,Γ
[
i(·)
v(·)

]]
W
,

where [·, ·]W still denotes the inner product (4.3). This decomposition
is an example of a scattering decomposition. In (4.6) we choose voltage
and current at ξ = 0 as input and the voltage and current at ξ = ` as
output, and this in an example of a transmission decomposition.

Remark 8. Making a different choice of input and output signals re-
sults in a different map from the input to the output, i.e., a different
input/state/output representation, with possibly widely different prop-
erties. However, the physical system, i.e., the LC-transmission line with
length `, is still the same. This “input/output-free” paradigm is inher-
ent in the state/signal philosophy.
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5. The connection to boundary triplets

Boundary triplets originate from the extension theory of symmetrical
operators on Hilbert spaces. The following definition is adapted from
[Gorbachuk and Gorbachuk, 1991, pp. 154–155], using the more recent
terminology and notations from [Derkach et al., 2006, Def. 5.1].

Definition 9. Let R be a closed densely defined symmetric operator on
the Hilbert space X with equal (finite or infinite) defect numbers n± :=
dim ker (R∓ i). Let U be another Hilbert space, the “external Hilbert
space”, and let Γj, j = 0, 1, be linear operators mapping dom (R∗) into
U .

The triplet (Γ0,Γ1;U) is called a boundary triplet for the operator
R∗ if the following two conditions hold:

(1) For all x1, x2 ∈ dom (R∗) we have

(R∗x1, x2)X − (x1, R
∗x2)X = (Γ0x1,Γ1x2)U − (Γ1x1,Γ0x2)U .

(2) The range of the combined operator Γ :=
[

Γ0
Γ1

]
is [ UU ].

Here condition (1) is the Lagrangian identity and condition (2) can be
interpreted as a regularity condition or a (hyper)maximality condition.

By a direct-sum decomposition W = UuY of a Krĕın space we mean
that U and Y are closed subspaces of W , such that U + Y = W and
U ∩ Y = {0}. This decomposition is Lagrangian if U and Y are both
Lagrangian subspaces: U = U [⊥] and Y = Y [⊥]. For every Hilbert space
U , the direct-sum decomposition

(5.1) W = Ũ u Ỹ :=
[ U
{0}
]
u
[ {0}
U

]
of W = U2 is Lagrangian if W has the inner product

(5.2) [[ u1y1 ] , [ u2y2 ]]W = (u1, y2)U + (y1, u2)U .

For instance, the impedance decomposition in the transmission line
example, where we take the currents as input and voltages as outputs,
is a Lagrangian decomposition.

For a proof of the following result, see [Malinen and Staffans, 2007,
Sec. 5]:

Theorem 10. Let R be a closed and densely defined symmetric oper-
ator on X with equal defect numbers, and let (Γ0,Γ1;U) be a boundary
triplet for R∗. Take W := [ UU ] with the indefinite inner product (5.2)
and define Γ :=

[
Γ0
iΓ1

]
with dom (Γ) = dom (R∗).

Then Σ = (iR∗,Γ;X ,W) is a boundary control s/s system in the
sense of Definition 3. The system is moreover conservative: V = V [⊥],
where V is given by (2.3).

Consider the conservative boundary control s/s system Σ in Theorem
10. The input/state/output representation

Σi/s/o =
(
iR∗,

[
Γ0

{0}

]
,
[
{0}
iΓ1

]
;X ,

[ U
{0}
]
,
[ {0}
U

])
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corresponding to the Lagrangian decomposition (5.1) is an example of
an impedance representation of Σ. We investigate these concepts in
more detail in Section ?? of Chapter ??.

The converse of Theorem 10 is not true: there do exist conservative
boundary control s/s systems which are not induced by any boundary
triplet of the type in Definition 9. These examples are of two types:

(1) The signal spaceW need not have a Lagrangian decomposition.
A necessary and sufficient condition for the existence of a La-
grangian decomposition is that ind+W = ind−W (≤ ∞); see
Example 11 below. In the case of a boundary triplet we always
have at least the Lagrangian decomposition (5.1).

(2) Even if the signal space W has a Lagrangian decomposition
the main operator L need not be closed, and we can thus not
have L = iR∗. Moreover, the operator Γ :=

[
Γ0
Γ1

]
need not be

surjective. See [Malinen and Staffans, 2007] for an example.
More precisely, let Σ = (L,Γ;X ,W) be a conservative bound-

ary control s/s system. According to [Kurula et al., 2010, Prop.
4.5], L is closed if and only if the range of Γ is closed. Com-
bining this with the condition that Γ has dense range, we ob-
tain that L is closed if and only if Γ is surjective. The same
conclusion can be made based on Prop. 2.3 and Cor. 2.4 of
[Derkach et al., 2006].

We now give an example of a conservative boundary control s/s sys-
tem that is not induced by a boundary triplet. In a scattering setting
this system has no input and a one-dimensional output, and the C0-
semigroup describing the system dynamics is the left shift in L2(R+;C).

Example 11. Choose X := L2(R+;C) with its standard Hilbert-space
inner product, set W := −C, and define

V :=


 dx

dξ

x
x(0)

∣∣∣∣∣∣x ∈ W 1,2(R+;C)

 ⊂ X × X ×W .

It is clear that
[
z
0
0

]
∈ V implies that z = 0, and we will now show that

V = V [⊥], i.e., that (V ;X ,W) is a conservative boundary control s/s
system. Note that the signal space W has no Lagrangian decomposi-
tions.
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We first prove that V [⊥] ⊂ V . By definition
[
z̃
x̃
w̃

]
∈ V [⊥] if and only

if
[
z̃
x̃
w̃

]
∈ K = L2(R+;C)× L2(R+;C)×C and for all x ∈ W 1,2(R+;C):

(5.3)

 z̃
x̃
w̃

 ,
 dx

dξ

x
x(0)


K

= −w̃ x(0)−
∫ ∞

0

(
x̃(ξ)

dx

dξ
(ξ) + z̃(ξ)x(ξ)

)
dξ = 0.

In particular, if we let x vary over the set of test functions in C∞ with
support contained in (0,∞), then x(0) = 0, and we find that dx̃

dξ
= z̃

in the distribution sense. Since both x̃ and z̃ belong to L2(R+;C), this
implies that x̃ ∈ W 1,2(R+;C). This makes it is possible to integrate by
parts in (5.3), using that z̃(ξ) = dx̃

dξ
(ξ), in order to get that

w̃ x(0) = x̃(0)x(0), x ∈ W 1,2(R+;C).

Thus w̃ = x̃(0), and this proves that V [⊥] ⊂ V .
In order to show that V ⊂ V [⊥], we choose x̃ ∈ W 1,2(R+;C) ar-

bitrarily, and we set z̃ := dx̃
dξ

and w̃ := x̃(0). Then (5.3) holds for all

x, x̃ ∈ W 1,2(R+;C), i.e., V ⊂ V [⊥]. We are done proving that V = V [⊥],
and therefore, that (V ;X ,W) is a conservative boundary control s/s
system whose signal spaceW = −C has no Lagrangian decompositions.

The i/s/o case where Γ =
[

Γ0
Γ1

]
: X → U2 has dense but non-

closed range has been treated using generalized boundary triplets in
[Derkach and Malamud, 1995] and using quasi boundary triplets in [Behrndt and Langer, 2007].
Interconnection of conservative boundary control i/s/o systems with
surjective

[
Γ0
Γ1

]
was worked out in detail in [Kurula et al., 2010].

A considerably more general notion than that of a boundary triplet
is that of a boundary relation which was extensively studied in e.g.
[Derkach et al., 2006]. The topic of Chapter ??, which is more detailed
than he present one, is to show how boundary relations are connected to
general (non-boundary control) s/s systems. There the main point is to
show that the notion of a boundary relation is connected to the notion
of a conservative state/signal system in the same way as the boundary
triplet is related to the boundary control s/s system: the former arises
as a particular i/s/o impedance representation of the latter.
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