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Abstract

This work is devoted to the construction of canonical passive and
conservative state/signal shift realizations of arbitrary passive contin-
uous time behaviors. By definition, a passive future continuous time
behavior is a maximal nonnegative right-shift invariant subspace of the
Krĕın space L2([0,∞);W), where W is a Krĕın space, and the inner
product in L2([0,∞);W) is the one inherited from W. A state/signal
system Σ = (V ;X ,W), with a Hilbert state space X and a Krĕın sig-
nal space W, is a dynamical system whose classical trajectories (x,w)
on [0,∞) satisfy x ∈ C1([0,∞);X ), w ∈ C([0,∞);W), and

(ẋ(t), x(t), w(t)) ∈ V, t ∈ [0,∞),

where the generating subspace V is a given subspace of the node space
K := X ×X ×W. Passivity of this systems means that V is maximal
nonnegative with respect to a certain Krĕın space inner product on K,
and that (z, 0, 0) ∈ V implies z = 0.

We present three canonical passive shift models: a) an observable
and co-energy preserving model, b) a controllable and energy preserv-
ing model, and c) a simple conservative model. In order to construct
these models we first introduce the notions of the input map, the out-
put map, and the past/future map of a passive state/signal system.
Our canonical passive state/signal shift realizations are analogous to
the corresponding de Branges–Rovnyak type input/state/output real-
izations of a given Schur function.

Keywords

Passive, conservative, behavior, state/signal system, de Branges–
Rovnyak model, input/state/output system, input map, output map,
past/future map, transfer function, Krein space.
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1 Introduction

A linear continuous time invariant s/s (state/signal) system Σ = (V ;X ,W)
has a Hilbert (state) space, a Krĕın (signal) space, and a closed (generating)

subspace V of the (node) space K =
[
X
X
W

]
that satisfies some additional

conditions, among them the condition[
z
0
0

]
∈ V ⇒ z = 0. (1.1)

Condition (1.1) means that V is the graph of some linear operator G : [ XW ]→
X with domain dom

(
G
)
⊂ [ XW ]. Since V is assumed to be closed, the operator

G is closed. The reason for takingW to be a Krĕın space instead of a Hilbert
space will be explained later when we come to the notion of a passive s/s
system.

Let I ⊂ R be a time interval with positive length. By a classical trajectory

of Σ on I we mean a pair of functions [ xw ] ∈
[
C1(I;X )
C(I;W)

]
satisfying

Σ :

 ẋ(t)
x(t)
w(t)

 ∈ V, t ∈ I, (1.2)

or equivalently,

Σ :
[
x(t)
w(t)

]
∈ dom

(
G
)

and ẋ(t) = G
[
x(t)
w(t)

]
, t ∈ I. (1.3)

By a generalized trajectory of Σ on I we mean a pair of functions [ xw ] ∈[
C(I;X )

L2
loc(I;W)

]
which is the limit in this space of a sequence [ xnwn ] of classical

trajectories of Σ on I.
We call Σ passive if its generating subspace V satisfies two additional con-

ditions. The first condition is related to the fact that its classical trajectories
should satisfy the (power) inequality

d

dt
‖x(t)‖2

X ≤ [w(t), w(t)]W , t ∈ I, (1.4)

or equivalently,

− (ẋ(t), x(t))X − (ẋ(t), x(t))X + [w(t), w(t)]W ≥ 0, t ∈ I. (1.5)

Above ‖x(t)‖2
X stands for the internal energy stored in the state x at time t

and [w(t), w(t)]W represents the power flow (energy flow per time unit) into
the system at time t through the signal w(t). Incidentally, this explains why

4



we need to allow the inner product inW to be indefinite: If the inner product
inW is positive, then no energy can leave the system through the signal, and
if the inner product in W is negative, then no energy can enter the system.
The inequality (1.4) says that the system has no internal energy sources.

By (1.2), a sufficient condition for (1.4) and (1.5) to hold is that

− (z, x)X − (z, x)X + [w,w]W ≥ 0,
[
z
x
w

]
∈ V. (1.6)

This makes it natural to introduce the following (strictly indefinite) Krĕın
space inner product in the node space K:[[

z1
x1
w1

]
,
[
z2
x2
w2

]]
K

= −(z1, x2)− (x1, z2) + [w1, w2]W . (1.7)

Then (1.6) says that V is a nonnegative subspace of K with respect to the
inner product (1.7), and (1.5) can be rewritten in the form[[

ẋ(t)
x(t)
w(t)

]
,

[
ẋ(t)
x(t)
w(t)

]]
K

= − d

dt
‖x(t)‖2

X + [w(t), w(t)]W ≥ 0, t ∈ I. (1.8)

The first condition that we require of the system Σ = (V ;W ,W), in addition
to (1.1), in order to call it passive is that V is a nonnegative subspace of the
node space K with respect to the inner product in (1.7).

The second condition that we require of Σ in order to be passive is a
maximality condition. It is not enough to require V to be nonnegative in K,
but it should be even maximal nonnegative, i.e., it should not be properly
contained in any other nonnegative subspace of K. This condition is analo-
gous to the condition that one needs to impose on an operator A in order
for A to generate a C0 contraction semigroup on a Hilbert space X : It is not
enough that A is dissipative, but it must, in fact, be maximal dissipative.

Thus, summarizing the preceding discussion, Σ = (V ;X ,W) is a pas-
sive s/s system if V is a maximal nonnegative subspace of K with respect
to the inner product in (1.7) and (1.1) holds. Note, in particular, that the
maximality of V implies that V is closed.

One often encounters passive s/s systems where (1.4)–(1.6) hold as equal-
ities instead of inequalities. Such systems are called energy preserving. Thus,
a passive energy preserving system is characterized by the fact that V is max-
imal nonnegative and neutral, i.e., V ⊂ V [⊥], where V [⊥] is the orthogonal
companion to V in K. If instead V is maximal nonnegative and co-neutral,
i.e., V [⊥] ⊂ V , then Σ is called co-energy preserving. Finally, if V is La-
grangian, i.e., if V = V [⊥], then V is called conservative.
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By integrating (1.4) over the interval [s, t] one can rewrite (1.4) in the
equivalent form

‖x(t)‖2
X − ‖x(s)‖2

X ≤
∫ t

s

[w(v), w(v)]W dv, s, t ∈ I, s ≤ t. (1.9)

By continuity of the integral, (1.9) remains valid for all generalized trajec-
tories of Σ on I. The right-hand side of (1.9) can be interpreted as the
inner product of the function w restricted to the interval [s, t] with itself in
a certain Krĕın space. For each interval I with positive length we define the
Krĕın space K2(I;W) to be the space which coincides with L2(I;W) as a
topological vector space, equipped with the inner product

[w1, w2]K2(I;W) :=

∫
I

[w1(s), w2(s)]W ds. (1.10)

The quadratic form [w,w]K2(I;W) measures the amount of energy that enters
the s/s system Σ = (V ;X ,W) through the signal w during the time interval
I when its evolution is described by a generalized trajectory [ xw ] with w ∈
L2(I;W). We shall be especially interested in the cases where I = R+, I = R,
or I = R−, and denote

K2(W) := K2(R;W), K2
±(W) := K2(R±;W). (1.11)

In view of (1.9), the family K0,t :=
[ X

X
K2([0,t];W)

]
, t ∈ R+, of Krĕın spaces

which the indefinite inner products[[
z1
x1
w1

]
,
[
z2
x2
w2

]]
K0,t

= −(z1, z2) + (x1, x2) + [w1, w2]K2([0,t];W) (1.12)

enters naturally into the theory of passive s/s systems. Indeed, inequality
(1.9) says that if we denote

T0,t :=

{[
x(t)
x(0)
π[0,t]w

]∣∣∣∣ [ xw ] is a generalized trajectory of Σ on [0, t]

}
,

then T0,t is a nonnegative subspace of K0,t for all t ∈ R+. As will be shown
in Theorem 3.5 below, it is even maximal nonnegative, and this fact is an
important ingredient in the complete characterization given in that theorem
of a passive s/s system in terms of its trajectories [ xw ] on R+ satisfying w ∈
K2

+(W). Moreover, the generating subspace V can be recovered from the
family T0,t in a way that is analogous to the definition of the generator of a
C0 semigroup.
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Intuitively, the state space X of Σ plays the role of an internal memory,
and at each time t the state vector x(t) contains the part of the past history
of the system which may have some influence on the future dynamics. All
the exchange of information with the environment takes place via the signal
part w of a trajectory [ xw ]. Two s/s systems Σ1 and Σ2 with the same signal
space W are externally equivalent if they cannot be distinguished from each
other by observing only the signal parts w of the trajectories [ xw ] of the two
systems on the time interval I = R+ := [0,∞) whose initial states are zero
(i.e., the two systems start “from rest” at time t = 0). Trajectories of this
type are called externally generated on R+. We call an externally generated
trajectory [ xw ] on R+ stable if w ∈ L2(R+;W), and by the (stable) future
behavior WΣ

+ of Σ we mean the set of all the signal parts w of the externally
generated stable trajectories [ xw ] of Σ on R+.

The future behavior WΣ
+ of a passive s/s system Σ = (V ;X ,W) has two

characteristic properties. One of them is fairly obvious, namely that WΣ
+

is right-shift invariant in the Krĕın space K2
+(W). This follows from the

fact that if [ xw ] is an externally generated trajectory of Σ on R+, and if we

shift this trajectory to the right by the amount t and define
[
x(s)
w(s)

]
= [ 0

0 ]

for 0 ≤ s < t, then we obtain another externally generated trajectory on
R+. This means that if we denote the right-shift semigroup in K2

+(W) by
τ ∗+ (i.e., (τ ∗t+ w)(s) = w(s − t) if s ≥ t and (τ ∗t+ w)(s) = 0 otherwise), then
τ ∗t+ WΣ

+ ⊂WΣ
+ for all t ∈ R+.

According to the above discussion, W+
Σ is also a nonnegative subspace of

K2
+(W). As we shall show in Section 3, WΣ

+ is even maximal nonnegative.
This is the second characteristic property of WΣ

+ that we mentioned above.
In particular, WΣ

+ is closed in K2
+(W).

The above facts lead us to the following definition. By a passive future
behavior on the Krĕın signal spaceW we mean a maximal nonnegative, right-
shift invariant subspace of K2

+(W). According to the above discussion, the
future behavior of a passive s/s system with signal space W is a passive
future behavior on W .

This paper ends with a study of the inverse problem, in which we con-
struct three different canonical shift realizations of an arbitrary passive fu-
ture behavior W+. By this we mean the following. A passive s/s system
Σ = (V ;X ,W) is a realization of W+ if the future behavior WΣ

+ of Σ is
equal to W+. By a canonical realization we mean a realization that is com-
pletely determined by the given data W+. By a shift realization we mean a
realization whose dynamics can be interpreted (in a generalized sense) as a
compressed shift in some space of functions with values in the given signal
space W .
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Our three canonical realizations have the following characteristic proper-
ties: (a) the first realization is observable and co-energy preserving, (b) the
second is controllable and energy preserving, and (c) the third is simple and
conservative (see Section 3 for the precise definitions). It will be shown that
every other passive s/s realization that has one of the properties (a), (b),
or (c) is unitarily similar to the corresponding canonical realization that we
have constructed, and for this reason we also call them canonical models of
passive s/s systems with one of the properties (a), (b), or (c).

The canonical models mentioned above are analogous to the three canon-
ical de Branges–Rovnyak shift models of types (a), (b), and (c) with a given
scattering matrix that belongs to the Schur class over the right half-plane,
i.e., it is an analytic function whose values are contractive operators from
one Hilbert space U to another Hilbert space Y . They were originally pre-
sented in [dBR66a, dBR66b] (in discrete time), and they can also be found
in, e.g., [ADRdS97] and in [NV89, NV98]. Indeed, there is a two-sided con-
nection between our canonical models and the de Branges–Rovnyak models
analogous to the one described in [AS10] in the discrete time case. Since
the continuous time result looks more or less the same as the discrete time
results (with the unit disc replaced by the right half-plane), and since this
article is already quite long, we have chosen to here give only a very short
outline of this connection. A future passive behavior W+ can be mapped into
the frequency domain by use of the Laplace transform, and we denote the
image by Ŵ+. This is a maximal nonnegative shift-invariant subspace of the
Krĕın–Hardy space H2

+(W) over the right-half plane with values in W (the
inner product in H2

+(W) is the one inherited from W). Each fundamental
decomposition W = −W− �W+ gives rise to a fundamental decomposition
H2

+(W) = −H2
+(W−) � H2

+(W+), and with respect to this decomposition

Ŵ+ has a graph representation

Ŵ+ =
{[

Ŝŵ+

ŵ+

]∣∣∣ ŵ+ ∈ H2
+(W+)

}
,

where Ŝ is a multiplication operator whose symbol ϕ is a Schur function
mapping W+ into W−. This symbol ϕ is called a scattering matrix. It

is uniquely determined by Ŵ+ and the decomposition W = −W− �W+,
but of course, different fundamental decompositions of W lead to different
scattering matrices. From our canonical s/s models of a passive s/s system
with a given future behavior W+ we can derive the corresponding de Branges–
Rovnyak canonical models with the given scattering matrix ϕ by first passing
to the i/s/o representation of the given s/s system corresponding to the
fundamental decomposition W = −W− �W+, and then applying certain
unitary maps. It is also in principle possible to proceed in the opposite
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direction, i.e., to start with one of the de Branges–Rovnyak models and to
define a state signal system in terms of an i/s/o scattering representation,
but this does not lead to a canonical s/s model, since the result depends on
some arbitrarily chosen fundamental decomposition of the signal space. See
[AS10] for details. By replacing the fundamental decompositions of W used
above by Lagrangian decompositions or orthogonal decompositions (these
are defined in Section 2 below) one can also derive canonical models whose
transfer functions belong to certain subclasses of Nevanlinna functions or
Potapov functions. We shall return to this elsewhere.

We end this introduction with a short overview of the remaining sections.
In Section 2 we review the notion of a Krĕın space and present some Krĕın
space results that will be needed later. Some background on passive s/s
systems is presented in Section 3. In addition to the future behaviors WΣ

+ of
a passive s/s system Σ we also introduce the past behavior WΣ

− and the full
behavior WΣ of Σ. They are in principle constructed in the same way as ΣW

+ ,
but with I = R+ replaced by I = R− = (−∞, 0] or I = R, respectively. We
also introduce the general notions of a passive past behaviors and a passive full
behaviors on a given signal space W (without reference to any s/s system).
It will always be true that if W is a passive full behavior on W , then

W− := {w ∈ K2
−(W) | w is the restriction to R− of a function in W}

is a passive past behavior on W , and

W+ := {w ∈W | w(t) = 0 for t < 0}.

is a passive future behavior on W . As shown in Proposition 3.15 below,
either one of W− and W+ determines W uniquely. It is also true that the
past and full behaviors of a passive s/s system Σ are passive past and full
behaviors.

Many of the results in Section 3 are either taken from [KS09] and [Kur10]
or are straightforward extensions of results in [AS09b]. However, it also
contains some significant new results, the most important of which is Theo-
rem 3.5 which gives necessary and sufficient conditions on a subspace T+ of[
BUC(R+;X )

K2
+(W)

]
to be the family all stable future generalized trajectories of some

passive s/s system. Adjoint systems and behaviors, as well as anti-passive
time reflected s/s systems are studied in Section 4.

In Sections 5.2 we present two Hilbert spaces H(W+) and H(W
[⊥]
− ) that

play fundamental roles in the rest of this article. HereH(W+) is the subspace
of the quotient K2

+(W)/W+ consisting of all those equivalence classes whose

H(W+)-norm, defined in (5.8) below, is finite. The Hilbert space H(W
[⊥]
− ) is
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constructed in a similar way, with W+ replaced by the orthogonal compan-
ion to a passive past behavior W−, interpreted as a maximal nonnegative
subspace of −K2

−(W). Both of these spaces are special cases of the spaces
H(Z) introduced and studied in [AS09a], where Z is a maximal nonnegative
subspace of a Krĕın space X . A short review of the spaces H(Z) is included
in Section 2.

In Section 5.3 we introduce the past/future map ΓW of a passive full be-
havior W. This map plays a decisive role in our study of the construction of
our three canonical realizations. It is a contraction from H(W

[⊥]
− ) to H(W+),

and it is uniquely determined by the property that if w ∈W and if w− and w+

are the restrictions of w to R− and R+, respectively, then the image under
ΓW of the equivalence class in K2

−(W)/W
[⊥]
− containing w− is the equiva-

lence class in K2
+(W)/W+ containing w+. This map is used to construct

a third Hilbert space D(W), which is continuously contained in
[
H(W

[⊥]
− )

H(W+)

]
.

The space D(W) has the property that the operators T− :=
[

ΓW
1
H(W

[⊥]
− )

]
and

T+ :=
[

1H(W+)

Γ∗W

]
map H(W

[⊥]
− ) and H(W+) isometrically onto subspaces L−

and L+ of D(W), respectively, where L− + L+ is dense in D(W) and the
angle operator PL+|L− (the orthogonal projection onto L+ restricted to L−)
is given by PL|L− = T+ΓWT

−1
− . Thus, the angle operator PL|L− between the

subspaces L− and L+ in D(W) is a unitary image of ΓW.
In Section 6 we develop the passive s/s systems theory further and intro-

duce the input map BΣ and the output map CΣ of a passive s/s system Σ.

Here BΣ is a contraction from H(W
[⊥]
− ) to X , and it is the unique extension

to H(W
[⊥]
− ) of the map from the equivalence class in K2

−(W)/W
[⊥]
− containing

the signal part w of an externally generated stable trajectory [ xw ] on R− to
x(0). The operator CΣ is a contraction from X to H(W+), and it is equal
to the map from the initial state x(0) of a stable trajectory [ xw ] on Z+ to its
signal part w factored over the future behavior W+. As shown in Section 7,
ΓW = CΣBΣ whenever Σ is a passive s/s system with full behavior W.

Finally, in Sections 8–10 we present our canonical observable co-energy
preserving s/s shift model, controllable energy preserving s/s shift model,
and simple conservative s/s shift model, respectively, whose future, past,
and full behaviors coincide with the given triple of passive behaviors W+,
W−, and W, respectively. These models are canonical in the sense that they
are uniquely determined by the given data W+, W−, or W (any one of these
three behaviors determines the other two uniquely). The state spaces in
the co-energy preserving canonical model, the energy preserving canonical
model, and the simple conservative canonical model are H(W+), H(W

[⊥]
− ),

and D(W), respectively. In all cases the dynamics of the models are described
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by means of a generalized compression of a shift acting in the state space.
This article may be regarded as an blend of [AS09a], [AS09b], and [AS10]

on one hand and of [KS09] and [Kur10] on the other hand. In the first three
of these canonical models of passive s/s systems were obtained in a discrete
time setting, and in the last two a s/s theory is developed for the continuous
time setting, including the passive case. Some preliminary steps towards the
development of a s/s theory in continuous time were taken already in [BS06]
by J. Ball and O. J. Staffans. See, in particular, [BS06] for a discussion of the
connection with the theory of passive and conservative behaviors presented
in the papers [Wil72a, Wil72b, WT98, WT02] and the monograph [PW98].
As explained in [AS05], part of the motivation comes from classical passive
time-invariant circuit theory found in, e.g., [Bel68] and [Woh69].

List of Notations.

R,R+,R− R := (−∞,∞), R+ := [0,∞), R− = (−∞, 0].

Z,Z+,Z− Z = {0,±1,±2, . . .}, Z+ = {0, 1, 2, . . .}, Z− = {−1,−2, . . .}.
Ω The closure of Ω.

B(U ;Y) The space of bounded linear operators from U to Y .

dom (A) , im (A) , ker (A): The domain, range, and kernel of the operator A.

A|Z The restriction of the operator A to Z.

1X The identity operator on X .

(·, ·)X The inner product in the Hilbert space X .

[·, ·]W The inner product in the Krĕın space W .

−K The anti-space of the Krĕın space K. This is the same topo-
logical vector space as K, but it has a different inner product
[·, ·]−K := −[·, ·]K.

τ t (τ tw)(s) = w(s+ t), s, t ∈ R (this is a left shift if t > 0).

τ t+ (τ t+w)(s) = w(s+ t), s, t ∈ R+ (this is a left shift if t > 0).

τ t− (τ t−w)(s) = w(s + t) if s + t ≤ 0, (τ t−w)(s) = 0 if s + t > 0.
Here s ∈ R−, t ∈ R+.

τ ∗t (τ ∗tw)(s) = (τ−1w)(s) = w(s − t), s, t ∈ R (this is a right
shift if t > 0).

τ ∗t+ (τ ∗t+ w)(s) = w(s−t) if s−t ≥ 0 and (τ ∗t+ w)(s) = 0 if s−t < 0.
Here s, t ∈ R+.

τ ∗t− (τ ∗t− w)(s) = w(s− t) for all s ∈ R−, t ∈ R+.

πI , π+, π− (πIw)(s) = w(s) if s ∈ I, (πIw)(s) = 0 if s /∈ I. We
abbreviate π− = πR− and π+ = πR+ .

11



C(I;X ), BUC(I;X ), C1(I;X ): The spaces of continuous, bounded uniformly
continuous, or continuously differentiable functions, respec-
tively, on I with values in X , with the standard norms.

L2
loc(I;W) The space of functions from I to W which belong locally to

L2.

K2(I;X ), K2(W), K2
+(W), K2

−(W): See (1.10) and (1.11).

H(Z),H0(Z) See Section 2.2.

W,W+,W− A passive full, future, or past behavior, respectively, on the
Krĕın signal space W .

H+,H(W+) H+ := H(W+) is defined in Theorem 5.1.

Q+ Q+ : w 7→ w+W+ is the quotient mapK2
+(W) 7→ K2

+(W)/W+.

H0
+,H0(W+) H0

+ := H0(W+) := Q+W
[⊥]
+ .

K(W+) K(W+) := Q−1
+ H(W+).

H−,H(W
[⊥]
− ) H− := H(W

[⊥]
− ) is defined in Theorem 5.4.

Q− Q− : w 7→ w+W
[⊥]
− is the quotient mapK2

−(W) 7→ K2
−(W)/W

[⊥]
− .

H0
−,H0(W−) H0

− := H0(W−) := Q−W−.

K(W−) K(W−) := Q−1
− H(W

[⊥]
− ).

ΓW The past/future map of W. See Definition 5.8 and Section 7.

D(W) D(W) is defined before Lemma 5.9.

Q The quotient map K2(W) 7→ K2(W)/(W+ + W
[⊥]
− ).

D0(W) D0(W) = Q(W + W[⊥]).

L(W) L(W) := Q−1D(W).

P+ The projection of K2(W)/(W+ uW
[⊥]
− ) onto K2

+(W)/W+

P− The projection of K2(W)/(W+uW
[⊥]
− ) onto K2

−(W)/W
[⊥]
− .

L± See Lemma 5.9.

Π± The orthogonal projection of H− ⊕H+ onto H±.

BΣ,CΣ The input and output maps are defined in Section 6.

SΣ
+ See (6.3).

An (inner) direct sum decomposition of a Hilbert or Krĕın space W into
two closed subspaces Y and U will be denoted by W = Y u U , and the
corresponding complementary projections onto Y and U will be denoted by
P UY and PYU . If, in addition, Y and U are orthogonal to each other, then we
write W = Y ⊕ U in the case of a Hilbert space and W = Y � U in the
case of a Krĕın space. In the orthogonal case the subspaces Y and U become
Hilbert or Krĕın spaces when we let them inherit the inner product from W ,
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and we denote the (orthogonal) projections of W onto Y and U by PY and
PU , respectively.

We denote the (external) direct sum of two Hilbert or Krĕın spaces Y
and U by

[
Y
U
]
. By this we mean the Cartesian product of Y and U equipped

with the standard algebraic operations and standard product topology. We
sometimes equip

[
Y
U
]

with the induced Krĕın space inner product (in the
Krĕın space notation)[[

y1

u1

]
,

[
y2

u2

]]
Y�U

= [y1, y2]Y + [u1, u2]U . (1.13)

After identifying [ Y0 ] with Y and [ 0
U ] with U we can in this case identify

[
Y
U
]

with Y�U . However, we shall often instead use a different Krĕın space inner
product in

[
Y
U
]

of the type[[
y1

u1

]
,

[
y2

u2

]]
[
Y
U
] =

([
y
u

]
, J

[
y
u

])
Y�U

,

where J is a given signature operator in Y � U . With respect to this inner
product Y and U may or may not be orthogonal. Analogous notations are
used for direct sums with three or more components.

2 Krĕın Spaces

2.1 Some Krĕın space results

Throughout this work both the signal spaceW and the node space K will be
Krĕın spaces. We therefore begin with a review of some Krĕın space notions
and results that will be needed here.

A Krĕın space W is a vector space with an inner product [·, ·]W that
satisfies all the standard properties required by an inner product, except for
the condition [w,w]W > 0 for nonzero w, with the additional property that
W can be decomposed into a direct sum W = −Y u U in such a way that
the following conditions are satisfied:

(i) U and −Y are orthogonal to each other with respect to the inner prod-
uct [·, ·]W , i.e., [y, u]W = 0 for all u ∈ U and all y ∈ −Y .

(ii) U is a Hilbert space with the inner product (u, u′)U := [u, u′]W , u,
u′ ∈ U , inherited from W .
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(iii) −Y is an anti-Hilbert space with the inner product [y, y′]−Y := [y, y′]W ,
y, y′ ∈ −Y , inherited from W .

Here and later we shall use the notation −Y for the anti-space of a vector
space Y equipped with a (possibly indefinite) inner product. This is the
same topological vector space as Y , but the inner product [·, ·]Y in Y has
been replaced by the inner product[y, y′]−Y := −[y, y′]Y , y, y′ ∈ −Y . The
condition that −Y is an anti-Hilbert space with the inner product inherited
from W is equivalent to saying that Y is a Hilbert space with the inner
product (y, y′)Y := −[y, y′]W , y, y′ ∈ −Y , inherited from −W . Since Y and U
are orthogonal to each other we shall denote the direct sum byW = −Y�U .

Any decomposition W = −Y � U with the properties listed above is
called a fundamental decomposition of W . If the space W itself is neither a
Hilbert space nor an anti-Hilbert space, then it has infinite many fundamental
decompositions. IfW = −Y�U is a fundamental decomposition ofW , then

[w,w]W = −‖y‖2
Y + ‖u‖2

U , w = u+ y, u ∈ U , y ∈ Y . (2.1)

The dimensions of the positive space U and the negative space −Y do not
depend on the particular fundamental decomposition. These dimensions are
called the positive and negative indices of W , respectively, and they are
denoted by ind+W and ind−W .

An arbitrary choice of fundamental decomposition W = −Y � U deter-
mines a Hilbert space norm on W by

‖w‖2
Y⊕U = ‖y‖2

Y + ‖u‖2
U , w = u+ y, u ∈ U , y ∈ Y . (2.2)

While the norm ‖·‖Y⊕U itself depends on the choice of fundamental decompo-
sition W = −Y � U , all these norms are equivalent and the resulting strong
and weak topologies are each independent of the choice of the fundamental
decomposition. Thus, we can define topological notions, such as convergence,
or closedness, with respect to any one of these norms. Any norm on W aris-
ing in this way from some choice of fundamental decompositionW = −Y�U
for W we shall call an admissible norm on W , and we shall refer to the cor-
responding positive inner product on Y ⊕ U as an admissible Hilbert space
inner product on W .

A subspace Z of W is nonnegative if every vector w ∈ Z is nonnegative
([w,w]W ≥ 0), it is neutral if every vector w ∈ Z is neutral ([w,w]W = 0),
and nonpositive if every vector w ∈ Z is nonpositive ([w,w]W ≤ 0). A non-
negative subspace which is not strictly contained in any other nonnegative
subspace is called maximal nonnegative, and the notion of a maximal nonpos-
itive subspace is defined in an analogous way. Every nonnegative subspace
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is contained in some maximal nonnegative subspace, and every nonpositive
subspace is contained in some maximal nonpositive subspace. Maximal non-
negative or nonpositive subspaces are always closed.

The orthogonal companion Z [⊥] of an arbitrary subset Z ⊂ W with re-
spect to the Krĕın space inner product [·, ·]W consists of all vectors inW that
are orthogonal to all vectors in Z, i.e.,

Z [⊥] = {w′ ∈ W | [w′, w]W = 0 for all w ∈ Z}.
This is always a closed subspace of W , and Z = (Z [⊥])[⊥] if and only if Z
is a closed subspace. If W is a Hilbert space, then we write Z⊥ instead of
Z [⊥]. A subspace Z is neutral if and only if Z ⊂ Z [⊥]. If instead Z [⊥] ⊂ Z
(i.e., Z [⊥] is neutral), then we call Z co-neutral. A subspace Z ⊂ W is called
Lagrangian if Z = Z [⊥].

A direct sum decomposition W = F u E of W where both F and E are
neutral is called a Lagrangian decomposition of W . The subspaces F and
E are automatically Lagrangian in this case. Such a decomposition exists if
and only if ind+W = ind−W (this index may be finite or infinite).

If we fix a fundamental decomposition W = −Y � U , then we may view
elements of W as consisting of column vectors

w =

[
y
u

]
∈
[
−Y
U

]
,

where we view Y and U as Hilbert spaces, and the Krĕın space inner product
on W is given by[[

y
u

]
,

[
y′

u′

]]
W

=

([
y
u

]
,

[
−1Y 0

0 1U

] [
y′

u′

])
Y⊕U

= −(y, y′)Y + (u, u′)U .

(2.3)

In this representation, nonnegative, neutral, nonpositive, and Lagrangian
subspaces are characterized as follows.

Proposition 2.1. LetW be a Krĕın space represented in the formW =
[
−Y
U
]

with Krĕın space inner product equal to the quadratic form [·, ·]J induced
by the operator J =

[ −1Y 0
0 1U

]
in the Hilbert space inner product of

[
Y
U
]

as
explained above, and let Z be a subspace of W. Then the following claims
are true:

(i) Z is nonnegative if and only if there is a linear Hilbert space contraction
A+ : Z+ 7→ Y from some domain Z+ ⊂ U into Y such that

Z =

[
A+

1U

]
Z+ =

{[
A+z+

z+

] ∣∣∣∣ z+ ∈ Z+

}
. (2.4)

Z is maximal nonnegative if and only if, in addition, Z+ = U .
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(ii) Z is nonpositive if and only if there is a linear contraction A− : Z− 7→ U
from some domain Z− ⊂ Y into U such that

Z =

[
1Y
A−

]
Z− =

{[
z−

A−z−

] ∣∣∣∣ z− ∈ Z−} . (2.5)

Z is maximal nonpositive if and only if, in addition, Z− = Y.

(iii) Z is neutral if and only if there is an isometry A+ mapping a subspace
Z+ of U onto a subspace Z− of Y, or equivalently, an isometry A−
mapping Z− ⊂ Y isometrically onto Z+ ⊂ U , such that

Z =

[
A+

1U

]
Z+ =

[
1Y
A−

]
Z−. (2.6)

Z is Lagrangian if and only if, in addition, Z+ = U and Z− = Y.

(iv) Z is maximal nonnegative if and only if Z is closed and Z [⊥] is maximal
nonpositive. More precisely, if Z has the representation (2.4) with
Z+ = U , then Z [⊥] has the representation

Z [⊥] =

[
1Y
A∗+

]
Y , (2.7)

where A∗+ is computed with respect to the Hilbert space inner product
in Y (instead of the anti-Hilbert space inner product in −Y inherited
from W).

(v) Z is maximal nonnegative if and only if Z is closed and nonnegative
and Z [⊥] is nonpositive. In particular, Z is Lagrangian if and only if
Z is both maximal nonnegative and maximal nonpositive.

Proof. See [AI89, Section 1.8, pp. 48–64] or the following theorems in [Bog74]:
Theorem 11.7 on p. 54, Theorems 4.2 and 4.4 on pp. 105–106, and Lemma
4.5 on p. 106.

The fundamental decompositions that we have considered above are a
special case of orthogonal decompositions W = −Y � U of W , where Y and
U are orthogonal with respect to [·, ·]W , and both Y and U are Krĕın spaces
with the inner products inherited from −W and W , respectively. Thus, if
w = y + u with y ∈ Y and u ∈ U , then

[w,w]W = [y, y]W + [u, u]W = −[y, y]Y + [u, u]U . (2.8)
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This orthogonal decomposition is fundamental if and only if Y and U are
Hilbert spaces, i.e., if they are both nonnegative Krĕın spaces.

The next lemma, proved in [AS10], will be used later to find out if cer-
tain subspaces of a Krĕın space with a special orthogonal decomposition are
maximal nonnegative, or maximal nonpositive, or Lagrangian.

Lemma 2.2 ([AS10, Lemma 2.2]). Let X and Y be two Hilbert spaces and

K a Krĕın space, and let K be the Krĕın space K =
[
−Y
X
K

]
= −Y � X �K.

(i) A nonnegative subspace Z of K is maximal nonnegative if and only if
conditions (a) and (b) below hold:

(a) For each x ∈ X there exists some y ∈ Y and w ∈ K such that[
y
x
w

]
∈ Z;

(b) The set of all w ∈ K for which there exists some y ∈ Y such that[
y
0
w

]
∈ Z is maximal nonnegative in K.

(ii) A nonpositive subspace Z of K is maximal nonpositive if and only if
conditions (c) and (d) below hold:

(c) For each y ∈ Y there exists some x ∈ X and w ∈ K such that[
y
x
w

]
∈ Z;

(d) The set of all w ∈ K for which there exists some x ∈ X such that[
0
x
w

]
∈ Z is maximal nonpositive in K.

(iii) A neutral subspace Z of K is Lagrangian if and only if conditions (a)–
(d) above hold.

Lemma 2.3. Let K be a Krĕın space with the orthogonal decomposition K =
K1 � K2, and let Z be a subspace of K. Then

(PK2Z)[⊥] = Z [⊥] ∩ K2 and (Z [⊥] ∩ K2)[⊥] = PK2Z, (2.9)

where the orthogonal companions on the left-hand sides are computed with
respect to K2. In particular, if PK2Z is closed, then PK2Z = (Z [⊥] ∩ K2)[⊥].

Proof. That (PK2Z)[⊥] = Z [⊥] ∩K2 follows from the following chain of equiv-
alences:

z† ∈ (PK2Z)[⊥]

⇔z† ∈ K2 and [z†, PK2z]K = 0 for all z ∈ Z
⇔z† ∈ K2 and [z†, z]K = 0 for all z ∈ Z
⇔z† ∈ Z [⊥] ∩ K2.
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This implies that PK2Z = ((PK2Z)[⊥])[⊥] = (Z [⊥] ∩ K2)[⊥].

Lemma 2.4. Let K be a Krĕın space with the orthogonal decomposition
K = K1 � K2, and let Z be a maximal nonnegative subspace of K. Then
the following conditions are equivalent:

(i) PK2Z is a nonnegative subspace of K2;

(ii) PK2Z is a maximal nonnegative subspace of K2;

(iii) Z ∩ K1 is a maximal nonnegative subspace of K1;

(iv) PK1|Z is a contraction Z → K1, i.e.,

[z, z]K ≤ [PK1z, PK1z]K1 for all z ∈ Z.

(v) PK1Z [⊥] is a nonpositive subspace of K1;

(vi) PK1Z [⊥] is a maximal nonpositive subspace of K1;

(vii) Z [⊥] ∩ K2 is a maximal nonpositive subspace of K2;

(viii) PK2|Z [⊥] is an expansion Z [⊥] → K2, i.e.,

[z†, z†]K ≥ [PK2z
†, PK2z

†]K2 for all z† ∈ Z [⊥].

When these equivalent conditions holds we have (Z ∩ K1)[⊥] = PK1Z [⊥] and
PK2Z = (Z [⊥] ∩ K2)[⊥], where the orthogonal companions on the right-hand
sides are computed in K1 and K2, respectively.

Proof. We first show that (i), (ii), (iv), and (vii) are equivalent to each other,
and that (analogously) (v), (vi), (viii), and (iii) are equivalent to each other,
and then complete the proof of the equivalence of the conditions (i)–(viii) by
showing that (iii)⇒ (i) and (vii)⇒ (v). The final claim follows from Lemma
2.3.

(i) ⇔ (ii): Trivially (ii) ⇒ (i). If PK2Z is not maximal nonnegative in
K2, then PK2Z is properly contained in some nonnegative subspace Z2 of
K2. This implies that Z is properly contained in the nonnegative subspace

Z ∨
[
{0}
Z2

]
of K, and hence Z cannot be maximal. Thus (i) ⇒ (ii).

(i) ⇔ (iv): Since K = K1 � K2 we have

[z, z]K = [PK1z, PK1z]K1 + [PK2z, PK2z]K2 for all z ∈ Z.

Thus, (i) ⇔ (iv).
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(ii) ⇔ (vii): This follows from Proposition 2.1(iv) and Lemma 2.3.
(v)⇔ (vi): This follows from the equivalence (i)⇔ (ii) if we replace K by

its anti-space −K, interchange K1 and K2, and also interchange Z and Z [⊥].
(v) ⇔ (viii): This follows from the equivalence (i) ⇔ (iv) if we replace

K by its anti-space −K, interchange K1 and K2, and also interchange Z and
Z [⊥].

(vi) ⇔ (iii): This follows from Proposition 2.1(iv) and Lemma 2.3.
(iii) ⇒ (i): Suppose that (i) does not hold. Then there exists a vector

z0 ∈ Z such that [PK2z0, PK2z0]K2 < 0. In particular, since Z is nonnegative,
this implies that PK2z0 /∈ Z, and consequently, PK1z0 = z0 − PK2z0 /∈ Z.
Thus, Z ∩ K1 is a proper subset of PK1z0 ∨ (Z ∩ K1). We claim that this
subspace is nonnegative. This is true because for all z ∈ Z and all λ ∈ C,
we have λz0 + z ∈ Z, and hence

[λPK1z0 + z, λPK1z0 + z]K = [λz0 + z, λz0 + z]K − |λ|2[PK2z0, PK2z0]K2 ≥ 0.

Thus, if (i) is false, then so is (iii).
(vii) ⇒ (v): This follows from the implication (iii) ⇒ (i) if we replace

K by its anti-space −K, interchange K1 and K2, and also interchange Z and
Z [⊥].

2.2 The Hilbert space H(Z)

In [AS09a] a Hilbert space H(Z) was constructed, starting from an arbitrary
maximal nonnegative subspace Z of a Krĕın space. Below we give a short
review of this construction. It will be used later in the construction of the
state spaces of our canonical s/s signal realizations.

Let Z be a maximal nonnegative subspace of the Krĕın space K, and let
K/Z be the quotient of K modulo Z. We define H(Z) by

H(Z) = {h ∈ K/Z | sup{−[x, x]K | x ∈ h} <∞}. (2.10)

It turns out that sup{−[x, x]K | x ∈ h} ≥ 0 for all h ∈ H(Z), that H(Z) is
a subspace of K/Z, that H(Z) is a Hilbert space with the norm∥∥h∥∥H(Z)

=
(
sup{−[x, x]K | x ∈ h}

)1/2
, h ∈ H(Z), (2.11)

and that H(Z) is continuously contained in K/Z (where we use the standard
quotient topology in K/Z, induced by some arbitrarily chosen admissible
Hilbert space norm in K). We denote the equivalence class h ∈ K/Z that
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contains a particular vector x ∈ K by h = x + Z. Thus, with this notation,
(2.10) and (2.11) can be rewritten in the form

H(Z) = {x+ Z ∈ K/Z | ‖x+ Z‖2
H(Z) <∞}, (2.12)∥∥x+ Z

∥∥2

H(Z)
= sup{−[x+ z, x+ z]K | z ∈ Z}, x ∈ K. (2.13)

A very important (and easily proved fact) is that if we define

H0(Z) :=
{
z† + Z

∣∣ z† ∈ Z [⊥]
}
, (2.14)

then H0(Z) is a subspace of H(Z). However, even more is true: H0(Z) is a
dense subspace of H(Z), and

[x+ Z, z† + Z]H(Z) = −[x, z†]K, x+ Z ∈ H(Z), z† ∈ Z [⊥], (2.15)

‖z† + Z‖2
H(Z) = −[z†, z†]K, z† ∈ Z [⊥]. (2.16)

Thus, H(Z) may be interpreted as a completion of H0(Z). See [AS09a] for
more details.

3 Passive and Conservative State/Signal Sys-

tems

3.1 Basic properties of trajectories of passive s/s sys-
tems

We already gave a short introduction to passive s/s (state/signal) systems,
and now describe this notion in more detail.

In the following definition and throughout the remainder of this paper,
the interval I is assumed to be closed and nontrivial, i.e., it should have a
nonempty interior. Thus, it is either a finite interval I = [t0, t1], or a semi-
finite interval I = (−∞, t1] or I = [t0,∞), or the full real line I = R =
(−∞,∞).

Definition 3.1. Let X be a Hilbert space and W a Krĕın space.

(i) By a passive s/s node in continuous time we mean a triple Σ = (V ;X ,W)
where V is a maximal nonnegative subspace of the Krĕın node space

K :=
[
X
X
W

]
equipped with the inner product (1.7) satisfying (1.1).

(ii) A classical trajectory generated by a subspace V of K on an interval I

is a pair of functions [ xw ] ∈
[
C1(I;X )
C(I;W)

]
satisfying (1.2).
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(iii) A (generalized) trajectory generated by a subspace V of K on an interval

I is a pair of functions [ xw ] ∈
[

C(I;X )

L2
loc(I;W)

]
which can be approximated

by a sequence of classical trajectories [ xnwn ] in such a way that xn → x
in X locally uniformly on I, and wn → w in L2

loc(I;W).

(iv) The passive s/s node Σ together with its families of classical and gen-
eralized trajectories is called a passive s/s system, and it is denoted by
the same symbols as the node.

(v) By a past, full, or future trajectory of Σ we mean a trajectory of Σ on
R−, R, or R+, respectively.

(vi) A (generalized) trajectory [ xw ] of a passive s/s system Σ = (V ;X ,W)
on an interval I is externally generated if the following condition holds:
If I has a finite left end-point t0, then we require that x(t0) = 0, and if
the left end-point of I is −∞, then we require that limt→−∞ x(t) = 0
and that w ∈ L2((−∞, T ];W) for every finite T ∈ I.

(vii) A (generalized) trajectory [ xw ] of a passive s/s system Σ = (V ;X ,W)
is stable if x is bounded on I and w ∈ L2(I;W).

As the following lemma shows, the boundedness condition on x in Defi-
nition 3.1(vii) is often redundant.

Lemma 3.2. Let Σ = (V ;X ,W) be a passive s/s system, let I be an interval,
and let [ xw ] be a (generalized) trajectory of Σ on the closed interval I. Assume
further that at least one of the conditions (i) or (ii) below holds:

(i) The interval I is bounded to the left.

(ii) [ xw ] is externally generated.

Then [ xw ] is stable if and only if w ∈ L2(I;W), or equivalently, if and only
if PUw ∈ L2(I;U) for some fundamental decomposition W = −Y � U of W.
In the case where [ xw ] is externally generated we have, in addition,

‖x(t)‖2
X ≤

∫
s∈I; s≤t

[w(s), w(s)]W ds

=

∫
s∈I; s≤t

(
‖PUw(s)‖2

U − ‖PYw(s)‖2
Y
)

ds, t ∈ I.
(3.1)

In particular, if I = R− and [ xw ] is an externally generated stable past trajec-
tory, then

‖x(0)‖2
X ≤ [w,w]K2

−(W) = ‖PUw‖2
L2
−(U) − ‖PYw‖

2
L2
−(Y). (3.2)
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Proof. In Section 1 we outlined a proof of (1.9), and the results mentioned
above follow from (1.9).

In the following lemma we list some elementary properties of the set of
all trajectories of a passive s/s system Σ = (V ;X ,W). The notations τ t and
τ t+ were explained at the end of Section 1.

Lemma 3.3. The stable trajectories of a passive s/s system Σ = (V ;X ,W)
have the following properties:

(i) If [ xw ] is a classical or generalized stable trajectory on some interval I
and t ∈ R, then

[
τ tx
τ tw

]
is a classical or generalized stable trajectory,

respectively, of Σ on the interval I− t := {s ∈ R | s+ t ∈ I}, and [ xw ] is
externally generated on I if and only if

[
τ tx
τ tw

]
) is externally generated

on I − t.

(ii) The restriction of a classical or generalized stable trajectory on some
interval I ′ to a subinterval I ⊂ I ′ is a classical or generalized stable
trajectory of Σ on I, respectively, and if I and I ′ have the same left
end-point, then the restricted trajectory is externally generated if and
only if the original trajectory is externally generated.

(iii) If [ xw ] is a classical or generalized stable trajectory on R+, then
[
τ t+x

τ t+w

]
is a classical or generalized stable trajectory on R+ for all t ∈ R+.

(iv) The set of all stable (generalized) trajectories and the set of all exter-
nally generated stable (generalized) trajectories of Σ on some interval

I (finite or infinite) are closed subspaces of
[
BUC (I;X )

L2(I;W)

]
.

Proof. Claims (i)–(iii) follow immediately from Definition 3.1.
In order to prove (iv) we let [ xnwn ] be a sequence of stable trajectories of

Σ on I converging to [ xw ] in
[
BUC (I;X )

L2(I;W)

]
. Both C(I;X ) and L2

loc(I;W) are

Fréchet spaces, and by the definition of a generalized trajectory of Σ on I,
we can find a sequence of classical trajectories

[
x̃n
w̃n

]
of Σ on I such that the

distance from
[
x̃n
w̃n

]
to [ xnwn ] in

[
C(I;X )

L2
loc(I;W)

]
tends to zero as n → ∞. Then[

x̃n
w̃n

]
also tends to [ xw ] in

[
C(I;X )

L2
loc(I;W)

]
as n→∞. Thus, [ xw ] is a trajectory of

Σ on I. By assumption, [ xw ] ∈
[
BUC (I;X )

L2(I;W)

]
, and hence [ xw ] is stable. If all xn

tend to zero at the left end-point of I, then so does x (because of the uniform
convergence), and hence [ xw ] is externally generated if all the trajectories [ xnwn ]
are externally generated.
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In the proof of Lemma 3.3 we made only marginal use of the passivity
of Σ (i.e., we did not use any other properties of V than the closedness).
However, in the proof of the following lemma we shall make significant use
of the passivity of Σ (or more precisely, of the fact that every passive s/s
system is well-posed in the sense of [KS09]).

Lemma 3.4. The set of (generalized) trajectories of a passive s/s system
Σ = (V ;X ,W) has the following properties:

(i) Let W = −Y � U be a fundamental decomposition of W. Then, for
each x0 ∈ X , each closed interval I with a finite left end-point t0, and
each u ∈ L2(I;U), there exists a unique stable trajectory [ xw ] of Σ on I
satisfying x(t0) = x0 and PUw = u.

(ii) Let [ x1
w1 ] be a stable trajectory of Σ on the finite interval I1 = [t0, t1],

and let [ x2
w2 ] be a stable trajectory of Σ on a closed interval I2 with left

end-point t1. Then the concatenation [ xw ] defined by

[
x(t)
w(t)

]
:=


[
x1(t)
w1(t)

]
, t ∈ I1,[

x2(t)
w2(t)

]
, t ∈ I2 \ {t1},

, (3.3)

is a stable trajectory of Σ on I := I1 ∪ I2 if and only if x1(t1) = x2(t1).

(iii) Every stable trajectory on some finite interval I = [t0, t1] can be ex-
tended to a stable trajectory of Σ on [t0,∞). This extension can be
chosen so that π[t1,∞)PUw = u for an arbitrary u ∈ L2([t1,∞);U), and
it is uniquely determined by u.

(iv) A pair of functions [ xw ] on an interval [t0,∞) is a stable trajectory of Σ
on [t0,∞) if and only if the restriction of [ xw ] to every finite subinterval
[t0, t1] of [t0,∞) is a trajectory of Σ on [t0, t1] and, in addition, PUw ∈
L2([t0,∞),U) for some fundamental decomposition W = −Y � U of
W.

Proof. (i) By Lemma 3.3(i), it suffices to prove the case where t0 = 0. By
[Kur10, Prop. 5.8], the i/o pair (U ,Y) is L2-well-posed for Σ. Theorem 6.6
of [KS09] then yields that for every x0 ∈ X and u ∈ L2

loc(R+;U) the system
Σ has a unique future trajectory [ xw ], such that x(0) = x0 and PUw = u.
According to Lemma 3.2, a sufficient condition for the stability of [ xw ] is that
w ∈ K2(R+;W). Indeed, this condition is satisfied due to the fact that, by
(1.9),

‖PYw‖2
L2(R+;Y) ≤ ‖x(0)‖2

X + ‖u‖2
L2(R+;U).
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(ii) Claim (ii) is proved in [KS09, Prop. 3.8]
(iii) Claim (iii) follows from (i) and (ii).
(iv) According to [KS09, Proposition 3.9], [ xw ] is a trajectory of Σ on

[t0,∞) if and only if the restriction of [ xw ] to every finite subinterval [t0, t1]
is a trajectory of Σ on [t0, t1]. By Lemma 3.2, this trajectory is stable if and
only if PU ∈ L2([t0,∞);U).

The following theorem plays a key role in our extension of many of the
discrete time results developed in [AS09b] and [AS10] to a continuous time
setting (see Remark 3.17 below). In this theorem we need the family K0,t :=[ X

X
K2([0,t];W)

]
, t ∈ R+, of Krĕın spaces with the indefinite inner products (1.12)

as well as the Krĕın space L0,∞ :=
[ X
K2(R+;W)

]
with the natural inner product

(1.13). It follows immediately that K0,t and L0,∞ are Krĕın spaces with
fundamental decompositions K0,t = −K0,t,− � K0,t,+ and L0,∞ = −L0,∞,− �
L0,∞,+, where

K0,t,+ :=

 {0}
X

L2([0, t];U)

 , K0,t,− :=

 X
{0}

L2([0, t];Y)

 , t ≥ 0,

L0,∞,+ :=

[
X

L2(R+;U)

]
, L0,∞,− :=

[
{0}

L2(R+;Y)

]
.

(3.4)

and W = −Y � U is an arbitrary fundamental decomposition of W .

Theorem 3.5. Let X be a Hilbert space, let W be a Krĕın space, and let T+

be a subspace of
[
BUC(R+;X )

K2(R+;W)

]
. Define

T0,t :=

{[
x(t)
x(0)
π[0,t]w

]∣∣∣∣ [ xw ] ∈ T+

}
, t ∈ R+,

S0,∞ := {[ x(0)
w ] |[ xw ] ∈ T+} .

(3.5)

Then the subspace T+ is the family of all stable future trajectories of some
passive s/s system Σ = (V ;X ,W) if and only if the following three conditions
hold:

(i) T+ is left-shift invariant, i.e.,

τ t+T+ := {τ t+ [ xw ] | [ xw ] ∈ T+} ⊂ T+, t ∈ R+; (3.6)

(ii) For all t ∈ R+, T0,t is a maximal nonnegative subspace of K0,t.

(iii) S0,∞ is a maximal nonnegative subspace of L0,∞.
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Proof. This proof is based on [KS09, Lemma 4.7], and we refer the reader to
[KS09] for the precise definitions of some of the s/s and i/s/o notions that
we use in this proof. The monograph [Sta05] can be used as an alternative
source for basic results on well-posed i/s/o systems.

Throughout this proof we let W = −U � Y be a fundamental decompo-
sition of W , and let K0,t = −K0,t,− � K0,t,+ and L0,∞ = −L0,∞,− � L0,∞,+ be
the corresponding fundamental decompositions defined in (3.4).

Step 1: Necessity of properties (i) –(iii). Let T+ be the space of stable
future trajectories of the passive s/s system Σ. Then the left-shift invariance
of T+ follows from Lemma 3.3(iii). The nonnegativity of T0,t in K0,t and the
nonnegativity of S0,∞ in L0,∞ follow from (1.9) with t1 = 0 and t2 = t. To see
that T0,t is maximal nonnegative we argue as follows. It follows from Lemma
3.4(i) that the projection of T0,t onto K0,t,+ is all of K0,t,+ and the projection
of S0,∞ onto L0,∞,+ is all of L0,∞,+, and consequently, by Proposition 2.1(i),
T0,t and S0,∞ are maximal nonnegative.

Step 2: Characterization of the closure of T+ in
[

C(R+;X )

L2
loc(R+;W)

]
. For the

proof of the sufficiency of (i)–(iii) we let T+ be a subspace of
[
BUC(R+;X )

K2(R+;W)

]
with properties (i)–(iii). Since this part of our proof is based on Lemma

[KS09, Lemma 4.7] we must show that the closure T+ of T+ in
[
BUC(R+;X )

L2
loc(R+;W)

]
has the following three properties:

(i’) T+ is left-shift invariant;

(ii’) For all [ xw ] ∈ T+ and all t ∈ R+ we have

‖x(t)‖2
X +

∫ t

0

‖PYw(s)‖2
Y ds ≤ ‖x(0)‖2

X +

∫ t

0

‖PUw(s)‖2
U ds; (3.7)

(iii’) For all x0 ∈ X and u ∈ L2
loc(R+;U) there exit a unique [ xw ] ∈ T+

satisfying x(0) = x0 and PUw = u.

Clearly (i’) follows from the left-shift invariance of T+. Moreover, the
uniqueness in (iii’) follows from (ii’), so it suffices to prove existence in (iii’)
in addition to (ii’).

Fix x0 ∈ X and u ∈ L2
loc(R+;W), and let n ∈ Z+. By the maximal

nonnegativity of T[0,n] in K[0,n], the definition of T[0,n], and Proposition 2.1(i),
there exists some [ xnwn ] ∈ T+ such that x(0) = x0 and π[0,n]PUwn = π[0,n]u. By
the nonnegativity of T0,t for all t ∈ R+, (3.7) holds with [ xw ] replaced by [ xnwn ].

We claim that [ xnwn ] tends to a limit in
[

C(R+;X )

L2
loc(R+;W)

]
as n→∞. Indeed, for all

T > 0 and allm, n ≥ T , we get from (3.7) applied to
[
xn−xm
wn−wm

]
, combined with
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the conditions xn(0) = xm(0) = x0 and π[0,T ]PUwn = π[0,T ]u = π[0,T ]PUwm,
that

sup
0≤t≤T

‖xn(t)− xm(t)‖2
X ≤ ‖xn(0)− xm(0)‖2

X

+

∫ T

0

‖PU(wn(s)− wm(s))‖2
W ds = 0,∫ T

0

‖PY(wn(s)− wm(s))‖2
W ds ≤

∫ T

0

‖PU(wn(s)− wm(s))‖2
W ds = 0.

Thus, if we define [ xw ] by
[
x(s)
w(s)

]
=
[
xn(s)
wn(s)

]
for s ∈ [n − 1, n), n ∈ Z+, then

π[0,n) [ xnwn ] = π[0,n) [ xw ], n ∈ Z+, and hence [ xnwn ] → [ xw ] in
[

C(R+;W)

L2
loc(R+;W)

]
as

n → ∞. Since each [ xnwn ] ∈ T+, the limit [ xw ] belongs to T+, and (3.7) holds
since we know that (3.7) holds with [ xw ] replaced by [ xnwn ] for all n. This
proves (ii’) and (iii’).

Step 3: Existence of L2-well-posed scattering passive i/s/o representation.
By Step 2 and [KS09, Lemma 4.7], there exists a L2-well-posed i/s/o system
[ A B
C D ], such that

T+ =

{[
x
w

]
∈
[

C(R+;X )
K2

loc(R+;W)

] ∣∣∣∣ ∀t ≥ 0 :[
x(t)
PYw

]
=

[
At Bτ t

C D

] [
x(0)
PUw

]}
.

(3.8)

That this system is scattering passive follows from (3.7) and [Sta05, Lemma
11.1.4].

Step 4: Existence of passive s/s system. By Step 2 and [KS09, Theorem
6.6], there exists a L2-well-posed s/s system Σ = (V ;X ,W) such that T+ is
the set of all future (generalized) trajectories of Σ. The same theorem says
that the decomposition −Y � U is admissible, and it follows from (3.8) that
the system [ A B

C D ] is an i/s/o representation of Σ. Every L2-well-posed s/s
system has a unique (maximal) generating subspace V in the sense of [KS09,
Theorem 6.4], and by that theorem, this subspace V is given by

V =

[
A&B
[ 1 0 ]

C&D+[ 0 1 ]

]
dom ([ A&B

C&D ]) , (3.9)

where [ A&B
C&D ] : [ XU ] ⊃ dom ([ A&B

C&D ]) →
[
X
Y
]

is the system node of [ A B
C D ] (see,

e.g., [Sta05, Section 4.6] or [KS09, Sect. 5] for the definition of the system
node of a well-posed linear i/s/o system). By [Sta05, Theorem 11.1.5] and
[Kur10, Proposition 5.6], V is maximal nonnegative in the node space K (note
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that condition (iii) in [Sta05, Theorem 11.1.5] is identical to condition (ii) in
[Kur10, Proposition 5.6]). Consequently, Σ is passive.

Step 5: T+ is the space of stable future trajectories of Σ. By construction

T+ ⊂ T+ ∩
[
BUC (R+;X )

K2(R+;W)

]
, and every [ ww ] ∈ T+ is a future trajectory of Σ.

Consequently, every [ xw ] ∈ T+ is a stable future trajectory of Σ. Conversely,
let [ xw ] be a stable future trajectory of Σ. Since S0,∞ is maximal nonnegative
in L0,∞ and L0,∞ = −L0,∞,− � L0,∞,+ is a fundamental decomposition of
K+, there exists some [ x̃w̃ ] ∈ T+ with x̃(0) = x(0) and PU w̃ = PUw. Since
[ xw ]− [ x̃w̃ ] ∈ T+, we can apply (3.7) to

[
x−x̃
w−w̃

]
, and conclude that x = x̃ and

PUw = PU w̃. Thus, [ xw ] = [ x̃w̃ ] ∈ T+, and we have proved that every stable
future trajectory of Σ belongs to T+.

3.2 Classical trajectories and the generating subspace

We originally defined the notion of a trajectory of a passive s/s system Σ =
(V ;X ,W) by means of the generating subspace V . Below we shall study the
converse problem: how to recreate the generating subspace from the family of
all classical trajectories. (We have already encountered one result of this type
in the proof of Theorem 3.5.) For simplicity we primarily restrict ourselves
to future trajectories, i.e., trajectories defined on R+.

We begin with a preliminary lemma which gives a universal method to
construct a sequence of classical approximations of an arbitrary future tra-
jectory.

Lemma 3.6. Let [ xw ] be a future trajectory of the passive s/s system Σ =
(V ;X ,W). For each n ∈ Z+, define [ xnwn ] by[

xn(t)
wn(t)

]
:= n

∫ t+1/n

t

[
x(s)
w(s)

]
ds, t ∈ R+. (3.10)

Then [ xnwn ] is a classical future trajectory of Σ, and [ xnwn ]→ [ xw ] in
[

C(R+;X )

L2
loc(R+;W)

]
as n→∞. If [ xw ] is stable, then so is [ xnwn ], and [ xnwn ]→ [ xw ] in

[
BUC (R+;X )

L2(R+;W)

]
as n→∞.

This result is essentially contained in [KS11, Corollary 2.4]. For the
convenience of the reader we have included a proof.

Proof of Lemma 3.6. Clearly, each [ xnwn ] ∈
[
C1(R+;X )

C(R+;W)

]
. Let

[
xk

wk

]
be a se-

quence of classical future trajectories of Σ converging to [ xw ] ∈
[

C(R+;X )

L2
loc(R+;W)

]
.
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Since the trajectories
[
xk

wk

]
are classical, they satisfy

[
ẋk(s)

xk(s)

wk(s)

]
∈ V for all

s ∈ R+, and since V is closed, also

n

∫ t+1/n

t

 ẋk(s)xk(s)
wk(s)

 ds ∈ V.

As k →∞,[
xkn(t)
wkn(t)

]
= n

∫ t+1/n

t

[
xk(s)
wk(s)

]
ds→ n

∫ t+1/n

t

[
x(s)
w(s)

]
ds =

[
xn(t)
wn(t)

]
and

n

∫ t+1/n

t

ẋk(s) ds = n[xk(t+ 1/n)− xk(t)]→ n[x(t+ 1/n)− x(t)] = ẋn(t).

Consequently, n
∫ t+1/n

t

[
ẋk(s)

xk(s)

wk(s)

]
ds →

[
ẋn(t)
xn(t)
wn(t)

]
as k → ∞, and since V is

closed, we find that

[
ẋn(t)
xn(t)
wn(t)

]
∈ V for all t ∈ R+. Thus, [ xnwn ] is a classical

future trajectory of Σ.
All the additional claims in Lemma 3.6 follow from standard properties

of approximate identities (the scalar versions of these results are found in
many places, such as [GLS90, p. 67], and the vector-valued versions can be
proved in the same way).

Proposition 3.7. Let Σ = (V ;X ,W) be a passive s/s system. Then the
following claims are true:

(i) If [ xw ] is a (generalized) trajectory of Σ on some interval [t0, t0 + h],
and if both z0 := limt→t0+

1
t
(x(t)−x(t0) and w0 := limt→t0+

1
t

∫ t
t0
w(s) ds

exist, then
[ z0
x(t0)
w0

]
∈ V .

(ii) For each
[
z0
x0
w0

]
∈ V there exists a stable future classical trajectory [ xw ]

satisfying

[
ẋ(0)
x(0)
w(0)

]
=
[
z0
x0
w0

]
with the additional property that w is locally

absolutely continuous and [ ẋẇ ] is a stable future trajectory of Σ. In
particular,

V =

{[
ẋ(0)
x(0)
w(0)

]∣∣∣∣ [xw
]

is a future classical trajectory of Σ

}
. (3.11)
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(iii) A (generalized) trajectory [ xw ] of Σ on some interval I is classical if

and only if [ xw ] ∈
[
C1(I;X )
C(I;W)

]
.

(iv) There is a one-to-one correspondence between the passive s/s system
Σ = (V ;X ,W) and the set of all classical future trajectories of Σ, and
also between Σ and the set of all generalized future trajectories of Σ.

Parts of this proposition are also found in [KS11, Theorem 3.1 and Corol-
lary 3.2].

Proof of Proposition 3.7. (i) By the shift-invariance expressed in Lemma 3.3(i)
it suffices to treat the case t0 = 0. If h < ∞, then we first extend [ xw ] to a
trajectory defined on all of R+ in an arbitrary way; cf. Lemma 3.4(iii). Let
[ xnwn ] be the family of classical approximations of [ xw ] defined in Lemma 3.6.
Then, for all n ∈ Z+,ẋn(0)

xn(0)
wn(0)

 =
1

n

x(1/n)− x(0)∫ 1/n

0
x(s) ds∫ 1/n

0
w(s) ds

 ∈ V.
This tends to

[ z0
x(0)
w0

]
as n→∞, and since V is closed, it follows that

[ z0
x(0)
w0

]
∈

V .
(ii) Let W = −Y � U be a fundamental decomposition of W , and let

[ A B
C D ] be the i/s/o representation of Σ constructed in the proof of Theorem

3.5. Since
[
z0
x0
w0

]
∈ V , it follows from (3.9) that [ x0

w0 ] ∈ dom ([ A&B
C&D ]), and that[

z0

w0

]
=

[
A&B
C&D

] [
x0

u0

]
+

[
0
u0

]
.

Let u be an arbitrary function in C∞(R+;U) with compact support and with
u(0) = u0, define[

x(t)
y

]
:=

[
At Bτ t

C D

] [
x(0)
u

]
, t ∈ R+,

and take w = u+y. By Theorem 3.5 and its proof, [ xw ] is a future trajectory of

Σ, and it follows from (3.7) that this trajectory is stable. Moreover,
[
x(0)
w(0)

]
=

[ x0
w0 ]. By [Sta05, Theorem 4.6.11], [ xw ] ∈

[
C1(R+;X )

C(R+;W)

]
, ẋ(0) = z0, and y is

locally absolutely continuous with a distribution derivative ẏ ∈ L2
loc(R+;Y).

In particular, by part (i), [ xw ] is a classical trajectory of Σ, and w is locally
absolutely continuous with ẇ ∈ L2

loc(R+;W).
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For each n ∈ Z+, we define the sequence [ xnwn ] by[
xn(t)
wn(t)

]
= n

∫ t+1/n

t

[
ẋ(s)
ẇ(s)

]
ds =

[
n(x(t+ 1/n)− x(t))
n(w(t+ 1/n)− w(t))

]
, n ∈ Z+.

The set of all classical future trajectory of Σ is a left-shift invariant subspace,
and consequently each [ xnwn ] is a classical future trajectory of Σ. In the same
way as in the proof of Lemma 3.6 (with [ xw ] replaced by [ ẋẇ ]) we find that
xn → ẋ in C(R+;X ) and wn → ẇ in L2

loc(R+;W) as n→∞. It then follows
from Lemma 3.3(iv) that the restriction of [ ẋẇ ] to each finite interval [0, t2] is
trajectory of Σ on [0, t2], and from Lemma 3.4(iv) that [ ẋẇ ] is a stable future
trajectory of Σ.

(iii) In the case where the right end-point of I is +∞ claim (iii) fol-
lows from (i) (combined with the obvious fact that every classical trajectory
is also a generalized trajectory). If I has a finite right end-point t1, then[
ẋ(t1−1/n)
x(t1−1/n)
w(t1−1/n)

]
∈ V for all sufficiently large n and

[
ẋ(t1−1/n)
x(t1−1/n)
w(t1−1/n)

]
→
[
ẋ(t1)
x(t1)
w(t1)

]
as

n→∞. Since V is closed, this implies that

[
ẋ(t1)
x(t1)
w(t1)

]
∈ V . Thus, also in this

case [ xw ] is a classical trajectory on the full interval I.
(iv) Clearly, the generating subspace V of Σ determines the sets of all

future smooth and generalized trajectories of Σ uniquely. Conversely, formula
(3.11) defines V uniquely in terms of the set of all classical future trajectories
of Σ, and (iii) defines the set of all classical future trajectories of Σ uniquely
in terms of the set of all generalized future trajectories of Σ.

Proposition 3.8. Let Σ = (V ;X ,W) be a passive s/s system, and let [ xw ]
be a future trajectory of Σ for which w is locally absolutely continuous and
ẇ ∈ L2

loc(R+;W). Then [ xw ] is a classical trajectory if and only if ẋ(0) :=
limt→0+

1
t
(x(t)− x(0)) exists.

Proof. The existence of ẋ(0) is necessary for [ xw ] to be a classical solu-
tion. Conversely, if ẋ(0) exists, then it follows from Proposition 3.7(i) that[
ẋ(0)
x(0)
w(0)

]
∈ V . That x ∈ C1(R+;X ) then follows from [Sta05, Theorem 4.6.11]

in the same way as in the preceding proof, and by Proposition 3.7, this implies
that [ xw ] is a classical solution.

3.3 More on externally generated stable trajectories

Here we continue our study of externally generated trajectories begun in
Section 3.1. In particular, we now allow the left end-point of the interval I
on which the trajectories are defined to be −∞.

30



Lemma 3.9. Let Σ = (V ;X ,W) be a passive s/s system.

(i) Let [ xw ] be an externally generated stable trajectory [ xw ] of Σ on [t0,∞).
Then there exists a sequence of stable classical trajectories [ xnwn ] of Σ

on [t0,∞) which satisfies
[
xn(t0)
wn(t0)

]
= [ 0

0 ] for all n and tends to [ xw ] in[
BUC ([t0,∞);X )

L2([t0,∞);W)

]
as n→∞.

(ii) If [ xw ] is an externally generated stable trajectory of Σ on the interval
[t0,∞), and if we define x(t) = 0 and w(t) = 0 for t < t0, then
this extended pair of functions is an externally generated stable full
trajectory of Σ.

(iii) Let W = −Y � U be a fundamental decomposition of W, and let I be
a nontrivial closed interval. Then, for each u ∈ L2(I;U) there exists a
unique externally generated stable full trajectory [ xw ] of Σ on I satisfying
PUw = u.

(iv) Let [ x1
w1 ] be a stable externally generated trajectory of Σ on the interval

I1 = (−∞, t1], and let [ x2
w2 ] be a stable trajectory of Σ on an interval I2

with left end-point t1. Then the concatenation [ xw ] defined by (3.3) is a
stable trajectory of Σ on I := I1 ∪ I2 if and only if x1(t1) = x2(t1).

(v) Every stable trajectory on the interval interval I = (−∞, t1] can be
extended to a stable full trajectory of Σ. This extension can be chosen
so that π[t1,∞)PUw = u for an arbitrary u ∈ L2([t1,∞);U), and it is
uniquely determined by u.

Proof. (i) By Lemma 3.3(i), it suffices to prove the case where t0 = 0. Let
W = −Y � U be a fundamental decomposition of W , and let {un} be a
sequence of U -valued C∞ functions with compact support such that un(0) = 0
for each n and un → PUw in L2(R+,U) as n → ∞. Let [ xnwn ] be the stable
future trajectory of Σ with xn(0) = 0 given by Lemma 3.4(i). By [Sta05,

Theorem 4.6.11], [ xw ] ∈
[
C1(R+;X )

C(R+;W)

]
and wn(0) = 0. By Proposition 3.7(iii),

each [ xnwn ] is a classical future trajectory of Σ. It follows from Lemma 3.2

that [ xnwn ] is stable, and that [ xnwn ]→ [ xw ] in
[
BUC (R+;X )

L2(R+;W)

]
as n→∞.

(ii) Let [ xnwn ] be a sequence of classical stable future trajectories of Σ

with the properties listed in (i). If we define
[
xn(t)
wn(t)

]
= [ 0

0 ] for t < 0, then

each [ xnwn ] is a classical stable full trajectory of Σ (note that ẋn(0) = 0 since[
xn(t)
wn(t)

]
= [ 0

0 ] and

[
ẋ(0)
x(0)
w(0)

]
∈ V .) This extended sequence converges to the
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extended version of [ xw ] in
[
BUC (R;X )

L2(R;W)

]
as n→∞, and by Lemma 3.3(iv), the

limit is a stable externally generated full trajectory of Σ.
(iii) In the case where I has a finite left end-point the claim (iii) follows

from Lemma 3.4(i). Thus, we may here assume that the left end-point of I
is −∞. If the right end-point of I is finite, then we start by extending u to
all of R by defining u(t) = 0 for t /∈ I.

For each n ∈ I, define un = P[−n,∞)u. Then un → u in L2(R;U) as
n → ∞. Let [ xnwn ] be the externally generated trajectory of Σ on [−n,∞)
satisfying PUwn = un given by Lemma 3.4(i), and use (ii) to extend this
trajectory to a full externally generated trajectory, which we still denote by

[ xnwn ]. It follows from Lemma 3.2 that [ xnwn ] is a Cauchy sequence in
[
BUC (R;X )

L2(R;W)

]
as n→∞, and hence it converges to a limit [ xw ] in this space. By Lemma 3.3,
this limit is an externally generated full trajectory of Σ. Clearly PUw = u.
The uniqueness of this trajectory follows from Lemma 3.2.

(iv) The necessity of the condition x1(t1) = x2(t) for [ xw ] to be a trajectory
is obvious, since x is required to be continuous at t1.

Let W = −Y � U be a fundamental decomposition of W , and let
[
x′

w′

]
be the unique externally generated full trajectory of Σ given by (iii) which
satisfies PUw

′ = PUw. Then the restriction of
[
x′

w′

]
to I1 is an externally

generated trajectory of Σ on I1, and by (iii), this restriction is equal to [ x1
w1 ].

On the other hand, the restriction of
[
x′

w′

]
to I2 is a trajectory of Σ on I2,

and by Lemma 3.4(i), this restriction is equal to [ x2
w2 ]. Thus, [ xw ] =

[
x′

w′

]
, and

so [ xw ] is an externally generated trajectory of Σ on I.
(v) That (v) is true follows from (iv) and Lemma 3.4(i).

3.4 Passive past, full, and future behaviors

We recall the following definition from Section 1.

Definition 3.10. By the (stable) behavior WΣ(I) of the passive s/s system
Σ on the closed and nontrivial interval I we mean the set of all the signal
parts w of all externally generated stable trajectories [ xw ] of Σ on I.

In the special cases I = R−, I = R, and I = R+ we denote these behaviors
by WΣ

−, WΣ, and WΣ
+, and refer to them as the past, full, and future behaviors

of Σ, respectively.

Lemma 3.11. To each w ∈ WΣ
+ there exists a unique x ∈ C(R+;X ) such

that [ xw ] is an externally generated stable trajectory of Σ on R+, and this
function satisfies x ∈ BUC (R+;X ). The same statement remains true if we
replace WΣ

+ by WΣ or by WΣ
− and at the same time replace R+ by R or R−,

respectively.
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Proof. This follows from the definitions of WΣ
+, WΣ, and WΣ

− and Lemmas
3.4(i) and 3.9(iii).

The shift (semi)groups τ t, τ t−, and τ t+ used in the following lemma were
defined at the end of Section 1.

Lemma 3.12. The past, full, and future behaviors WΣ
−, WΣ, and WΣ

+ of a
passive s/s system Σ = (V ;X ,W) have the following properties:

(i) W± are right-shift invariant and WΣ is bilaterally shift-invariant, i.e.,

τ ∗t±W
Σ
± ⊂WΣ

±, t ∈ R+,

τ tWΣ = WΣ, t ∈ R.
(3.12)

(ii) WΣ
± can be recovered from WΣ by the formulas

WΣ
− = π−W

Σ := {w− ∈ K2
−(W) | w− = π−w for some w ∈WΣ},

WΣ
+ = WΣ ∩K2

+(W) := {w ∈WΣ | w(t) = 0 for t < 0}.
(3.13)

(iii) WΣ
± is a maximal nonnegative subspace of K2

±(W) and WΣ is a maximal
nonnegative subspace of K2(W).

Proof. (i) By Lemma 3.3(i), τ tWΣ = WΣ for all t ∈ R. By Lemma 3.3(i)–
(ii), τ ∗t−W

Σ
− ⊂ WΣ

− (and actually even τ ∗t−W
Σ
− = WΣ

−) for all t ∈ R+. That
τ ∗t+ WΣ

+ ⊂WΣ
+ for all t ∈ R+ follows from Lemmas 3.3(i)–(ii) and 3.9(ii).

(ii) If w ∈ WΣ, then by Lemma 3.3(ii), w− := π−w ∈ WΣ
−. Conversely,

according to Lemma 3.9, every w− ∈ WΣ
− can be extended to a function

w ∈WΣ. Analogously, by Lemma 3.3(ii), if w ∈WΣ∩K2
+(W) then w ∈WΣ

+,
and if w ∈ WΣ

+ and we extend w to K2(W) by defining w(t) = 0 for t < 0,
then by Lemma 3.9(ii), the extended function belongs to WΣ.

(iii) That WΣ
−, WΣ, and WΣ

+ are nonnegative follows from Lemma 3.2.
To see that they are maximal nonnegative it suffices to take an arbitrary
fundamental decomposition W = −Y � U of W and use Lemmas 3.4(i) and
3.9(iii) and Proposition 2.1(i).

At this point we must warn the reader that if W is an arbitrary maximal
nonnegative bilaterally shift-invariant subspace of K2(W) and if we define
W− = π−W and W+ = W ∩ K2

+(W) (as in (3.12)) then it need not be
true that W− is maximal nonnegative in K2

−(W) or that W+ is maximal
nonnegative in K2

+(W). A discrete time counter example is given in [AS09b,
Examples 2.7 and 2.14], and the same example can easily be modified to
become a continuous time counter example. The following lemma clarifies
the situation.
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Lemma 3.13. Let W be a maximal nonnegative subspace W of K2(W), and
define W− and W+ by

W− := π−W, W+ := W ∩K2
+(W), (3.14)

Then the following conditions are equivalent:

(i) W− is a maximal nonnegative subspace of K2
−(W).

(ii) W+ is a maximal nonnegative subspace of K2
+(W).

(iii) For some fundamental decomposition W = −Y � U the following im-
plication is valid: If w ∈W and π−πUw = 0, then π−πYw = 0.

(iv) For every fundamental decomposition W = −Y � U the following im-
plication is valid: If w ∈W and π−πUw = 0, then π−πYw = 0.

Proof. This follows from Lemma 2.4 with the substitutions K → K2(W),
K1 → K2

+(W), K2 → K2
−(W), Z → W, Y2 → L2

−(Y), and U2 → L2
−(U).

Note that conditions (i) and (ii) in Lemma 2.4 do not depend on the partic-
ular fundamental decomposition used in part (iii) of that lemma, so if (iii)
holds for one fundamental decomposition, then it holds for every fundamental
decomposition.

Motivated by Lemmas 3.12 and 3.13 we make the following definition:

Definition 3.14. Let W be a Krĕın space.

(i) A maximal nonnegative right-shift invariant subspace of K2
−(W) is

called a passive past behavior on the (signal) space W .

(ii) A maximal nonnegative right-shift invariant subspace W+ of K2
+(W)

is called a passive future behavior on the (signal) space W .

(iii) A maximal nonnegative bilaterally shift invariant subspace W ofK2(W)
which satisfies the equivalent conditions (i)–(iv) listed in Lemma 3.13
is called a passive full behavior on the Krĕın (signal) space W .

Proposition 3.15. Let Σ = (V ;X ,W) be a passive s/s system. Then the
past, full, and future behaviors of Σ are passive past, full, and future behav-
iors, respectively, on W in the sense of Definition 3.14.

Proof. This follows from Lemma 3.12 and Definition 3.14
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As we shall see in Lemma 3.18 below, each one of these behaviors deter-
mine the two others uniquely.

Passive past and future behaviors actually have slightly stronger shift-
invariance properties than what is explicitly required in Definition 3.14.

Lemma 3.16. Let W be a Krĕın space.

(i) Every passive past behavior W− on W satisfies τ ∗t−W− = W− for all
t ∈ R+.

(ii) Every passive future behavior W+ on W satisfies

τ ∗t+ W+ = {w ∈W+ | w(s) = 0 for almost all s ∈ [0, t]}

for all t ∈ R+.

Before proving this lemma we make the following remark.

Remark 3.17. Many of our subsequent results (as well as Lemmas 3.13 and
3.18 above) can be regarded as continuous time versions of the correspond-
ing discrete time results given in [AS09b] and [AS10]. In many cases the
proofs given in [AS09b] and [AS10] can be adapted to the present setting by
performing some simple substitutions. As a general rule, all those notions
defined [AS09b] and [AS10] have a natural counterpart presented here, they
should be replaced by that counterpart. The discrete time right shifts S−,
S, and S+ are replaced by τ ∗t− , τ−t, and τ ∗t+ , t ∈ R+, and the discrete time
left shifts S∗−, S−1, and S∗+ are replaced by τ t−, τ t, and τ t+, t ∈ R+. The
discrete time trajectories in [AS09b] and [AS10] are throughout replaced by
generalized continuous time trajectories (i.e., no classical trajectories enter
in these translations). The main difference between the discrete time and
the continuous time cases is that in the proofs one should not replace the
discrete time generating subspace V by the continuous time generating sub-
space V . Instead, in computations involving future trajectories one should
through replace V by the subspaces T0,t defined in (3.5), and the discrete
time node space K should be replaced by the Krĕın space K0,t with the inner
product (1.12), and we throughout use Theorem 3.5 to characterize the pas-
sivity of a continuous time s/s system, and not the original Definition 3.1.
In connection with past trajectories we replace the discrete time generating
subspace V by a left-shifted versions T[−t,0] and K[−t,0] of T0,t and K0,t. This
has the consequence that whenever a discrete time formula contains the term
[w(0), w(0)]W it should be replaced by

∫ t
0
[w(s), w(s)]W ds, and analogously

[w(−1), w(−1)]W should be replaced by
∫ 0

−t[w(s), w(s)]W ds. As a conse-
quence of these changes, the continuous time proofs are often slightly shorter
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than the discrete time proofs, since there is no need to build trajectories on a
finite time interval [0, T ] from scratch, as sometimes happens in the discrete
time setting.

If the proof of some particular result given below can be obtained from
the corresponding result in [AS09b] or [AS10] by performing the substitu-
tions listed above, then we sometimes omit the proof, and refer the reader
to [AS09b] or [AS10]. We do this, in particular, if the conversion is straight-
forward and the proof is of significant length. If the proof is short, or if the
conversion is less straightforward, or if the proof is important for the general
understanding of the theory we write it out in full detail.

As an example on how to convert discrete time results to continuous time
results, let us look at the graph representation of passive behaviors used
in the proof of [AS09b, Theorem 2.11]. (These graph representations are
needed, among others, for the proof of Lemma 3.16.) Let W = −Y � U
be a fundamental decomposition of W . Then K2(W) = −L2(Y) � L2(U)
and K2

±(W) = −L2
±(Y) � L2

±(U) are fundamental decompositions of of the
Krĕın spaces K2(W) and K2

±(W), respectively. By assertion (i) and (iv) of
Proposition 2.1, every passive past, full, and future behavior W−, W, and
W+ onW and their orthogonal companions have graph representations with
respect to the above fundamental decompositions of the type

W± = {[ D±uu ]|u ∈ L2
±(U)

}
, W = {[ Duu ]|u ∈ L2

}
,

W
[⊥]
± =

{[ y
D∗±y

]∣∣ y ∈ L2
±(Y)

}
, W[⊥] =

{[ y
D∗y

]∣∣ y ∈ L2(Y)
}
,

(3.15)

where D± and D are linear contractions between the respective L2-spaces.
It follows from Lemma 3.13 and Definition 3.14 hat π−D|L2

+(U) = 0 and

π+D
∗|L2
−(U) = 0, i.e., D and D∗ are causal and anti-causal, respectively. Since

τ ∗t±W± ⊂ W± for all t ∈ R+ and τ tW = W for all t ∈ R, it follows from
(3.15) that D± are right-shift invariant and D is bilaterally shift invariant,
i.e.,

τ ∗t±D± = D±τ
∗t
± for all t ∈ R+ and τ tD = Dτ t for all t ∈ R. (3.16)

Furthermore, if the three behaviors W± and W are related to each other by
the relations (3.14)–(3.19), then D± and D are related to each other by

D+ = D|L2
+(U), D− = π−D|L2

−(U),

D∗+ = π+D
∗|L2

+(U), D∗− = D∗|L2
−(U).

(3.17)

Proof of Lemma 3.16. LetW = −Y �U be a fundamental decomposition of
W .
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(i) By (3.15), the right-shift invariance of D−, and the fact that τ ∗t− L
2
−(U) =

L2
−(U), we have

τ ∗t−W− =
{[

τ∗t− D−u

τ∗t− u

]∣∣∣u ∈ L2
−(U)

}
=
{[

D−τ∗t− u

τ∗t− u

]∣∣∣u ∈ L2
−(U)

}
= {[ D−uu ]|u ∈ L2

−(U)
}

= W−.

(ii) If u ∈ τ ∗t+ W+, then by the shift-invariance of W+, τ ∗t+ w ∈W+, and of
course, w vanishes on [0, t]. Conversely, let w ∈W+ vanish on [0, t]. Define
u1 = τ t+PUw, and w1 =

[
D+u1
u1

]
. Then

τ ∗t+ w1 =
[
τ∗t+ D+u1

τ∗t+ u1

]
=
[
D+τ∗t+ u1

τ∗t+ u1

]
=
[
D+PUw
PUw

]
= w.

Consequently, w ∈ τ ∗t+ W+.

The following lemma complements Lemmas 3.12 and 3.13.

Lemma 3.18. Let W be a Krĕın space.

(i) If W− is a passive past behavior on W, and if we define W by

W =
⋂
t∈R+

{
w ∈ K2(W)

∣∣ π−τ tw ∈W−
}
, (3.18)

then W is a passive full behavior on W and W− = π−W.

(ii) If W+ is a passive future behavior on W, and if we define W by

W =
∨
t∈R+

τ tW+, (3.19)

then W is a passive full behavior on W, and W+ = W ∩K2
+(W).

(iii) Let W be a passive full behavior on the Krĕın signal space W, and
define W− and W+ by (3.14). Then W− is a passive past behavior on
W, W+ is a passive future behavior on W, and W can be recovered
from W+ and from W− by means of formulas (3.18) and (3.19).

Proof. (i) Let W− be a passive past behavior onW , and define W by (3.19).
Denote

Wt
− =

{
w ∈ K2(W)

∣∣ π−τ tw ∈W−
}
, t ∈ R,

so that W =
⋂
t∈R+ Wt

−. Then Wt
− = τ−tW0

− since

w ∈Wt
− ⇔ π−τ

tw ∈W− ⇔ τ tw ∈W0
− ⇔ w ∈ τ−tW0

−.
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Thus τ sWt
− = τ s−tW0

− = Wt−s
− for all s, t ∈ R. If w ∈Wt

−, or equivalently,
π−τ

tw ∈ W−, then the right-shift invariance of W− implies that for all
s ∈ R+,

π−τ
t−sw = τ ∗s− π−τ

tw ∈W−.

and consequently Wt
− ⊂ Wt−s

− for all t ∈ R and s ∈ R+. In particular, this
implies that for all t ∈ R,

τ tW = τ t
⋂
s∈R+

Ws
− =

⋂
s∈R+

τ tWs
− =

⋂
s∈R+

Ws−t
− =

⋂
r≥−t

Wr
− =

⋂
r∈R+

Wr
− = W.

Thus, W is bilaterally shift-invariant.
We next show that W is nonnegative in K2(W). If w ∈Wt

− for some t ∈
R, then it follows from the definition of Wt

− and the maximal nonnegativity
of W− that

0 ≤
∫
R−

[(τ tw)(s), (τ tw)(s)]W ds =

∫ t

−∞
[w(s), w(s)]W ds.

If w ∈W =
⋂
t∈R+ Wt

−, then we can let t→∞ to get [w,w]K2(W) ≥ 0. Thus,
W is a nonnegative subspace of K2(W).

To prove that W is maximal nonnegative in K2(W) we let K2(W) =
−L2(Y) � L2(U) be a fundamental decomposition of K2(W), where W =
−Y � U is a fundamental decomposition of W . Let u be an arbitrary func-
tion in L2(U). By the definition of Wt

−, the maximal nonnegativity of W−,
and Proposition 2.1(i), for each n ∈ Z+ there exists some wn ∈ Wn

− such
that π−PUτ

nwn = π−u, or equivalently, π(−∞,n]PUwn = π(−∞,n]u. Moreover,
π(−∞,n]PYwn is uniquely determined by π(−∞,n]u. Since Wm

− ⊂Wn
− for all m,

n ∈ Z+, n ≥ m, this implies that π(−∞,m]wn = π(−∞,m]wm for all n ≥ m. If we
use the Hilbert space norm inW induced by the decompositionW = −Y�U ,
then

‖π(−∞,n]wn‖L2(−∞,n];W) ≤ 2‖π(−∞,n]u‖L2(−∞,n];U) ≤ 2‖u‖L2(U).

Define w(t) = w0(t) for t ≤ 0, and w(t) = wn(t) for t ∈ (n−1, n], n ≥ 1. Then
π(−∞,n]τ

nw = π(−∞,n]τ
nwn ∈ W−, and consequently w ∈

⋂
n∈Z+ Wn

− = W.
By Proposition 2.1(i), W is maximal nonnegative.

Trivially, π−W ⊂ π−W
0
− = W−. Conversely, take some arbitrary w− ∈

W−. Let W = −Y � U be a fundamental decomposition of W , and define
u(t) = PUw−(t) for t ∈ R− and u(t) = 0 for t > 0. Let w be the correspond-
ing function inW constructed in the preceding paragraph. Then π−w ∈W−
and PUπ−w = PUw−. Consequently, since every function in W− is uniquely
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determined by its U -component, we have π−w = w−. Thus, W− ⊂ π−W. To-
gether with the inclusion π−W ⊂W− this gives π−W = W−. By Definition
3.14, W is a passive full behavior.

(ii) Let W+ be a passive future behavior on W , and define W by (3.19).
Denote

Wt
+ = τ tW+, t ∈ R,

so that W =
∨
t∈R+ Wt

+. Trivially τ sWt
+ = τ s+tW+ = Ws+t

+ for all s, t ∈ R.
The right-shift invariance of W+ implies that Ws

+ ⊂ Wt
+ for all s ≤ t. In

particular, for all t ∈ R,

τ tW = τ t
∨
s∈R+

Ws
+ =

∨
s∈R+

τ tWs
+ =

∨
s∈R+

Ws+t
+ =

∨
r≥t

Wr
+ =

∨
r∈R+

Wr
+ = W.

Thus, W is bilaterally shift-invariant.
We next show that W is nonnegative in K2(W). If w ∈Wt

+ for some t ∈
R, then it follows from the definition of Wt

+ and the maximal nonnegativity
of W+ that

0 ≤
∫
R+

[(τ−tw)(s), (τ−tw)(s)]W ds =

∫
R
[w(s), w(s)]W ds.

Thus, each of the subspaces Wt
+ is nonnegative, and hence so is the closed

linear hull W =
∨
t∈R+ Wt

+.
To prove that W is maximal nonnegative in K2(W) we let K2(W) =

−L2(Y) � L2(U) be a fundamental decomposition of K2(W), where W =
−Y�U is a fundamental decomposition ofW . Let u be an arbitrary function
in L2(U). By the definition of Wt

+, the maximal nonnegativity of W+, and
Proposition 2.1(i), for each n ∈ Z+ there exists some wn ∈ Wn

+ such that
PUwn = π[−n,∞)u. If we use the Hilbert space norm in W induced by the
decomposition W = −Y � U , then for all m, n ∈ Z+, m ≥ n,

‖wm − wn‖L2(R;W) ≤ 2‖u‖L2([−m,−n];U).

Thus, wn is a Cauchy sequence in L2(W) which converges to a limit w in
L2(W). Since each wn ∈Wn

+, we have w ∈
∨
t∈R+ Wt

+ = W. Thus, PUW =
L2(U), and by Proposition 2.1(i), W is maximal nonnegative.

By Lemma 3.16, for each t ∈ R+ we have W+ = Wt
+ ∩ K2

+(W). Thus
W+ ⊂

(∨
t∈R+ Wt

+

)
∩K2

+(W) = W∩K2
+(W). On the other hand, W∩K2

+(W)
is a nonnegative subspace of K2

+(W) whereas W+ is a maximal nonnegative
subspace of K2

+(W) contained in K2
+(W) ∩W. Thus, W+ = K2

+(W) ∩W.
By Definition 3.14, W is a passive full behavior.

(iii) Let W be a passive full behavior on W , and define W− and W+ by
(3.14). It follows from Definition 3.14 that W+ is a maximal nonnegative
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subspace of K2
+(W) and that W− is a maximal nonnegative subspace of

K2
−(W). The right-shift invariance of W± follows from the bilateral shift

invariance of W and (3.14). Thus, W+ and W− are passive future and past
behaviors, respectively. This proves the first two claims in (i).

We continue with the proof of (3.18). Denote the right-hand side of (3.18)
by W̃. By (i), W̃ is a (maximal) nonnegative subspace of K2(W), and it
follows from Definition 3.14 that W ⊂ W̃. Since W is maximal nonnegative,
we must have W = W̃, and consequently (3.18) holds.

We finally prove (3.19). Denote the right-hand side of (3.19) by W̃. By
(ii), W̃ is a maximal nonnegative subspace of K2(W), and it follows from
Definition 3.14 that W̃ ⊂W. Since W is nonnegative, we must have W = W̃,
and consequently (3.19) holds.

Lemma 3.19. Let W− be a passive past behavior on a Krĕın space W. Then
the set of all w ∈W− with compact support is a dense subspace of W−.

Proof. By Lemma 3.18(iii),

W− = π−W = π−
∨
t∈R+

τ tW+ =
∨
t∈R+

π−τ
tW+,

where each function in π−τ
tW+ has compact support.

Lemma 3.20. Let W+ be a passive future behavior on W, and define the
[0, t]-sections W[0,t] of W+ by

W[0,t] := π[0,t]W+, t ∈ R+. (3.20)

Then each W[0,t] is a maximal nonnegative subspace of K2([0, t];W).

Proof. By Lemma 3.16, W+ ∩K2([t,∞);W) = τ ∗t+ W+, and therefore W+ ∩
K2([t,∞);W) is maximal nonnegative in K2([t,∞);W). This fact, combined
with Lemma 2.4 with the substitutions K → K2

+(W), K1 → K2([t,∞);W),
K2 → K2([0, t]W), and Z →W+, implies that π[0,t]W+ is maximal nonneg-
ative in K2([0, t];W).

3.5 Intertwined systems

Definition 3.21. Let Σ1 = (V1;X1;W) and Σ2 = (V2;X2;W) be two passive
s/s systems (with the same signal space W).
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(i) A bounded linear operator E : X1 → X2 intertwines the two passive s/s
systems Σ1 and Σ2 if the formula

(x1, w) 7→ (Ex1, w) (3.21)

defines a map from the set of all stable future trajectories [ x1
w ] of Σ1

onto the set of all stable future trajectories [ x2
w ] of Σ2 satisfying x2(0) ∈

im (E).

(ii) Σ1 and Σ2 are boundedly intertwined if there exists an operator E ∈
B(X1;X2) which intertwines Σ1 and Σ2. The operator E is called an
intertwining operator between Σ1 and Σ2.

(iii) Σ1 and Σ2 are contractively intertwined if there exists a contraction
E ∈ B(X1;X2) which intertwines Σ1 and Σ2.

(iv) Σ1 and Σ2 are similar if there exists a boundedly invertible operator
E ∈ B(X1;X2) which intertwines Σ1 and Σ2. The operator E is called
a similarity operator between Σ1 and Σ2.

(v) Σ1 and Σ2 are unitarily similar if there exists a unitary operator E ∈
B(X1;X2) which intertwines Σ1 and Σ2.

Note, in particular, that if Σ1 and Σ2 are boundedly intertwined, then
they have the same future behavior.

Definition 3.22. (i) The s/s system Σ̃ = (Ṽ ; X̃ ,W) is called an orthogo-
nal outgoing dilation of the s/s system Σ = (V ;X ,W) and Σ is called
an orthogonal outgoing compression onto X of Σ̃, if X ⊂ X̃ and the
orthogonal projection of X̃ onto X intertwines Σ̃ and Σ.

(ii) The s/s system Σ̃ is called an incoming dilation of Σ and Σ is called
an incoming compression of Σ̃ if X ⊂ X̃ and the embedding operator
X ↪→ X̃ intertwines Σ and Σ̃.

4 The Anti-Passive Adjoint State/Signal Sys-

tems

4.1 Anti-passive state/signal systems

According to Definition 3.1, the generating subspace V of a passive s/s system
Σ = (V ;X ,W) is required to be maximal nonnegative. Consequently, by
Proposition 2.1(iv), its orthogonal companion V [⊥] is maximal nonpositive.
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Definition 4.1. Let X be a Hilbert space and W a Krĕın space.

(i) By an anti-passive s/s node in continuous time we mean a triple Σ† =
(V †;X ,W) where V † is a maximal nonpositive subspace of the Krĕın

node space K :=
[
X
X
W

]
equipped with the inner product (1.7), with the

additional property that if
[
z
0
0

]
∈ V †, then z = 0.

(ii) Classical and generalized trajectories of an anti-passive s/s system Σ†

are defined in the same way as in the case of a passive system (see
Definition 3.1(i)–(ii)).

(iii) The anti-passive s/s node Σ† together with its families of classical and
generalized trajectories is called an anti-passive s/s system, and it de-
noted by the same symbols as the node.

(iv) By a past, full, or future trajectory of an anti-passive system Σ† we
mean a trajectory of Σ on R−, R, or R+, respectively.

(v) A (generalized) trajectory
[
x†

w†

]
of an anti-passive s/s system Σ† =

(V †;X ,W) on an interval I is backward externally generated if the
following condition holds: If I has a finite right end-point t1, then we
require that x†(t1) = 0, and if the right end-point of I is ∞, then we
require that limt→∞ x

†(t) = 0 and that w† ∈ L2([T,∞);W) for every
finite T ∈ I.

(vi) A (generalized) trajectory
[
x†

w†

]
of an anti-passive s/s system Σ† =

(V †;X ,W) is stable if x is bounded on I and w ∈ L2(I;W).

To distinguish between trajectories of a passive s/s system and an anti-
passive system we often denote the trajectories of an anti-passive system by[
x†

w†

]
.

Remark 4.2. Since the generating subspace V † of an anti-passive system is
maximal nonpositive in the node space K, it is maximal nonnegative in the
anti-space −K. The inner product in −K is given by[[

z1
x1
w1

]
,
[
z2
x2
w2

]]
−K

= −(−z1, x2)− (x1,−z2)− [w1, w2]W . (4.1)

Recall that the z-component represents the time derivative ẋ†(t) of a clas-
sical trajectory

[
x†

w†

]
, the x-component represents the state x†(t) itself, and

the w-component represents the signal w†(t). The change of sign in the z-
component in (4.1) compared to (1.7) can be interpreted as a reflection of
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the time direction, since d
dt
x†(−t) = −ẋ†(−t), and the change of sign in the

w-component amounts to the replacement of the signal space W by its anti-
space. This means that the theory of anti-passive s/s systems is identical to
the theory of passive s/s systems, apart from a reflection of the time axis,
and a change of sign in the signal component. Because of the reflection,
externally generated stable trajectories of a passive s/s system correspond
to backward externally generated trajectories of the corresponding reflected
system. All the results listed in Sections 3.1–3.3 have anti-passive counter-
parts, where the past and future have changed places. Note, in particular,
that the basic inequalities (1.6), (1.8), and (1.9) are reversed. We shall not
give a complete list here, but only formulate those results that we actually
use. See also Remark 4.12 below.

Lemma 4.3. Σ = (V ;X ,W) is a passive s/s system if and only if Σ[⊥] =
(V [⊥];X ,W) is an anti-passive s/s system.

Proof. Suppose that Σ := (V ;X ,W) is a passive s/s system. By Proposition
2.1(iv), V [⊥] is maximal nonpositive subspace of the node space K since V is
maximal nonnegative in K. That V [⊥] also satisfies the additional condition

that if
[
z†
0
0

]
∈ V †, then z† = 0 follows from [Kur10, Corollary 4.8]. That also

the converse claim is true follows from Remark 4.2.

Definition 4.4. The anti-passive dual of a passive s/s system Σ = (V ;X ,W)
is the anti-passive s/s system Σ[⊥] := (V [⊥];X ,W).

Above we have defined the anti-passive dual of a s/s system by means
of its generating subspace. It can alternatively be characterized by means
of the orthogonality between the trajectories of the original system and its
dual, as described in the following theorem.

Theorem 4.5. Let Σ = (V ;X ,W) be a passive s/s system, and let Σ[⊥] =
(V [⊥];X ,W) be its anti-passive dual.

(i) For each interval I with finite right end-point t2, the pair of functions[
x†

w†

]
∈
[
C(I;X )

L2(I;W)

]
is a stable trajectory of Σ[⊥] in I if and only if

(x†(t2), x(t2))X = (x†(t1), x(t1))X +

∫ t2

t1

[w†(s), w(s)]W ds (4.2)

for all t1 ∈ I and all stable trajectories [ xw ] of Σ on [t1, t2].
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(ii) For each interval I with right end-point∞, the pair of functions
[
x†

w†

]
∈[

C(I;X )

L2(I;W)

]
is a backward externally generated stable trajectory of Σ[⊥] in

I if and only if x†(t)→ 0 as t→∞ and

0 = (x†(t1), x(t1))X +

∫ ∞
t1

[w†(s), w(s)]W ds (4.3)

for all t1 ∈ I and all stable trajectories [ xw ] of Σ on [t1,∞).

Proof. The proofs of claims (i) and (ii) are almost identical to each other, so
we only prove (i), and leave the proof of (ii) to the reader.

The necessity of (4.2) is quite obvious: if both of the trajectories are
classical, then one gets (4.2) by integrating the equation

0 =

 ẋ†(s)x†(s)
w†(s)

 ,
 ẋ(s)
x(s)
w(s)


K

= − d

ds
(x†(s), x(s))X + [w†(s), w(s)]W

over the interval [t1, t2]. In the case of generalized trajectories we first ap-
proximate

[
x†

w†

]
and [ xw ] by sequences of classical trajectories, and then pass

to the limit to get (4.2) for generalized trajectories
[
x†

w†

]
and [ xw ].

Conversely, let
[
x†

w†

]
∈
[
C(I;X )

L2(I;W)

]
satisfy (4.2) for all t1 ≤ t2, t1 ∈ I and all

trajectories [ xw ] of Σ on [t1, t2]. Fix t0 ∈ I. By Lemma 3.4(i) and Remark 4.2,

there exists a stable trajectory
[
x†1
w†1

]
of Σ[⊥] on [t0, t2] with x†1(t2) = x†(t2)

and PYπ[t0,t2]w
†
1 = PYπ[t0,t2]w

†. By the first part of the proof and by our

assumption on
[
x†

w†

]
, for all t1 ∈ [t0, t2],

0 = (x†(t1)− x†1(t1), x(t1))X +

∫ t2

t1

[w†(s)− w†1(s), w(s)]W ds

= (x†(t1)− x†1(t1), x(t1))X +

∫ t2

t1

[PU(w†(s)− w†1(s)), PUw(s)]W ds.

By Lemma 3.4(i), the pair
[

x(t1)
PUP[t1,t2]w

]
can be an arbitrary vector in X ×

L2([t1, t2];U), and consequently x†(t1) = x†1(t1) and π[t1,t2]w
† = π[t1,t2]w

†
1.

Thus, the restriction of
[
x†

w†

]
to any finite interval [t0, t2] of I is a trajectory

of Σ[⊥] on [t0, t2], and by Lemma 3.4(iv) and Remark 4.2,
[
x†

w†

]
is a stable

trajectory of Σ[⊥] on I.

Corollary 4.6. Let Σ = (V ;X ,W) be a passive s/s system, and let Σ[⊥] =
(V [⊥];X ,W) be the anti-passive dual of Σ.
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(i) If [ xw ] is a stable past trajectory of Σ and
[
x†

w†

]
a stable past trajectory

of Σ[⊥], then limt→−∞(x(t), x†(t))X exists, and

(x†(0), x(0))X = lim
t→−∞

(x†(t), x(t))X + [w†, w]K2
−(W). (4.4)

(ii) If [ xw ] is a stable future trajectory of Σ and
[
x†

w†

]
a stable future trajec-

tory of Σ[⊥], then limt→∞(x(t), x†(t))X exists, and

lim
t→∞

(x†(t), x(t))X = (x†(0), x(0))X + [w†, w]K2(R+;W). (4.5)

(iii) If [ xw ] is a stable full trajectory of Σ and
[
x†

w†

]
is a stable full trajectory

of Σ†, then limt→−∞(x(t), x†(t))X and limt→∞(x(t), x†(t))X exist, and

lim
t→∞

(x†(t), x(t))X = lim
t→−∞

(x†(t), x(t))X + [w†, w]K2(R;W). (4.6)

Proof. This follows immediately from Theorem 4.5.

Definition 4.7. A passive s/s system Σ = (V ;X ,W) is energy preserving
if V ⊂ V [⊥], it is co-energy preserving if V [⊥] ⊂ V , and it is conservative
if V = V [⊥]. Analogously, an anti-passive s/s system Σ† = (V †;X ,W) is
energy preserving, co-energy preserving, or conservative if V † ⊂ (V †)[⊥],
(V †)[⊥] ⊂ V †, or V † = (V †)⊥, respectively.

Thus, in particular, a conservative s/s system is at the same time both
passive and anti-passive.

Lemma 4.8. Let Σ = (V ;X ,W) be a passive s/s system, and let Σ[⊥] =
(V [⊥];X ,W) be its anti-passive dual.

(i) Σ is energy preserving if and only if every trajectory of Σ on every
nontrivial interval I is also a trajectory of Σ[⊥] on I.

(ii) Σ is co-energy preserving if and only if every trajectory of Σ[⊥] on every
nontrivial interval I is also a trajectory of Σ on I.

(iii) Σ is conservative if and only if Σ and Σ[⊥] have the same set of trajec-
tories on every nontrivial interval I.

The same claims remain true if we restrict I to belong to the family of all
nontrivial finite subintervals of R+.
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Proof. This follows from Definitions 3.1 and 4.7 combined with Lemma 3.3
and Proposition 3.7, which imply that the generating subspace is uniquely
determined by the set of all trajectories on some arbitrarily small interval.

Lemma 4.9. Let Σ = (V ;X ,W) be a passive s/s node with the space T+ of
stable future trajectories, and define T0,t and K0,t by (3.5) and (1.12), respec-
tively. Then Σ is energy preserving, co-energy preserving or conservative if
and only if T0,t is a neutral, co-neutral or Lagrangian subspace, respectively
of K0,t for all t ∈ R+.

Proof. If Σ is energy preserving, then the argument leading up to (1.9) shows
that T0,t is a neutral subspace of K0,t for all t ∈ R+. Conversely, suppose that
T0,t is a neutral subspace of K0,t for all t ∈ R+. Then it follows from Theorem
4.5 that every trajectory [ xw ] of Σ on some interval [0, t] is also a trajectory
of Σ[⊥] on [0, t], and Lemma 4.8 then shows that Σ is neutral.

Recall that Σ is co-energy preserving if and only if its anti-passive dual
Σ[⊥] is energy preserving. Let T †− be the family of all stable past trajectories
of Σ[⊥], and denote

T †t,0 :=

{[
x†(t)

x†(0)

π[t,0]w
†

]∣∣∣∣ [ x†w† ] ∈ T †−} , t ∈ R−. (4.7)

By Remark 4.2 and the part of Lemma 4.9 which we have already established,
Σ[⊥] is energy-preserving if and only if T †t,0 is a neutral subspace of Kt,0 for

all t ∈ R−, or equivalently, if and only if τ−tT †−t,0 is a K0,t for all t ∈ R+.

We claim that τ−tT †−t,0 = T [⊥]
0,t . It follows from Theorem 4.5 that τ−tT †−t,0 ⊂

T [⊥]
0,t . On the other hand, by Theorem 3.5 and Remark 4.2, τ−tT †−t,0 is max-

imal nonpositive, whereas by Theorem 3.5 and Proposition 2.1(iv), T [⊥]
0,t is

(maximal) nonpositive. Thus, τ−tT †−t,0 = T [⊥]
0,t , as claimed.

Since τ−tT †−t,0 = T [⊥]
0,t , we find that Σ is energy-preserving if and only if

T0,t is a neutral subspace of K0,t for all t ∈ R+.
Finally, Σ is conservative if and only if Σ is at the same time both en-

ergy preserving and co-energy preserving, and by the above argument, this
is equivalent to the condition that T0,t is both a neutral and a co-neutral
subspace of K0,t.

4.2 Anti-passive behaviors

Definition 4.10. Let W be a Krĕın space.

(i) A maximal nonpositive left-shift invariant subspace of K2
−(W) is called

an anti-passive past behavior on the (signal) space W .
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(ii) A maximal nonpositive left-shift invariant subspace of K2
+(W) is called

an anti-passive future behavior on the Krĕın (signal) space W .

(iii) A maximal nonpositive bilaterally shift-invariant subspace W† ofK2(W)
is called an anti-passive full behavior on the Krĕın (signal) space W if
W†

+ := π+W
† is a maximal nonpositive subspace of K2

+(W), or equiv-

alently, if W†
− := W† ∩ K2

−(W) is a maximal nonpositive subspace of
K2
−(W)

Indeed, by Lemma 3.13 and Remark 4.2, the two conditions given in part
(iii) of the above definition are equivalent.

Lemma 4.11. (i) A closed subspace W+ of K2
+(W) is a passive future

behavior on W if and only if W
[⊥]
+ is an anti-passive future behavior on

W.

(ii) A closed subspace W− of K2
−(W) is a passive past behavior on W if

and only if W
[⊥]
− is an anti-passive past behavior on W.

(iii) A closed subspace W of K2(W) is a passive full behavior on W if and
only if W[⊥] is an anti-passive full behavior on W.

Proof. (i) By definition, W+ is a passive future behavior if and only if W+

is maximal nonnegative in K2
+(W) and right-shift invariant. Since W+ is

assumed to be closed, according to Proposition 2.1(iv), W+ is maximal non-

negative if and only if W
[⊥]
+ is maximal nonpositive. It is also easy to see that

W+ is right-shift invariant if and only if W
[⊥]
+ is left-shift invariant. Thus,

W+ is a passive future behavior if and only if W
[⊥]
+ is an anti-passive future

behavior.
(ii) The proof of the claim about the past behaviors is analogous.
(iii) In the case of full behaviors, by arguing in the same way as above

we find that W is maximal nonnegative and bilaterally shift-invariant if and
only if W[⊥] is maximal nonpositive and bilaterally shift-invariant. By the
continuous time version of [AS09b, Lemma 3.5] (cf. Remark 3.17),

W[⊥] ∩K2
−(W) = (π−W)[⊥].

Thus, by Lemma 3.13, Remark 4.2, and Definitions 3.14 and 4.10, W is a
passive full behavior if and only if W[⊥] is an anti-passive full behavior.

Remark 4.12. It is easy to see that W+, W, and W− are passive future,
full, or past behaviors on the signal space W if and only if the time-reflected
versions of these behaviors are anti-passive past, full, or future behaviors,
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respectively, on the signal space −W . This implies that all the results in
Section 3.4 have anti-passive counterparts, where the past and the future
have been interchanged with each other. We shall not give a complete list
here, but only formulate those results that we actually use. See also Remark
4.2 above.

Lemma 4.13. Let W+ be a passive future behavior on a Krĕın space W.

Then the set of all w† ∈ W
[⊥]
+ with compact support is a dense subspace of

W
[⊥]
+ .

Proof. This follows from Lemmas 4.11 and 3.19 and Remark 4.12.

Definition 4.14. By the (stable) backward behavior induced by the anti-
passive s/s system Σ† on the closed and nontrivial interval I we mean the
set of all the signal parts w† of all backward externally generated stable
trajectories

[
x†

w†

]
of Σ†.

In the special cases I = R−, I = R, and I = R+ we denote these behaviors
by †WΣ†

− , †WΣ† , and †WΣ†
+ , and refer to them as the past, full, and future

backward behaviors of Σ†, respectively.

Proposition 4.15. The past, full, and future backward behaviors of an anti-
passive s/s system are anti-passive past, full, and future behaviors, respec-
tively, in the sense of Definition 4.10.

Proof. This follows from Proposition 3.15 and Remark 4.2.

Proposition 4.16. The past, full, and future backward behaviors †WΣ[⊥]

− ,
†WΣ[⊥]

, and †WΣ[⊥]

+ of the anti-causal dual Σ[⊥] = (V [⊥];X ,W) of the passive
s/s systems Σ = (V ;X ,W) are given by

†WΣ[⊥]

− = (WΣ
−)[⊥], †WΣ[⊥]

= (WΣ)[⊥], and †WΣ[⊥]

+ = (WΣ
+)[⊥], (4.8)

where WΣ
−, WΣ, and WΣ

+ are the past, full, and future behaviors of Σ.

Proof. These three identities are in principle proved in the same way, so we
only prove one of them. If [ xw ] and

[
x†

w†

]
are stable externally and back-

ward externally generated trajectories of Σ and Σ[⊥], respectively, then by
Corollary 4.6, [w,w†]k2(W) = 0. This implies that †WΣ[⊥] ⊂ (WΣ)[⊥]. Since
†WΣ[⊥]

is maximal nonpositive and (WΣ)[⊥] is nonpositive, this implies that
†WΣ[⊥]

= (WΣ)[⊥].

48



5 The Hilbert Spaces H(W+), H(W[⊥]
− ), and

D(W)

In this subsection we shall present three special Hilbert spaces that play a
central role throughout the rest of this article. These Hilbert spaces will
be used as the state spaces of three of our canonical passive s/s realizations
of a given passive behavior. These first two of them are special cases of
the Hilbert space H(Z) constructed in [AS09a] and described in Section 2.2,
where Z is a maximal nonnegative subspace of a Krĕın space K, and the third
is constructed from the first two and an angle operator, called the past/future
map.

We begin by adapting the spaces H(Z) from Section 2.2 to the case where
Z is either a passive future or an anti-passive past behavior.

5.1 The Hilbert space H(W+)

Let W+ be a given passive future behavior on a Krĕın signal space W , i.e.,
W+ is a maximal nonnegative right-shift invariant subspace of K2

+(W). We
take K = K2

+(W) and Z = W+ in the discussion in Section 2.2. Adapting
our earlier formulas to this case we get the following result.

Theorem 5.1. Let W+ be a passive future behavior on the Krĕın space
K2

+(W). Denote the quotient map K2
+(W) 7→ K2

+(W)/W+ by Q+, and define
H(W+) and ‖·‖H(W+) by

‖h+‖2
H(W+) = sup

{
−[w+, w+]K2

+(W)

∣∣ w+ ∈ h+

}
, h+ ∈ K2

+(W)/W+, (5.1)

H(W+) =
{
h+ ∈ K2

+(W)/W+

∣∣ ‖h+‖2
H(W+) <∞

}
. (5.2)

(i) H(W+) equipped with the norm ‖·‖H(W+) is a Hilbert space that is con-
tinuously contained in K2

+(W)/W+.

(ii) The image

H0(W+) := Q+W
[⊥]
+ (5.3)

of W
[⊥]
+ under Q+ is a dense subspace of H(W+), and

‖Q+w
†
+‖2
H(W+) = −[w†+, w

†
+]K2

+(W), w†+ ∈W
[⊥]
+ . (5.4)

(iii) Denote the inverse image of H(W+) under Q+ by

K(W+) := Q−1
+ H(W+). (5.5)
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Then
(Q+w

†
+, Q+w+)H(W+) = −[w†+, w+]K2

+(W),

if w†+ ∈W
[⊥]
+ and w+ ∈ K(W+).

(5.6)

(iv) The restriction Q+|K(W+) is closed and surjective as an operator K2
+(W)→

H(W+), and it has a bounded right-inverse.

(v) If wk+ ∈ K(W+) and Q+w
k
+ → Q+w+ in H(W+) for some w+ ∈

K(W+), then there exists a sequence zk+ ∈W+ such that wk+ +zk+ → w+

in K2
+(W).

Proof. Claims (i)–(iii) follow from the discussion in Section 2.2. Claims (iv)
and (v) follow from the more detailed discussion of H(Z) given in [AS09a,
p. 2597].

Lemma 5.2. Let W+ be a passive future behavior on the Krĕın space W.
Then the set

H0
0(W+) := {Q+w

†
+ | w

†
+ ∈W

[⊥]
+ has compact support}

(which is contained in H0(W+)) is a dense subspace of H(W+).

Proof. Let w†+ ∈W
[⊥]
+ . Then by Lemma 4.13, there exists a sequence wk+ ∈

W
[⊥]
+ , where each wk+ has compact support, such that wk+ → w†+ in K2

+(W)

as k → ∞. This implies that [wk+ − w†+, w
k
+ − w†+]K2

+(W) → 0 as n → ∞,

and according to (5.4), this means that wk+ +W+ → w†+ +W+ in H(W+) as
k →∞. Since H0(W+) is dense in H(W+), this proves the lemma.

Lemma 5.3. If w+ ∈ K(W+), where W+ is a passive future behavior on the
Krĕın space W, then τ t+w+ ∈ K(W+) for all t ∈ R+, and

‖Q+τ
t
+w+‖2

H(W+) ≤ ‖Q+w+‖2
H(W+) +

∫ t

0

[w+(s), w+(s)]W ds. (5.7)

If w+ ∈W
[⊥]
+ , then w+ ∈ K(W+) and (5.7) holds with equality.

Proof. We have for all w+ ∈ K(W+), all z ∈W+, and all t ∈ R+ (recall that
τ ∗t+ W+ ⊂W+)

− [τ t+w+ + z, τ t+w+ + z]K2
+(W) = −[τ t+(w+ + τ ∗t+ z), τ t+(w+ + τ ∗t+ z)]K2

+(W)

= −[w+ + τ ∗t+ z, w+ + τ ∗t+ z]K2
+(W) +

∫ t

0

[w+(s), w+(s)]W ds

≤ ‖Q+w+‖2
H(W+) +

∫ t

0

[w+(s), w+(s)]W ds.
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From here we get (5.7) by taking the supremum over all z ∈ W+. If w+ ∈
W

[⊥]
+ , then Q+w+ ∈ H0(W+) ⊂ H(W+), and by (5.1),

‖Q+τ
t
+w+‖2

H(W+) − ‖Q+w+‖2
H(W+)

= −[τ t+w+, τ
t
+w+]K2

+(W) + [w+, w+]K2
+(W) =

∫ t

0

[w+(s), w+(s)]W ds.

5.2 The Hilbert space H(W
[⊥]
− )

Let W− be a given passive past behavior on a Krĕın signal space W , i.e.,
W− is a maximal nonnegative right-shift invariant subspace of K2

−(W). Then

W
[⊥]
− is a maximal nonpositive left-shift invariant subspace of K2

−(W), and
hence it can be interpreted as a maximal nonnegative left-shift invariant
subspace of the anti-space −K2

−(W) of K2
−(W). This time we take K =

−K2
−(W) and Z = W

[⊥]
− in the definition of H(Z). Adapting our earlier

formulas to this case we get the following result.

Theorem 5.4. Let W− be a passive past behavior on the Krĕın space K2
−(W),

and interpret W
[⊥]
− as a maximal nonnegative left-shift invariant subspace of

the anti-space −K2
−(W). Denote the quotient map −K2

−(W) 7→ −K2
−(W)/W

[⊥]
−

by Q−, and define H(W
[⊥]
− ) and ‖·‖H(W

[⊥]
− )

by

‖h−‖2

H(W
[⊥]
− )

= sup
{

[w−, w−]K2
−(W)

∣∣ w− ∈ h−}, h− ∈ −K2
−(W)/W

[⊥]
− ,

(5.8)

H(W
[⊥]
− ) =

{
h− ∈ −K2

−(W)/W
[⊥]
−
∣∣ ‖h−‖2

H(W
[⊥]
− )

<∞
}
. (5.9)

(i) H(W
[⊥]
− ) equipped with the norm ‖·‖H(W

[⊥]
− )

is a Hilbert space that is

continuously contained in −K2
−(W)/W

[⊥]
− .

(ii) The image

H0(W
[⊥]
− ) = Q−W− (5.10)

of W− under Q− is a dense subspace of H(W
[⊥]
− ), and

‖Q−w−‖2

H(W
[⊥]
− )

= [w−, w−]K2
−(W), w− ∈W−. (5.11)

(iii) Denote the inverse image of H(W
[⊥]
− ) under Q− by

K(W
[⊥]
− ) := Q−1

− H(W
[⊥]
− ). (5.12)
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Then
(Q−w−, Q−v−)H(W

[⊥]
− )

= [w−, v−]K2
−(W),

if w− ∈W− and v− ∈ K(W
[⊥]
− ).

(5.13)

(iv) The restriction Q−|K(W
[⊥]
− )

is closed and surjective as an operator K2
−(W)→

H(W
[⊥]
− ), and it has a bounded right-inverse.

(v) If wk− ∈ K(W
[⊥]
− ) and Q−w

k
− → Q−w− in H(W

[⊥]
− ) for some w− ∈

K(W
[⊥]
− ), then there exists a sequence zk− ∈W

[⊥]
− such that wk− + zk− →

w− in K2
−(W).

Proof. The proof is analogous to the proof of Theorem 5.1.

Lemma 5.5. Let W− be a passive past behavior on the Krĕın spaceW. Then
the set

H0
0(W

[⊥]
− ) := {Q−w− | w− ∈W− has compact support}

(which is contained in H0(W
[⊥]
− )) is a dense subspace of H(W

[⊥]
− ) .

Proof. This follows from Lemma 5.2 and Remark 4.12.

Lemma 5.6. If w− ∈ K(W
[⊥]
− ), then τ ∗t− w− ∈ K(W

[⊥]
− ) and

‖Q−τ ∗t− w−‖2

H(W
[⊥]
− )
≤ ‖Q−w−‖2

H(W
[⊥]
− )
−
∫ 0

−t
[w−(s), w−(s)]W ds. (5.14)

If w− ∈W−, then w− ∈ K(W
[⊥]
− ) and (5.14) holds with equality.

Proof. This follows from Lemma 5.3 and Remark 4.12.

5.3 The past/future map ΓW and the Hilbert space
D(W)

In Section 10 we shall also need the quotient space K2(W)/(W+ uW
[⊥]
− ).

Here W+uW
[⊥]
− is a closed subspace of K2(W) since the sum W+uW

[⊥]
− is

direct in K2(W).

We denote the quotient map K2(W) 7→ K2(W)/(W+uW
[⊥]
− ) by Q. Thus,

Q−w− := w− + W
[⊥]
− , w− ∈ K2

−(W),

Q+w+ := w+ + W+, w+ ∈ K2
+(W),

Qw := w + (W+ uW
[⊥]
− ), w ∈ K2(W).

(5.15)
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To shorten the notations we furthermore define

H− := H(W
[⊥]
− ), H0

− := H0(W
[⊥]
− ),

H+ := H(W+), H0
+ := H0(W+).

(5.16)

Each vector in the quotient space K2(W)/(W+uW
[⊥]
− ) is an equivalence

class of the type x := w + (W+ u W
[⊥]
− ) for some w ∈ K2(W). Since

K2(W) = K2
+(W) �K2

−(W), and since W+ is a closed subspace of K2
+(W)

and W
[⊥]
− is a closed subspace of K2

−(W), it follows that we can identify

K2(W)/(W+ uW
[⊥]
− ) with the product space

[
K2

+(W)/W+

K2
−(W)/W

[⊥]
−

]
.

We denote the projections of K2(W)/(W+uW
[⊥]
− ) onto K2

+(W)/W+ and

K2
−(W)/W

[⊥]
− by P+ and P−, respectively. Thus, P± is the operator which

for each w ∈ K2(W) maps x = Qw into Q±π±w. Since H+ is continuously

contained in K2
+(W)/W+ andH− is continuously contained in K2

−(W)/W
[⊥]
− ,

this means that
[
H+

H−

]
can be interpreted as a continuously contained sub-

space of K2(W)/(W+ uW
[⊥]
− ).

Lemma 5.7. Let W be a passive full behavior on W with the corresponding
passive past behavior W− = π−W and passive future behavior W+ = W ∩
K2

+(W). Then there exists a unique contraction ΓW : H− → H+ satisfying

ΓW Q−π−w = Q+π+w, w ∈W, (5.17)

where Q− is the quotient map K2
− 7→ K2

−/W
[⊥]
− and Q+ is the quotient map

K2
+ 7→ K2

+/W+.

Proof. The proof is essentially the same as the proof of [AS09b, Lemma 6.1]
(see Remark 3.17).

Definition 5.8. The contraction ΓW : H(W
[⊥]
− ) → H(W+) in Lemma 5.7 is

called the past/future map of the full behavior W.

Throughout the rest of this section we let W be a passive full behavior
on W , and define the corresponding passive past and future behaviors W−
and W+ by (3.14).

Let

AW :=

[
1H+ ΓW

Γ∗W 1H−

]
. (5.18)
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This is a bounded linear operator onH+⊕H−. It is nonnegative since ΓW is a
contractionH− → H+, and by the Schwarz inequality, for all [ x+

x− ] ∈ H+⊕H−,([
x+

x−

]
, AW

[
x+

x−

])
H+⊕H−

= ‖x+‖2
H+

+ 2<(x+,ΓWx−)H+ + ‖x−‖2
H−

≥ ‖x+‖2
H+
− 2‖x+‖H+‖x−‖H− + ‖x−‖2

H− ≥ 0.

We define D(W) to be the range of A
1/2
W , with the range norm, i.e.,∥∥∥∥[x+

x−

]∥∥∥∥
D(W)

=

∥∥∥∥(A
1/2
W )[−1]

[
x+

x−

]∥∥∥∥
H+⊕H−

,

where (A
1/2
W )[−1] is the pseudo-inverse of A

1/2
W , i.e.,

[
x′+
x′−

]
:= (A

1/2
W )[−1] [ x+

x− ] is

the unique vector in im (AW) = im
(
A

1/2
W

)
which satisfies [ x+

x− ] = A
1/2
W

[
x′+
x′−

]
.

With respect to this inner product in the range space the operator A
1/2
W |im(AW)

is a unitary operator mapping im (AW) onto D(W). In particular, D(W) is
a Hilbert space.

Lemma 5.9. Define AW by (5.18).

(i) im (AW) is a dense subset of the Hilbert space D(W), D(W) is a dense
subspace of im (AW), and D(W) is continuously contained in H+⊕H−.

(ii) AW is bounded as an operator H+ ⊕H− → D(W).

(iii) If x ∈ D(W) and y = AWy
′, then y ∈ D(W), and (x, y)D(W) =

(x, y′)H−⊕H+.

(iv) T− := AW|H− =
[

ΓW
1H−

]
is an isometry H− → D(W).

(v) T+ := AW|H+ =
[

1H+

Γ∗W

]
is an isometry H+ → D(W).

Proof. The proof is essentially the same as the proof of [AS10, Lemma 3.1]
(see Remark 3.17).

Lemma 5.10. Denote L± := im (T±), where T± are the operators defined in
Lemma 5.9. Then L+ + L− is dense in D(W), and

PL+|L− = T+ΓWT
∗
−|L− . (5.19)
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Proof. That L+ +L− = im (AW) is dense in D(W) is contained in part (i) of
Lemma 5.9.

Let x ∈ D(W), x− ∈ L−, and define h− := T ∗−x−. Then x− = T−h−
(since T− : H− → L− is unitary). Define x+ := PL+x and h+ = T ∗+x+, so
that x+ = T+h+. Then

(x, PL+x−)D(W) = (PL+x, x−)D(W) =
(
PL+x,AW

[
0
h−

])
D(W)

=
(
PL+x,

[
0
h−

])
H+⊕H−

=
([

h+

Γ∗Wh+

]
,
[

0
h−

])
H+⊕H−

= (Γ∗Wh+, h−)H− = (h+,ΓWh−)H+

=
(
T ∗+PL+x,ΓWT

∗
−x−

)
H+

=
(
PL+x, T+ΓWT

∗
−x−

)
H+

=
(
x, T+ΓWT

∗
−x−

)
H+

This proves (5.19).

Remark 5.11. Lemma 5.10 may be reformulated as follows. The space
D(W) is equal to the closed linear span of its subspaces L+ ∨ L−, where L±
are the unitary images in D(W) of H± under T±, and the angle operator
K := PL+ |L− between L− and L+ is given by (5.19) in terms of T± and the
past/future map ΓW. In particular,

1L− −K∗K = 1L− − T−Γ∗WΓWT
∗
−|L− = T−(1L− − Γ∗WΓW)T ∗−|L− ,

1L+ −KK∗ = 1L+ − T+ΓWΓ∗WT
∗
−|L+ = T+(1L+ − ΓWΓ∗W)T ∗+|L+ .

This leads to the following conclusions:

(i) The following conditions are equivalent:

(a) K is an isometry;

(b) D(W) = L+;

(c) ΓW is an isometry H− → H+.

(ii) The following conditions are equivalent:

(a) K is a co-isometry;

(b) D(W) = L−;

(c) ΓW is a co-isometry H− → H+.
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In the sequel we shall throughout interpret AW as a bounded linear oper-
ator H+⊕H− → D(W), instead of interpreting AW as a self-adjoint operator
in H+⊕H−. In particular, in this setting the operator AW is not self-adjoint
unless D(W) = H+ ⊕ H−, i.e., unless ΓW = 0. When the duality in the
range space is taken with respect to the inner product in D(W) instead of
the inner product inH+⊕H− then the operator A∗W becomes a bounded linear
operator D(W)→ H+ ⊕H−.

Recall that we denoted the projections of K2(W)/(W+ u W
[⊥]
− ) onto

K2
+(W)/W+ and K2

−(W)/W
[⊥]
− by P+ and P−, respectively. We denote the

restrictions of P± to
[
H−
H+

]
by Π±, so that Π± [ x+

x− ] = x± for all [ x+
x− ] ∈

[
H+

H−

]
.

Lemma 5.12. Let AW be the operator defined in (5.18), interpreted as
bounded linear operator H+ ⊕H− → D(W), whose adjoint A∗W is a bounded
linear operator D(W)→ H+ ⊕H−.

(i) A∗W is equal to the embedding operator D(W) ↪→
[
H+

H−

]
.

(ii) (AW|H+)∗ = Π+|D(W) and (AW|H−)∗ = Π−|D(W). (In the computation
of these adjoints we interpret AW|H± as operators H± → D(W).)

Proof. By Lemma 5.9(iii), for all x ∈ D(W) and all y′ ∈ H+ ⊕H−,

(x,AWy
′)D(W) = (x, y′)H−⊕H+ .

This proves claim (i). If we in the same computation replace y′ ∈ H+ ⊕H−
by either y′ ∈ H+ or y′ ∈ H− we get claim (ii).

We let L(W) be the inverse image of D(W) under Q, i.e.,

L(W) := Q−1D(W) := {w ∈ K2(W) | Qw ∈ D(W)}, (5.20)

and denote

D0(W) := Q(W + W[⊥]) :=
{
Q(z + z†)

∣∣ z ∈W, z† ∈W[⊥]
}
. (5.21)

As we shall see in the following lemma, D0(W) is a dense subspace of D(W).

Lemma 5.13. (i) If z ∈W and z† ∈W[⊥], then Q(z+z†) = AW

[
Q+π+z†

Q−π−z

]
.

In particular, D0(W) ⊂ im (AW) and W + W[⊥] ⊂ L(W).

(ii) D0(W) is a dense subspace of D(W).
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(iii) If w ∈ L(W), z ∈W, and z† ∈W[⊥], then

(Qw,Qz)D(W) = (Q−π−w,Q−π−z)H− = [π−w, π−z]K2
−(W) (5.22)

(Qw,Qz†)D(W) = (Q+π+w,Q+π+z
†)H+ = −[π+w, π+z

†]K2
+(W). (5.23)

In particular,

‖Qz‖2
D(W) = ‖Q−π−z‖2

H− = [π−z, π−z]K2
−(W), z ∈W, (5.24)

‖Qz†‖2
D(W) = ‖Q+π+z

†‖2
H+

= −[π+z
†, π+z

†]K2
+(W), z† ∈W[⊥].

(5.25)

Proof. The proof is essentially the same as the proof of [AS10, Lemma 3.3]
(see Remark 3.17).

Lemma 5.14. (i) If w ∈ L(W), then τ tw ∈ L(W) for all t ∈ R, and

‖Qτ tw‖2
D(W) =

∫ t

0

[w(s), w(s)]W ds+ ‖Qw‖2
D(W), t ∈ R. (5.26)

(ii) If w1, w2 ∈ L(W), then for all t ∈ R,

(Qw1, Qτ
tw2)D(W) =

∫ t

0

[w1(s− t), w2(s)]W ds+ (Qτ−tw1, Qw2)D(W).

(5.27)

Proof. The proof is essentially the same as the proof of [AS10, Lemma 3.4]
(see Remark 3.17).

6 The Output and Input maps

6.1 The output map CΣ

We begin by presenting the output map CΣ of a passive s/s system Σ =
(V ;X ,W) with future behavior W+. This is an operator from the state
space X into the Hilbert space H(W+) which was defined in (5.2). As in
Theorem 5.1 we denote the quotient map K2

+(W) 7→ K2
+(W)/W+ by Q+,

and the inverse image of H(W+) under Q+ by K(W+).

Lemma 6.1. Let Σ = (V ;X ;W) be a passive s/s system with future behavior
W+. If [ xw ] is a stable future trajectory of Σ, then

w ∈ K(W+) and ‖Q+w‖H(W+) ≤ ‖x(0)‖X . (6.1)

57



Proof. Let [ xw ] be a stable future trajectory of Σ, let z ∈W+, and let [ x1
z ] be

the corresponding externally generated stable future trajectory of Σ. Then
[ x+x1
w+z ] is a stable future trajectory of Σ, and by (1.9),

−[w + z, w + z]K2
+(W) ≤ ‖x(0) + x1(0)‖2

X = ‖x(0)‖2
X .

Taking the supremum over all z ∈W+ we find that (6.1) holds.

Lemma 6.2. Let Σ = (V ;X ;W) be a passive s/s system with future behavior
W+. Then the formula

CΣx0 =

{
Q+w

∣∣∣∣ w is the signal part of some stable future

trajectory [ xw ] of Σ with x(0) = x0

}
(6.2)

defines a linear contraction CΣ : X → H(W+).

Proof. Let [ xw ] be a stable future trajectory of Σ. If [ x1
w1 ] is another stable

future trajectory of Σ with the same initial state x1(0) = x(0), then w1 −
w ∈ W+, and conversely, if w1 − w ∈ W+, then there exist a stable future
trajectory [ x1

w1 ] with x1(0) = x(0). Thus, the set of all signal parts w of
the stable future trajectories [ xw ] of Σ with fixed initial state x(0) = x0 is
an equivalence class in K2

+(W)/W+. By (6.1), the map CΣ from x0 to this
equivalence class is a contraction X → H(W+). It is easy to see that this
map is linear, and by Lemma 3.4(i), the domain of CΣ is all of X .

Definition 6.3. The contraction CΣ in Lemma 6.2 above is called the output
map of Σ.

In our next lemma we need the inverse image of im
(
CΣ

)
under Q+ which

we denote by
SΣ

+ = Q−1
+ im

(
CΣ

)
. (6.3)

Thus, SΣ
+ consists of the signal parts w of all stable future trajectories [ xw ]

of Σ. By Lemma 6.1, SΣ
+ ⊂ K(W+), where K(W+) is the space defined in

(5.5).

Lemma 6.4. Let Σ = (V ;X ;W) be a passive s/s system with future behavior
W+ and output map CΣ, and define SΣ

+ by (6.3). Then every stable future
trajectory [ xw ] of Σ satisfies

w ∈ SΣ
+, τ

t
+w ∈ SΣ

+, and CΣx(t) = Q+τ
t
+w, t ∈ R+. (6.4)

Proof. That w ∈ SΣ
+ follows immediately from (6.3). To get (6.4) we simply

shift the trajectory [ xw ] to the left by the amount t and apply (6.2) with x0

replaced by x(t).
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Definition 6.5. By an unobservable future trajectory of a passive s/s system
Σ we mean a future trajectory of Σ of the type [ x0 ] (i.e., the signal part is
identically zero). The unobservable subspace UΣ of Σ consists of all the
initial states x(0) of all unobservable future trajectories of Σ. The system Σ
is observable if UΣ = {0}.

By Lemma 3.2, every unobservable future trajectory of a passive s/s sys-
tem is stable.

Lemma 6.6. The unobservable subspace UΣ of a passive s/s system Σ =
(V ;X ,W) is equal to the null space of its output map CΣ.

Proof. It follows directly from Definition 6.5 and Lemma 6.4 that if x0 ∈ UΣ,
then CΣx0 = W+, and hence CΣx0 is the zero element inH(W+). Conversely,
suppose that x0 ∈ ker

(
CΣ

)
, i.e., CΣx0 = W+. By Lemma 3.4(i), there exists

a stable future trajectory [ x1
w1 ] of Σ with x1(0) = x0, and by Lemma 6.4,

w1 ∈ CΣx0 = W+. Let [ x2
w1 ] be the externally generated future trajectory of

Σ whose signal part is w1 (cf. Lemma 3.11), and define x = x1 − x2. Then
[ x0 ] is an unobservable future trajectory of Σ with x(0) = x0, and hence
x0 ∈ UΣ.

Lemma 6.7. If the passive s/s system Σ = (V ;X ;W) is observable, then
[ xw ] is a stable future trajectory of Σ if and only if (6.4) holds.

Proof. The necessity of (6.4) follows from Lemma 6.4 and (6.3). Conversely,
suppose that (6.4) holds. According to (6.3) there exists at least one stable
future trajectory [ x1

w ] of Σ, and by Lemma 6.4, (6.4) holds with x replaced
by x1. By Lemma 6.6 and the observability assumption on Σ, CΣ is injective,
and hence (6.4) implies that x(t) = x1(t) for all t ∈ R+. This implies that
[ xw ] is a stable future trajectory of Σ.

Lemma 6.8. Let Σ = (V ;X ,W) be a passive s/s system with output map
CΣ. Then [ xw ] is a stable future trajectory of Σ if and only if x = x1 + x2,
where [ x1

0 ] is an unobservable future trajectory of Σ and [ x2
w ] is a stable future

trajectory of Σ with x2(0) ∈ (ker
(
CΣ

)
)⊥. This decomposition is unique, and

(6.4) also holds with x replaced by x2.

Proof. Trivially, if x has a decomposition of the type described in the lemma,
then [ xw ] is a stable future trajectory of Σ.

Conversely, let [ xw ] be a stable future trajectory of Σ. Define x1(0) =
PUΣ

x(0) and x2(0) = PU⊥Σ
x(0). Then x(0) = x1(0) + x2(0) and x1(0) ∈ UΣ.

The latter condition implies that x1(0) is the initial state of some unobserv-
able trajectory [ x1

0 ] of Σ. Define x2 = x − x1. Then [ x2
w ] is a stable future

trajectory of Σ and x = x1 + x2. That (6.4) also holds with x replaced by x2

follows from the fact that [ x2
w ] is a stable future trajectory of Σ.
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6.2 The input map BΣ

We now proceed to the construction of the input map BΣ of a passive s/s

system Σ. This is an operator from the Hilbert space H(W
[⊥]
− ) defined in

(5.9) into the state space X . As in Theorem 5.4 we denote the quotient map

K2
−(W) 7→ K2

−(W)/W
[⊥]
− by Q−, the image of W− under Q− by H0(W

[⊥]
− ),

and the inverse image of H(W
[⊥]
− ) under Q− by K(W−).

Before giving the formal definition of the input map of a passive s/s
system, let us explain the underlying idea. Let Σ = (V ;X ;W) be a passive
s/s system with past behavior W−. By Lemma 3.11, to each w ∈W− there
exists a unique stable externally generated past trajectory [ xw ] of Σ. It is
easy to see that the map B̃Σ from w ∈ W− to x(0) is a linear operator.
By Lemma 3.2, this operator is a contraction with respect to the semi-norm
in W− inherited from K2

−(W). In particular, if w ∈ W− is neutral, i.e., if
[w,w]K2

−(W) = 0, then B̃Σw = 0. After factoring out the maximal neutral

subspace W0 := W− ∩W[⊥]
− from W−, the space W−/W0 becomes a unitary

space (the noncomplete version of a Hilbert space), and the operator B̃Σ

becomes a contraction W−/W0 → X . It follows from Theorem 5.4(ii) that

the spaceH(W
[⊥]
− ) has a natural interpretation as a completion of the unitary

space W−/W0. Therefore, the contraction B̃Σ from W−/W0 to X has a

natural extension to a contraction H(W
[⊥]
− ) → X . In the following lemma

this extension of B̃Σ has been denoted by BΣ.

Lemma 6.9. Let Σ = (V ;X ;W) be a passive s/s system with past behavior

W−. Then there exist a unique linear contraction BΣ : H(W
[⊥]
− )→ X whose

restriction to H0(W
[⊥]
− ) is given by

BΣQ−w = x(0), w ∈W−, (6.5)

where [ xw ] is the unique stable externally generated past trajectory of Σ whose
signal part is w (cf. Lemma 3.11).

Proof. Let w ∈ W−, and let [ xw ] be the externally generated stable past
trajectory of Σ with signal part w. Then by (3.2) and (5.11)

‖x(0)‖2
X ≤ [w,w]K2

−(W) = ‖Q−w‖2

H(W
[⊥]
− )
.

This implies that the mappingQ−w → x(0) is a linear contractionH0(W
[⊥]
− )→

X . Since H0(W
[⊥]
− ) is dense in H(W

[⊥]
− ), this mapping has a unique extension

to a linear contraction BΣ : H(W
[⊥]
− )→ X .
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Definition 6.10. The contraction BΣ in Lemma 6.9 is called the input map
of Σ.

In the construction of our three canonical realizations in Sections 8–10
we shall make crucial use of the following lemma.

Lemma 6.11. Let Σ = (V ;X ;W) be a passive s/s system with past behavior
W−, future behavior W+, full behavior W, input map BΣ, and output map
CΣ.

(i) A pair of functions [ xw ] is an externally generated stable past trajectory
of Σ if and only if

w ∈W− and x(t) = BΣQ−π−τ
tw, t ∈ R−. (6.6)

(ii) A pair of functions [ xw ] is an externally generated stable full trajectory
of Σ if and only if

w ∈W and x(t) = BΣQ−π−τ
tw, t ∈ R. (6.7)

In this case
CΣx(t) = Q+π+τ

tw, t ∈ R. (6.8)

(iii) A pair of functions [ xw ] is an externally generated stable future trajec-
tory of Σ if and only if

w ∈W+ and x(t) = BΣQ−π−τ
tw, t ∈ R+. (6.9)

In this case
CΣx(t) = Q+π+τ

tw, t ∈ R+. (6.10)

Proof. The proof of (i) is an easy modification of the proof of the first half
of (ii), and (iii) is a special case of (ii), so let us only give the proof of (ii).

Let [ xw ] be an externally generated stable full trajectory of Σ. Then
w ∈ W, and (6.5) implies that (6.7) holds with t = 0. By shifting the
trajectory to the left or right by the amount |t| and applying (6.5) to the
shifted trajectory we get (6.6) for all values of t ∈ R.

Conversely, let w ∈ W. By Lemma 3.11, there exists a unique stable
externally generated full trajectory [ xw ] of Σ, and by the first part of the
proof, the function x is given by (6.7).

That also (6.8) holds follows from Lemma 6.4 and the fact that the re-
striction to R+ of any left- or right-shifted externally generated stable full
trajectory of Σ is a stable future trajectory of Σ.
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Definition 6.12. Let Σ = (V ;X ,W) be a passive s/s system.

(i) The finite time reachable subspace of Σ is the set{
x0 ∈ X

∣∣∣∣ x0 = x(0) for some (stable) past

trajectory of Σ with compact support

}
.

(ii) The infinite time exactly reachable subspace of Σ is the set{
x0 ∈ X

∣∣∣∣ x0 = x(0) for some stable externally

generated past trajectory of Σ

}
.

(iii) The H(W
[⊥]
− )-exactly reachable subspace of Σ is the range of the input

map BΣ of Σ.

(iv) Σ is exactly reachable in one of the above senses if the corresponding
reachable subspace is all of X .

(v) The closure of the subspace in (i) is called the (approximately) reachable
subspace.

(vi) The system Σ is controllable if the approximately reachable subspace
is all of X .

Lemma 6.13. All the different types of exactly reachable subspaces in Defi-
nition 6.12 have the same closure, equal to the approximately reachable sub-
space.

Proof. The three different types of exactly reachable subspaces defined in
Definition 6.12 are (in the order that they appear) the range of the restric-

tion of BΣ to the space H0
0(W

[⊥]
− ) defined in Lemma 5.2, the range of the

restriction of BΣ to the space H0(W
[⊥]
− ), and the full range of BΣ. That

these three subspaces have the same closure follows from the fact that when
one restricts the bounded linear operator BΣ to a dense subset of its domain,
then the closure of its range remains the same.

Lemma 6.14. All the different types of exactly reachable subspaces in Def-
inition 6.12 and also the approximately reachable subspace are strongly in-
variant in the sense that if [ xw ] is a future trajectory of Σ whose initial state
x(0) belongs to one of these subspaces, then x(t) stays in this subspace for all
t ∈ R+.
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Proof. In the case of the finite time reachable subspace and the infinite time
exactly reachable subspace the strong invariance follows from the general
properties of trajectories (see Lemmas 3.3 and 3.4). In the case of the

the H(W
[⊥]
− )-exactly reachable subspace the strong invariance follows from

Lemma 7.8 below. Finally, in the case of the approximately reachable sub-
space the strong invariance follows from the density and the strong invariance
of the finitely reachable subspace.

Lemma 6.15. If Σ is a passive energy preserving s/s system, then the input
map BΣ of Σ is an isometry. If, in addition, Σ is controllable, then BΣ is
unitary.

Proof. That BΣ is an isometry follows from the fact that we have equality
in (3.2) whenever Σ is energy preserving (because then (1.9) holds as an
equality). In particular, im

(
BΣ

)
is closed. If, in addition, Σ is controllable,

then im
(
BΣ

)
is dense in X , and hence equal to X .

A partial converse to Lemma 6.15 is given in Corollary 9.9 below.

6.3 The adjoints of CΣ and BΣ

The rest of this section is devoted to the study of the adjoints of the input
and output maps of a passive s/s system.

Lemma 6.16. Let Σ† = (V †;X ,W) be an anti-passive s/s system with
past and future behaviors W†

− and W†
+, respectively. Let W− := (W†

−)[⊥]

and W+ := (W†
+)[⊥] be the corresponding passive past and future behaviors

(see Lemma 4.11), and let Q− and Q+ be the quotient maps K2
−(W) →

K2
−(W)/W

[⊥]
− and K2

+(W)→ K2
+(W)/W+, respectively.

(i) There exists a unique contraction B†
Σ†

: H(W+)→ X such that
[
x†

w†

]
is

an externally generated stable future trajectory of Σ† if and only if

w† ∈W†
+ and x†(t) = B†

Σ†
Q+τ

tw†, t ∈ R+. (6.11)

(ii) There exists a unique contraction C†
Σ†

: X → H(W†
−) satisfying

C†
Σ†
x†(−t) = Q−τ

∗t
− w

†, t ∈ R+, (6.12)

for every stable past trajectory
[
x†

w†

]
of Σ†.

Proof. This follows from Lemmas 6.11 and Lemma 6.4 and Remark 4.2.
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Definition 6.17. The contractions B†
Σ†

and C†
Σ†

are called the backward
input and backward output maps of Σ†, respectively.

Lemma 6.18. Let Σ = (V ;X ,W) be a passive s/s system with input map
BΣ and output map CΣ, and let Σ[⊥] be the anti-passive dual of Σ, with the
backward input map B†

Σ[⊥] and backward output map C†
Σ[⊥]. Then B†

Σ[⊥] = C∗Σ
and C†

Σ[⊥] = B∗Σ.

Proof. The proof of this lemma is essentially the same as the proof of [AS09b,
Lemma 5.19] (see Remark 3.17).

Lemma 6.19. If Σ is a co-energy preserving passive s/s system, then the
output map CΣ of Σ is a co-isometry. If, in addition, Σ is observable, then
CΣ is unitary.

Proof. The first claim follows from the fact that if Σ is co-energy preserving,
then the anti-passive dual Σ[⊥] is energy preserving (in the backward time
direction), and hence its input map BΣ[⊥] = C∗Σ is an isometry (see Lemma
6.15 and Remark 4.2). The second claim follows from the first claim since
CΣ is injective iff Σ is observable.

A partial converse to Lemma 6.19 is given in Corollary 8.8 below.

6.4 The backward reachable and unobservable subspaces

Our definitions of the reachable and unobservable subspaces RΣ and UΣ have
a built-in direction of time. If Σ† = (V †;X ,W) is an anti-passive system,
then we denote the backward counterparts of RΣ and UΣ by R†

Σ†
and U†

Σ†
,

respectively. Thus, R†
Σ†

is the closure in X of all states x(t) that appear in

backward externally generated past trajectories
[
x†

w†

]
of Σ†, and U†

Σ†
consists

of all x†0 ∈ X with the property that there exists some future trajectory[
x†

w†

]
of Σ† which with x†(0) = x†0 for which w† vanishes identically. We call

R†
Σ†

the (approximately) backward reachable subspace and U†
Σ†

the backward
unobservable subspace.1 By an backward unobservable trajectory we mean a
past trajectory

[
x†

w†

]
of Σ† for which w† vanishes identically.

If Σ is conservative, then it is both passive and anti-passive, and hence
both the forward reachable and unobservable subspaces RΣ and UΣ as well
as the backward reachable and unobservable subspaces R†Σ and U†Σ are well-
defined. A full trajectory [ xw ] of a conservative system Σ whose signal part w

1In stochastic realization theory R† is called the controllable subspace and U† the
unconstructable subspace.
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vanishes identically will be called a bilaterally unobservable trajectory. The
restriction of such a trajectory to R+ is unobservable, and the restriction to
R− is backward unobservable.

Definition 6.20. A conservative system is simple if it does not have any
nontrivial bilaterally unobservable trajectories.

It follows from Lemmas 6.6 and 6.13 and their anti-passive counterparts
combined with Lemma 6.18 that R†

Σ[⊥] = U
[⊥]
Σ and U†

Σ[⊥] = R
[⊥]
Σ . Moreover, a

conservative system Σ = (V ;X ,W) is simple if and only if U ∩ U† = {0}, or
equivalently, if and only if R ∨R† = X .

7 The Past/Future Map of a Passive System

We here take a closer look at the past/future map ΓW introduced in Definition
5.8 in the case where W is the full behavior of a passive s/s system Σ.

Definition 7.1. In the case where W is the full behavior of a passive s/s
system Σ, then we call the past/future map ΓW introduced in Definition 5.8
the past/future map of Σ, and denote it alternatively by ΓΣ.

Lemma 7.2. The past/future map ΓΣ of a passive s/s system Σ = (V ;X ,W)
factors into the product

ΓΣ = CΣBΣ (7.1)

of the input map BΣ and the output map CΣ of Σ. In particular, if Σi,
i = 1, 2, are two passive s/s systems which have the same behaviors, and if
we denote the input and output maps of Σi by BΣi

and CΣi
, respectively, then

CΣ1BΣ1 = CΣ2BΣ2.

Proof. Let [ xw ] be an externally generated stable full trajectory of Σ. Then
the restriction of [ xw ] to R− is an externally generated stable past trajectory
and the restriction of [ xw ] to R+ is a stable future trajectory of Σ. Thus,
by (6.6), x(0) = BΣπ−w and by (6.4), CΣx(0) = π+w + W+. Thus, the

two operators ΓΣ and CΣBΣ coincide on the dense subspace H0(W
[⊥]
− ) of

H(W
[⊥]
− ), and hence on all of H(W

[⊥]
− ). If the systems Σi, i = 1, 2 have the

same full behavior W, then they also have the same past/future map ΓW.
Thus CΣ1BΣ1 = ΓW = CΣ2BΣ2 .

We next turn to the corresponding operator induced by an anti-passive
full behavior W†.
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Lemma 7.3. Let W† be an anti-passive full behavior with the corresponding
anti-passive past behavior W†

− = W† ∩ K2
−(W) and future behavior W†

+ =

π+W
†. Let W− := (W†

−)[⊥] and W+ := (W†
+)[⊥] be the passive past and future

behaviors, respectively, induced by the passive full behavior W = (W†)[⊥].
Then W− = π−W and W+ = W ∩K2+(W).

Let Q− and Q+ be the quotient maps K2
−(W) → K2

−(W)/W
[⊥]
− and

K2
+(W) → K2

+(W)/W+, respectively. Then there is a unique contraction

ΓW† : H(W+)→ H(W
[⊥]
− ) satisfying

ΓW†Q+π+w
† = Q−π−w

†, w† ∈W†. (7.2)

Proof. The first claim follows from Lemmas 2.3, 3.18(iii), and 4.11, where
we consider the orthogonal decomposition K2(W) = K2

−(W) � K2
+(W) in

Lemma 2.3. The second claim follows from Remark 4.12 and Lemma 5.7.

Definition 7.4. The contraction ΓW† : H(W+) → H(W†
−) in Lemma 7.3 is

called the future/past map of the anti-passive full behavior W†. If W† is the
full behavior of a passive anti-causal s/s system Σ†, then we also call ΓW† the
future/past map of Σ† and denote it by ΓΣ† .

Lemma 7.5. The future/past map ΓΣ† of the anti-passive full behavior W†

induced by an anti-passive reflected s/s system Σ† factors into the product

ΓΣ† = C†
Σ†
B†

Σ†
(7.3)

of the backward input map BΣ† of Σ† and the backward output map CΣ† of
Σ†.

Proof. This follows from Lemma 7.2 and Remarks 4.2 and 4.12.

Lemma 7.6. The adjoint of the past/future map ΓW of the full behavior W
is the future/past map ΓW[⊥] of the dual behavior W[⊥].

Proof. This follows from Lemmas 7.2, 6.18, and 7.5.

Lemma 7.7. Let W be a passive full behavior with the corresponding passive
past behavior W− = π−W and passive future behavior W+ = W ∩K2

+(W).

Let w ∈ K2(W), and suppose that π−w ∈ K(W
[⊥]
− ), π+w ∈ K(W+), and that

Q+π+w = ΓW Q−π−w, (7.4)

where ΓW is the past/future map of W.
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(i) For all t ∈ R+, π−τ
tw ∈ K(W

[⊥]
− ), π+τ

tw ∈ K(W+),

Q+π+τ
tw = ΓW Q−π−τ

tw, t ∈ R+, (7.5)

‖Q−π−τ tw‖2

H(W
[⊥]
− )

= ‖Q−π−w‖2

H(W
[⊥]
− )

+

∫ t

0

[w(s), w(s)]W ds,

t ∈ R+. (7.6)

(ii) There exists a sequence wk ∈W such that

Q+π+τ
twk → Q+π+τ

tw in H(W+), t ∈ R+, (7.7)

Q−π−τ
twk → Q−π−τ

tw in H(W
[⊥]
− ), t ∈ R+, (7.8)

π+w
k → w+ in K2

+(W), (7.9)

as k →∞, where the convergence in (7.7) and (7.8) is uniform in t.

Proof. The proof is essentially the same as the proof of [AS09b, Lemma 6.8]
(see Remark 3.17).

Lemma 7.8. Let Σ = (V ;X ,W) be a passive s/s system with input map
BΣ, past behavior W−, future behavior W+, and past/future map ΓΣ. Then
the following two conditions are equivalent:

(i) [ x
w+ ] is a stable future trajectory of Σ satisfying x(0) ∈ im

(
BΣ

)
;

(ii) w+ ∈ K(W+), and there exists some w− ∈ K(W
[⊥]
− ) such that

Q+w+ = ΓΣ Q−w− and

x(t) = BΣQ−π−τ
t(w− + w+), t ∈ R+.

(7.10)

The function w− in (7.10) can be chosen to be any w− ∈ K(W
[⊥]
− ) satisfying

x(0) = BΣQ−w−.

Proof. The proof of the implication (i)⇒ (ii) and the proof of the final claim
are essentially the same as the first part of the proof of [AS09b, Lemma 6.9]
(see Remark 3.17).

Conversely, suppose that (ii) holds. Then, in particular, x(0) = BΣQ−w− ∈
im (BΣ) and Q+w+ = ΓΣQ−w−. By Lemma 7.2, Q+w+ = CΣx0 ∈ im

(
CΣ

)
.

By (6.2), there exists a stable future trajectory [ x1
w+ ] of Σ. By Lemma 6.4,

CΣx1(t) = Q+τ
t
+w+ for all t ∈ R+. On the other hand, by assumption,

x(t) = BΣQ−π−τ
t(w− + w+) for all t ∈ R+, and hence by Lemma 7.7,

CΣx(t) = CΣBΣQ−π−τ
t(w− + w+) = ΓΣQ−π−τ

t(w− + w+)

= Q+π+τ
tw.
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Thus, CΣ(x(0) − x1(0)) = 0. By Lemma 6.6, there exists an unobservable
future trajectory [ x2

0 ] of Σ with x2(0) = x(0) − x1(0). Define x3 = x1 + x2.
Then [ x3

w+ ] is a stable future trajectory of Σ, x3(0) = x(0) = BΣQ−w−, and
by the implication (i) ⇒ (ii),

x3(t) = BΣQ−π−τ
t(w− + w+) = x(t), t ∈ R+.

Thus, [ x
w+ ] is a stable future trajectory of Σ.

8 The Canonical Observable Co-Energy Pre-

serving Model

In this section we shall construct a canonical model ΣW+
oce = (V W+

oce ;H(W+),W)
of a passive observable co-energy preserving s/s system with a given passive
future behavior W+.

Theorem 8.1. Let W+ be a passive future behavior on the Krĕın space W
with the corresponding full behavior W defined by (3.19) and past behavior
W− := π−W. Define H(W+) as in Theorem 5.4 and K(W+) as in (5.12).

(i) Define

T+ :=
{

[ x
w+ ] ∈

[
C(R+;H(W+))
K(W+)

] ∣∣∣ x(t) = Q+τ
t
+w+, t ∈ R+

}
. (8.1)

Then T+ is the set of all stable future trajectories of a passive observable
co-energy preserving s/s system ΣW+

oce with state space H(W+) whose
future behavior is equal to W+ and full behavior is equal to W.

(ii) The input map of ΣW+
oce is the past/future map ΓW of W, and the output

map of ΣW+
oce is the identity on H(W+).

(iii) A pair of functions [ x
w− ] is an externally generated stable past trajectory

of ΣW+
oce if and only if

w− ∈W− and x(−t) = ΓWQ−τ
∗t
− w−, t ∈ R+. (8.2)

Proof. We define the Krĕın spaces K0,t and L0,∞ as in the paragraph before
Theorem 3.5 with X replaced by H(W+), and the subspaces T0,t and S0,∞
by (3.5) with T+ defined by (8.1).

Step 1: T0,t is a maximal nonnegative subspace of K0,t. That T0,t is a
nonnegative subspace of K0,t follows from Lemma 5.3. The maximality of
T0,t follows from Lemma 3.20 and Lemma 2.2(i) with Y = X = H(W+).
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Step 2: (T0,t)
[⊥] ⊂ T0,t. Fix t ∈ R+ and define T̊[0,t] by

T̊[0,t] :=

{[
Q+τ t+z

†

Q+z†

π[0,t]z
†

]∣∣∣∣∣ z† ∈W
[⊥]
+

}
. (8.3)

Then T̊[0,t] ⊂ T0,t since H0(W+) ⊂ H(W+). We claim that (T̊[0,t])
[⊥] = T0,t.

Clearly, this implies that (T0,t)
[⊥] ⊂ T0,t since (T0,t)

[⊥] = ((T̊[0,t])
[⊥])[⊥] is the

closure of T̊[0,t].

A vector k =
[
x1
x0
w

]
belongs to T̊ [⊥]

[0,t] if and only if x1, x0 ∈ H(W+),

w ∈ K2([0, t];W), and

− (x1, Q+τ
t
+z
†)H(W+) + (x0, Q+z

†)H(W+) + [w, z†]K2([0,t]);W) = 0, z† ∈W
[⊥]
+ .

(8.4)

Since W+ is τ ∗+-invariant, its orthogonal companion W
[⊥]
+ is τ+-invariant, i.e.,

τ t+z
† ∈ W

[⊥]
+ whenever z† ∈ W

[⊥]
+ and t ∈ R+. By (5.6), for every v1 ∈ x1

and v0 ∈ x0, (8.4) can therefore be rewritten in the form

[v1, τ
t
+z
†]K2

+(W) − [v0, z
†]K2

+(W) + [w, z†]K2([0,t]);W) = 0, z† ∈W
[⊥]
+ . (8.5)

Extend w to a function in K2
+(W) by defining w(s) = 0 for s > t. Then (8.5)

can be rewritten as

[τ ∗t+ v1 − v0 + w, z†]K2
+(W) = 0, z† ∈W

[⊥]
+ .

Since (W
[⊥]
+ )[⊥] = W+, this is equivalent to

τ ∗t+ v1 − v0 + w = z

for some z ∈W+. Define v = v0 + z. Then v ∈ x0, and

τ ∗t+ v1 − v + w = 0.

This is equivalent to the pair of equations

w = π[0,t]v and v1 = τ t+v.

Thus,
[
x1
x0
w0

]
∈ (T̊[0,t])

[⊥] if and only if x0 = Q+v, x1 = Q+τ
t
+v, and w = π[0,t]v

for some v ∈ K(W+), or equivalently, if and only if k ∈ T0,t.
Step 3: T+ is the set of stable future trajectories of a passive co-energy

preserving s/s system ΣW+
oce . By (8.1) and Lemma 5.3, T+ is left-shift invari-

ant, and by Steps 1 and 2, T0,t is a maximal nonnegative co-neutral subspace
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of K0,t for all t ∈ R+. By (5.1), S0,∞ is nonnegative in L0,∞, and by the
definition of K(W+), the maximal nonnegativity of W+, and Lemma 2.2(i)
with Y = {0} and X = H(W+), S0,∞ is maximal nonnegative in L0,∞. By
Theorem 3.5, T+ is the set of stable trajectories of a passive s/s system, and
by Lemma 4.9, this system is co-energy preserving.

Step 4: The future behavior of ΣW+
oce is equal to W+. This follows from

the definition (8.1) of T+.
Step 5: B

Σ
W+
oce

= ΓW and C
Σ

W+
oce

= 1H(W+). By (8.1), if [ xw ] is a sta-

ble future trajectory of ΣW+
oce , then Q+w = x(0). On the other hand, by

Lemma 6.4, Q+w = C
Σ

W+
oce
x(0). Thus, C

Σ
W+
oce

= 1H(W+). By Lemma 7.2,

ΓW = C
Σ

W+
oce

B
Σ

W+
oce

= B
Σ

W+
oce

.

Step 6: ΣW+
oce is observable. This follows from Step 5 and Lemma 6.6.

Step 7: (8.2) holds. This follows from Step 5 and Lemma 6.11.

Theorem 8.2. The generating subspace of the s/s system ΣW+
oce in Theorem

8.1 is given by

V W+
oce =


[
Q+ẇ+

Q+w+

w+(0)

]
∈
[
H(W+)
H(W+)
W

] ∣∣∣∣∣∣∣∣
w+ ∈ K(W+) is locally absolutely

continuous with ẇ ∈ K2
+(W), and

lim
t→0+

1

t
Q+(τ t+w+ − w+) exists in H(W+).


(8.6)

Proof. Before proving (8.6) we first show that (8.6) is equivalent to the for-
mula

V W+
oce =


[

limt→0+
1
t
Q+(τ t+w+−w+)

Q+w+

w+(0)

]
∈
[
H(W+)
H(W+)
W

]
∣∣∣∣∣∣∣∣∣∣∣∣∣

w+ ∈ K(W+) is locally

absolutely continuous with

ẇ ∈ K2
+(W), and

lim
t→0+

1

t
Q+(τ t+w+ − w+)

exists in H(W+).


(8.7)

Indeed, as t→ 0+, the function 1
t
(τ t+w+ − w+) tends to ẇ+ in K2

+(W), and
since Q+|K(W+) is closed as an operator K2

+(W)→ H(W+), this implies that
limt→0+

1
t
Q+(τ t+w+ − w+) = limt→0+Q+

1
t
(τ t+w+ − w+) = Q+ẇ+. Thus,(8.6)

and (8.7) are equivalent.
Let w+ ∈ K(W+)∩W 1,2(R+;W), and suppose that limt→0+

1
t
Q+(τ t+w+−

w+) exists in H(W+). Define x(t) := Q+τ
t
+w+ for t ∈ R+. Then [ x

w+ ]
is a generalized stable future trajectory of ΣW+

oce . By Proposition 3.8, this

trajectory is even classical. In particular,

[
ẋ(0)
x(0)
w+(0)

]
∈ V W+

oce , where ẋ(0) =
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limt→0+
1
t
Q+(τ t+w+ − w+). Thus the right-hand side of (8.7) is contained in

V W+
oce . The opposite inclusion follows from Proposition 3.7(ii).

Corollary 8.3. The system ΣW+
oce is approximately null-controllable in the

sense that the set of all the initial states x(0) of all future trajectories of
ΣW+

oce with compact support is dense in Xoce = H(W+).

Proof. This follows from Theorem 8.1 and Lemma 5.2, since τ t+w+ = 0 for
all sufficiently large t whenever w+ ∈ H0

0(W+).

Theorem 8.4. Let Σ = (V ;X ,W) be a passive s/s system with output map
CΣ and future behavior W+. Then Σ and ΣW+

oce = (V W+
oce ;H(W+),W) are

contractively intertwined by CΣ.

Proof. Let [ xw ] be a stable future trajectory of Σ. By Lemmas 6.1 and 6.4,
w ∈ K(W+) and CΣx(t) = Q+τ

t
+w, t ∈ R+. Define xo(t) = Q+τ

t
+w, t ∈ R+.

Then [ xow ] is a stable future trajectory of ΣW+
oce , and xo(t) = CΣx(t), t ∈ R+.

Conversely, let [ xow ] be a stable future trajectory of ΣW+
oce satisfying xo(0) ∈

im
(
CΣ

)
. Then Q+w = xo(0), and hence w ∈ Q−1

+ im
(
CΣ

)
= SΣ

+. By (6.2),
there exists a stable future trajectory [ xw ] of Σ (whose signal part is equal to
the given signal w). By Lemma 6.4, CΣx(t) = Q+τ

t
+w = xo(t), t ∈ R+.

Theorem 8.5. Every observable and co-energy preserving passive s/s system
Σ with future behavior W+ is unitarily similar to the system ΣW+

oce . The
unitary similarity transformation is the output map CΣ of Σ.

Proof. By Lemma 6.19, the output map CΣ is unitary, and by Theorem 8.4,

CΣ intertwines Σ and Σ
WΣ

+
oce .

Definition 8.6. We call the system ΣW+
oce the canonical model of an observ-

able passive co-energy preserving s/s system with future behavior W+.

Corollary 8.7. Any two observable and co-energy preserving realizations of
a given passive future behavior W+ are unitarily similar to each other.

Proof. This follows from Theorem 8.5.

Corollary 8.8. A passive s/s system Σ is observable and co-energy preserv-
ing if and only if its output map CΣ is unitary.

Proof. This follows from Lemma 6.19 and Theorem 8.4.
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9 The Canonical Controllable Energy Preserv-

ing Model

In this section we shall construct a canonical model ΣW−
cep = (V W−

cep ;XW−
cep ,W)

of a passive controllable energy preserving s/s system with a given passive
past behavior W−. The results for this model are analogous to the results on
the model ΣW+

oce obtained in the preceding section. The state space of ΣW−
cep is

the Hilbert space H(W
[⊥]
− ) presented in Theorem 5.4.

Theorem 9.1. Let W− be a passive past behavior on the Krĕın space W
with the corresponding full behavior W defined by (3.18) and future behavior

W+ := W ∩K2
+(W). Define H(W

[⊥]
− ) as in Theorem 5.4 and define K(W+)

and K(W
[⊥]
− ) as in (5.5) and (5.12), respectively.

(i) Define

T+ :=

[ x
w+ ] ∈

[
C(R+;X )
K(W+)

]
∣∣∣∣∣∣∣∣∣∣
Q+w+ = ΓW Q−w− and

x(t) = Q−π−τ
t(w− + w+)

for some w− ∈ K(W
[⊥]
− ) satisfying

x(0) = Q−w−,


(9.1)

Then T+ is the set of all stable future trajectories of a a passive con-

trollable energy preserving s/s system ΣW−
cep with state space H(W

[⊥]
− )

whose past behavior is equal to W−.

(ii) The input map of ΣW−
cep is the identity on H(W

[⊥]
− ) and the output map

of ΣW−
cep is the past/future map ΓW of W.

(iii) A pair of functions [ xw ] is an externally generated stable past trajectory
of ΣW−

cep if and only if

w ∈W− and x(−t) = Q−τ
∗t
− w, t ≥ 0. (9.2)

Proof. We define the Krĕın spaces K0,t and L0,∞ as in the paragraph before

Theorem 3.5 with X replaced by H(W
[⊥]
− ), and the subspaces T0,t and S0,∞

by (3.5) with T+ defined by (9.1).
Step 1: T0,t is a maximal nonnegative neutral subspace of K0,t. That T0,t

is a neutral subspace of K0,t follows from (7.6). It follows from (9.1) that

to every x0 ∈ H(W
[⊥]
− ) there exists some [ xw ] ∈ T+ such that x(0) = x0.

Moreover, if [ xw ] ∈ T+ with x(0) = 0, then w ∈ W+. These two facts
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together with Lemma 2.2 with Y = X = H(W
[⊥]
− ) imply that T0,t is maximal

nonnegative.
Step 2: T+ is the set of stable future trajectories of a passive energy pre-

serving s/s system ΣW−
cep . By (9.1) and Lemma 7.7, T+ is left-shift invariant,

and by Step 1, each T0,t is a maximal nonnegative and neutral subspace of
K0,t. By letting t→∞ and using the nonnegativity of T0,t we find that S0,∞
is nonnegative, and the maximality of S0,∞ is proved in the same way as the
maximality of T0,t. By Theorem 3.5, T+ is the set of stable trajectories of a
passive s/s system, and by Lemma 4.9, this system is energy preserving.

Step 3: The past, full, and future behaviors of ΣW−
cep are equal to W−,

W, and W+, respectively. That the future behavior of ΣW−
cep is equal to W+

follows from the definition (9.1) of T+, and the remaining claims then follow
from Proposition 3.15.

Step 4: B
Σ

W−
cep

= 1H(W
[⊥]
− )

and C
Σ

W−
cep

= ΓW. Take w− = 0 and w+ ∈ W+

in (9.1), define w = w− + w+, and define x(t) = Q−π−τ
tw for t ∈ R. Then

by Step 2 and Lemma 3.9(ii), [ xw ] is a full trajectory of ΣW−
cep supported on

R+. If we left-translate this trajectory by the amount s > 0, then we get
another stable full trajectory [ xsws ] := [ τ

sx
τsw ] of ΣW−

cep supported on [−s,∞).
This trajectory satisfies (xs)(0) = Q−π−ws. On the other hand, by Lemma
6.9, xs(0) = B

Σ
W−
cep
Q−π−ws. Thus, B

Σ
W−
cep
Q−π−ws = Q−π−ws. By varying

w+ and s we can in this way generate all the stable full trajectories of ΣW−
cep

whose support are bounded to the left, and consequently, the restriction of
B

Σ
W−
cep

to the spaceH0
0(W

[⊥]
− ) defined in Lemma 5.5 is the identity. By Lemma

5.5, H0
0(W

[⊥]
− ) is dense in H(W

[⊥]
− ), and thus B

Σ
W−
cep

= 1H(W
[⊥]
− )

. By Lemma

7.2, ΓW = C
Σ

W−
cep

B
Σ

W−
cep

= C
Σ

W−
cep

.

Step 5: ΣW−
cep is controllable. This follows from Step 4 and Lemma 6.13.

Step 6: A pair of functions [ xw ] is an externally generated stable past
trajectory of ΣW−

cep if and only if (9.2) holds. This follows from Step 4 and
Lemma 6.11(i).

Corollary 9.2. Every stable past trajectory [ xw ] of ΣW−
cep (not necessarily ex-

ternally generated) satisfies

w ∈ K(W
[⊥]
− ) and x(−t) = Q−τ

∗t
− w, t ≥ 0. (9.3)

Proof. Since ΣW−
cep is energy preserving, it follows from Lemma 4.8 that every

stable past trajectory [ xw ] of ΣW−
cep is also a stable past trajectory of the anti-

passive dual Σ† of ΣW−
cep . By applying the reflected version of Theorem 8.1 to

the system Σ† we find that (9.3) holds.
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Corollary 9.3. The system ΣW−
cep is both H(W

[⊥]
− )-exactly controllable and

observable in backward time in the sense that if the signal part w of a stable
past trajectory [ xw ] of ΣW−

cep is zero, then also the state part x is zero.

Proof. The first claim follows from the fact that the input map is the identity,
and the second claim follows from (9.3).

Lemma 9.4. Let W− be a passive past behavior on the Krĕın space W.
Then the generating subspace V W−

cep of the controllable and energy preserving
s/s system ΣW−

cep in Theorem 9.1 is a closed subspace of the subspace

(V W−
cep )[⊥] =


[
Q−ẇ−
Q−w−
w−(0)

]
∈
[
H(W−)
H(W−)
W

] ∣∣∣∣∣∣∣∣∣
w− ∈ H(W

[⊥]
− ) is locally absolutely

continuous with ẇ ∈ K2
−(W) and

lim
t→0+

1

t
Q−(τ ∗t− w − w) exists in H(W−).

 .

(9.4)

Proof. The above subspace is the generating subspace of the anti-causal dual
of ΣW−

cep . That system is a co-energy preserving anti-passive s/s realization of

the anti-passive past behavior W
[⊥]
− , and its generating subspace is obtained

from (8.6) through a time reflection and the replacement of W+ by W
[⊥]
− .

Since ΣW−
cep is energy-preserving, V W−

cep is a closed subspace of its orthogonal
companion.

The exact description of V W−
cep will be given in Theorem 10.9 below.

Theorem 9.5. Let Σ = (V ;X ,W) be a passive s/s system with input map
BΣ and past behavior W−. Then ΣW−

cep and Σ are intertwined by BΣ.

Proof. This follows from Lemma 7.8 and Theorem 9.1.

Theorem 9.6. Every controllable and energy preserving passive s/s system
Σ with past behavior W− is unitarily similar to the system ΣW−

cep . The unitary
similarity transformation is the inverse of the input map BΣ of Σ.

Proof. By Lemma 6.15, the input map BΣ is unitary, and by Theorem 9.5,

B−1
Σ intertwines Σ and Σ

WΣ
−

cep .

Definition 9.7. We call the system ΣW−
cep the canonical model of a passive

controllable energy preserving s/s system with past behavior W−.

Corollary 9.8. Any two controllable and energy preserving realizations of a
given passive past behavior W− are unitarily similar to each other.
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Proof. This follows from Theorem 9.6.

Corollary 9.9. A passive s/s system Σ is controllable and energy preserving
if and only if its input map BΣ is unitary.

Proof. This follows from Lemma 6.15 and Theorem 9.5.

Theorem 9.10. The operator ΓW intertwines the two s/s systems ΣW−
cep and

ΣW+
oce .

Proof. This follows from Theorem 8.4 and also from Theorem 9.5.

10 The Canonical Simple Conservative Model.

We finally develop a canonical model for a conservative simple state/signal
system with a given passive full behavior W (see Definition 6.20 for the notion
of a simplicity of a conservative system).

Theorem 10.1. Let W be a passive full behavior on the Krĕın space W, and
let W− = π−W and W+ = W∩K2

+(W) be the corresponding passive past and

future behaviors. Let D(W) be the range space of the operator A
1/2
W , where

AW is the nonnegative self-adjoint operator on H+ ⊕ H− defined by (5.18),
and define L(W) by (5.20).

(i) Define

T :=
{

[ xw ] ∈
[
BUC (R;X )
L(W)

] ∣∣∣ x(t) = Qτ tw, t ∈ R
}
. (10.1)

Then T is the set of all stable full trajectories of a simple conservative
s/s system ΣW

sc with state space D(W) whose full behavior is equal to
W.

(ii) The input map of ΣW
sc is BΣW

sc
=
[

ΓW
1H−

]
with (BW

Σ )∗ = Π−|D(W), the

output map of ΣW
sc is CΣW

sc
= Π+|D(W) with C∗ΣW

sc
=
[

1H+

Γ∗W

]
.

Proof. We define the Krĕın spaces K0,t and L0,∞ as in the paragraph before
Theorem 3.5 with X replaced by D(W), and the subspaces T0,t and S0,∞ by
(3.5), with T+ := π+T , with T defined by (10.1).

Step 1: T0,t is a Lagrangian subspace of K0,t. By (5.26), T0,t is a neutral
subspace of K0,t. To prove that T0,t is a Lagrangian we shall use Lemma 2.2
with Y = X = D(W). Clearly condition (a) in that lemma holds because
of the definition of L(W), and (c) holds because of Lemma 5.14. The set
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described in condition (b) is equal to the section W[0,t] = π[0,t]W+, which
according to Lemma 3.20 is maximal nonnegative, and and the set described
in condition (d) is equal to τ ∗t+ π[−t,0]W−, which according to Lemma 3.20 and
Remark 4.2 is maximal nonpositive.

Step 2: S0,∞ is a maximal nonnegative subspace of L0,∞. By dropping
the term ‖Qτ tw‖2

D(W) in (5.26) and letting t → ∞ we find that S0,∞ is
a nonnegative subspace of L0,∞.. The proof of the maximality of S0,∞ is
analogous to (but simpler than) the proof of the maximality of T0,t given in
Step 1.

Step 3: T+ := π+T is the set of stable future trajectories of a conservative

s/s system ΣW
sc . By (10.1) and Lemma 5.14, T is shift invariant in

[
BUC (R;X )

K2(W)

]
.

In particular, T+ := π+T is then left-shift invariant. By Steps 1 and 2, T0,t is a
Lagrangian subspace of K0,t for all t ∈ R+ and S0,∞ is a maximal nonnegative
subspace of L0,∞. By Theorem 3.5, T+ is the set of stable trajectories of a
passive s/s system, and by Lemma 4.9, this system is conservative.

Step 4: T is the set of stable full trajectories of ΣW
sc . This follows from

Step 3 and Remark 4.2.
Step 5: The behavior of ΣW

sc is equal to W. If w ∈ W+, then Qw ∈
D(W), and it follows from (10.1) that [ xw ], where x(t) = Qτ tw, t ∈ R+, is
an externally generated stable future trajectory of ΣW

sc . This implies that

W+ ⊂ W
ΣW

sc
+ . Since W+ is maximal nonnegative and W

ΣW
sc

+ is nonnegative,

this implies that W+ = W
ΣW

sc
+ . From this follows that also W− = W

ΣW
sc
− and

W = WΣW
sc .

Step 6: The input map of ΣW
sc is

[
ΓW
1H−

]
. According to Lemma 6.9, the op-

erator BΣW
sc

is the unique operatorH− → D(W) which satisfies BΣW
sc
Q−π−w =

x(0) for every w ∈ W, where x is the state component of the unique exter-
nally generated trajectory [ xw ] whose signal part is w. Let w ∈ W. By
(10.1),

x(0) = Qw =

[
Q+π+w
Q−π−w

]
=

[
ΓW

1H−

]
Q−π−w.

Thus, BΣW
sc

=
[

ΓW
1H−

]
.

Step 7: The output map of Σ is Π+|D(W). According to Lemma 6.2, CΣW
sc

is the operator which maps x0 ∈ D(W) into the equivalence class consisting
of all the signal parts w of all stable future trajectories [ xw ] of ΣW

sc satisfying
x(0) = x0. Let x0 ∈ D(W), and choose some w0 ∈ L(W) such that Qw0 = x0.
It follows from (10.1) that [ x

w0 ], where x(t) = Qτ tw0, t ∈ R+, is a stable
future trajectory of ΣW

sc satisfying x(0) = x0. If [ x1
w1 ] is another stable future

trajectory of ΣW
sc satisfying x1(0) = x(0) = x0, then

[
x−x1
w0−w1

]
is an externally

generated stable future trajectory of ΣW
sc , and hence w1 − w0 ∈ W+. Thus,
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the equivalence class of all the signal parts w of all stable future trajectories
[ xw ] of ΣW

sc satisfying x(0) = x0 is equal to Q+π+w0 = Π+x0. Consequently,
CΣW

sc
= Π+|D(W).

Step 8: ΣW
sc is simple. According to Lemma 5.10, the linear span of the

ranges of BΣW
sc

=
[

ΓW
1W−

]
and C∗ΣW

sc
=
[

1W+

Γ∗W

]
is dense in the state space D(W),

and hence ΣW
sc is simple.

Theorem 10.2. The generating subspace of the s/s system ΣW
sc in Theorem

10.1 is given by

V W
sc =


[
Qẇ
Qw
w(0)

]
∈
[
D(W)
D(W)
W

] ∣∣∣∣∣∣∣∣
w ∈ L(W) is locally absolutely

continuous with ẇ ∈ K2(W), and

lim
t→0

1

t
Q(τ tw − w) exists in D(W).

 (10.2)

Proof. The proof is essentially the same as the proof of Theorem 8.2 with
R+ replaced by R, Q+ replaced by Q, and K(W+) replaced by L(W). For
the converse direction one needs the fact that for a conservative system part
(ii) of Proposition 3.7 holds in the following modified form:

(ii’) For each
[
z0
x0
w0

]
∈ V there exists a stable full classical trajectory [ xw ]

satisfying

[
ẋ(0)
x(0)
w(0)

]
=
[
z0
x0
w0

]
with the additional property that w is lo-

cally absolutely continuous and [ ẋẇ ] is a stable full trajectory of Σ. In
particular,

V =

{[
ẋ(0)
x(0)
w(0)

]∣∣∣∣ [xw
]

is a full classical trajectory of Σ

}
. (10.3)

That (ii’) holds for conservative systems follows from Proposition 3.7 and
Remark 4.2.

Let R be the reachable subspace, U the unobservable subspace, R† the
backward reachable subspace, and U† the backward unobservable subspace
of ΣW

sc . As we noticed earlier, R† = U⊥ and U† = R⊥. By Lemma 5.12 and
Theorem 10.1,

R = im
(
BΣW

sc

)
= im

([
ΓW
1H−

])
=
{[

ΓWx−
x−

] ∣∣ x− ∈ H−},
U† = ker

(
B∗ΣW

sc

)
= ker

(
Π−|D(W)

)
= {Qw | w ∈ L(W) ∩K2

+(W)},

R† = im
(
C∗ΣW

sc

)
= im

([
1H+

Γ∗W

])
=
{[ x+

Γ∗Wx+

] ∣∣ x+ ∈ H+

}
,

U = ker
(
CΣW

sc

)
= ker

(
Π+|D(W)

)
= {Qw | w ∈ L(W) ∩K2

−(W)}.

(10.4)
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The orthogonal projections onto these subspaces are given by

PR = BΣW
sc
B∗ΣW

sc
=
[

ΓWΠ−|D(W)

Π−|D(W)

]
,

PU† = 1D(W) − PR = Π+|D(W) − ΓWΠ−|D(W),

PR† = C∗ΣW
sc
CΣW

sc
=
[

Π+|D(W)

Γ∗WΠ+|D(W)

]
,

PU = 1D(W) − PR† = Π−|D(W) − Γ∗WΠ+|D(W),

(10.5)

Theorem 10.3. Let Σ = (V ;X ,W) be a conservative s/s system with be-
havior W, input map BΣ, output map CΣ, reachable subspace R = im (BΣ),
unobservable subspace UΣ = ker (CΣ), backward reachable subspace R†Σ =
im (C∗Σ) and backward unobservable subspace U†Σ = ker (B∗Σ).

(i) The operator

Cbil
Σ :=

[
CΣ
B∗Σ

]
(10.6)

is a co-isometry from X onto D(W), with kernel X0 := ker
(
Cbil

Σ

)
=

U ∩ U†. Thus, Σ is simple if and only if Cbil
Σ is injective.

(ii) Define Bbil
Σ := (Cbil

Σ )∗. Then Bbil
Σ is an isometry D(W)→ X with range

X⊥0 = R + R†, which is uniquely determined by the fact that[
C∗Σ BΣ

]
= Bbil

Σ AW, (10.7)

where AW is the operator defined in (5.18). In particular, Bbil
Σ is sur-

jective if and only if Σ is simple.

(iii) A full trajectory [ xw ] of Σ is stable if and only if w ∈ K2(W).

(iv) If [ xw ] is a stable full trajectory of Σ, then w ∈ L(W), Qτ tw = Cbil
Σ x(t),

and PX⊥0 x(t) = Bbil
Σ Qτ

tw for all t ∈ R.

(v) Conversely, let w ∈ L(W), and define x(t) = Bbil
Σ Qτ

tw, t ∈ R. Then
[ xw ] is a stable full trajectory of Σ.

(vi) The state component x of a stable full trajectory [ xw ] of Σ is determined
uniquely by the signal component w if and only if Σ is simple.

Proof. The proof of this theorem is essentially the same as the proof of parts
1)–6) of [AS10, Theorem 4.1] (see Remark 3.17).

Corollary 10.4. Let W be a full behavior on the Krĕın space W. Then the
pair of functions [ xw ] is a stable full trajectory of ΣW

sc if and only if

w ∈ L(W) and x(t) = Qτ tw, t ∈ R.
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Proof. This follows from Theorem 10.3.

Theorem 10.5. Every simple conservative s/s system Σ with full behavior W
is unitarily similar to the system ΣW

sc . The unitary similarity transformation
is the map Cbil

Σ defined in (10.6).

Proof. Let [ x+
w+ ] be a stable future trajectory of Σ. By Lemma 3.4 and

Remark 4.2, this trajectory can be extended to a stable full trajectory [ xw ] of
Σ. For each t ∈ R, define x1(t) = Qτ tw. Then [ x1

w ] is a stable full trajectory
of ΣWΣ

sc , and by Theorem 10.3(iv), x1(t) = Cbil
Σ x(t) for all t ∈ R, and hence,

in particular, for all t ∈ R+.
Conversely, let [ x1+

w+ ] be a stable future trajectory of ΣWΣ

sc . This trajectory
can be extended to a stable full trajectory [ x1

w ], after which it satisfies x1(t) =
Qτ tw for all t ∈ R. For each t ∈ R we can define x(t) = Bbil

Σ τ
tQw. Then

by Theorem 10.3(v), [ xw ] is a stable full trajectory of Σ and x(t) = Bbil
Σ Qτ

tw
for all t ∈ R, and hence, in particular, for all t ∈ R+.

Since Cbil
Σ is unitary we conclude that Σ is unitarily similar to ΣWΣ

sc with
similarity operator Sbil

Σ .

Definition 10.6. We call the system ΣW
sc the canonical model of a simple

conservative s/s system with full behavior W.

Corollary 10.7. Any two simple conservative realizations of a given passive
full behavior W are unitarily similar to each other.

Proof. This follows from Theorem 10.5.

Definition 10.8. We call the operators Cbil
Σ and Bbil

Σ defined in Theorem
10.3 the bilateral output and input maps, respectively, of the conservative s/s
system Σ.

As we shall show below, the two models in Sections 8 and 9 can be
obtained from ΣW

sc by first performing an orthogonal compression, and then
applying a unitary similarity transform.

By Theorem 8.4, the output map CΣW
sc

intertwines ΣW
sc and the co-energy

preserving system ΣW+
oce . Since ΣW

sc is conservative, it follows from Lemma
6.19 that CΣW

sc
= Π+|D(W) is a co-isometry, and the restriction of CΣW

sc
to R†

is a unitary map of R† onto H(W+). Clearly ΣW+
oce is unitarily similar to the

system Σo
sc := (V o

sc;R
†,W) that we get by applying C∗ΣW

sc
=
[

1H(W+)

Γ∗W

]
to the

state of the state of ΣW+
oce . The set of all future stable trajectories of Σo

sc is
given by{

[ x
w+ ] ∈

[
C(R+;R†)
K(W+)

] ∣∣∣ x(t) =
[

1H(W+)

Γ∗W

]
Q+τ

t
+w+, t ∈ R+

}
. (10.8)
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Since w+ ∈ K(W+) if and only if it can be written in the form w+ = π+w for
some w ∈ L(W), we can replace the parameter w+ by π+w with w ∈ L(W),
after which (10.8) can be written in the equivalent form{

[ x
w+ ] ∈

[
C(R+;R†)
K(W+)

] ∣∣∣ x(t) = PR†Qτ
tw, w+ = π+w, w ∈ L(W), t ∈ R+

}
.

(10.9)
Comparing this to (10.1) we find that Σo

sc is the orthogonal outgoing com-
pression of ΣW

sc onto the backward reachable subspace R† of ΣW
sc .

By Theorem 9.5, the input map BΣW
sc

intertwines the energy preserving
system ΣW−

cep with ΣW
sc . Since ΣW

sc is conservative, it follows from Lemma 6.15

that BΣW
sc

=
[

ΓW
1H(W−)

]
is an isometry whose range is the reachable subspace

R of ΣW
sc . Clearly ΣW−

cep is unitarily similar to the system Σc
sc := (V c

sc;R,W)
that we get by applying BΣW

sc
to the state of ΣW−

cep . The set of all future stable
trajectories of Σc

sc is given by{
[ x
w+ ] ∈

[
C(R+;R)
K(W+)

]∣∣∣x = Qτ tw, w+ = π+w, w ∈ Q−1R
}
. (10.10)

Comparing this to (10.1) we find that Σc
sc is an orthogonal incoming com-

pression of ΣW
sc onto the reachable subspace R of ΣW

sc .

Theorem 10.9. Let W− be a passive past behavior on the Krĕın space W.
Then the generating subspace V W−

cep of the canonical model ΣW−
cep in Theorem

9.1 is given by

V W−
cep =


[
Q−π−ẇ
Q−π−w
w(0)

]
∈
[
H(W−)
H(W−)
W

] ∣∣∣∣∣∣∣∣∣
w ∈ im

([
ΓW
1H−

])
is locally absolutely

continuous with ẇ ∈ K2(W), and

lim
t→0+

1

t
Q−π−(τ tw − w) exists in H(W−).


(10.11)

Proof. As we established above, ΣW−
cep is unitarily similar to the orthogonal

incoming compression Σc
sc of ΣW

sc onto its reachable subspace R. That sub-
space is strongly invariant in the sense that if [ xw ] is a future trajectory of ΣW

sc

satisfying x(0) ∈ R, then x(t) ∈ R for all t ≥ 0 (see Lemma 6.14). In partic-
ular, [ xw ] is a smooth future trajectory of Σc

sc if and only if [ xw ] is a smooth
future trajectory of ΣW

sc and x(0) ∈ R. This, combined with Proposition 3.7
and Theorem 10.2 implies that the generating subspace V c

sc of Σc
sc is given by

V c
sc = V W

sc ∩

D(W)
R
W

 =


[
Qẇ
Qw
w(0)

]
∈
[

R
R
W

] ∣∣∣∣∣∣∣∣
w ∈ Q−1R is locally absolutely

continuous with ẇ ∈ K2(W), and

lim
t→0+

1

t
Q(τ tw − w) exists in R.


(10.12)
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From here we get the generating subspace V W−
cep of ΣW−

cep by applying the

unitary operator
(
BW

sc

)∗
= Π− to the two state components. This leads to

formula (10.11).
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