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Abstract

We extend the classes of standard discrete- and continuous-time input/state/

output matrix systems by adding reverse internal and/or external channels. The

reverse internal channel permits the impulse response to contain a differentiating

part, and the reverse external channel allows us to include inputs which are forced

to be zero and outputs which are undetermined. The purpose of this extension

is obtaining a class of state-space matrix systems that can be used to realise all

right-coprime positive-real rational relations – in particular non-proper positive-

real rational transfer functions can be realised. We generalise the notions of

impedance and scattering passivity to extended systems. When we restrict our

attention to passive systems, the new class of extended impedance-passive sys-

tems is closed under the operations of interchanging the input and the output, as

well as frequency inversion and duality. We generalise two system Cayley trans-

formations to extended systems. The first transformation that we consider is the

internal Cayley transformation, which maps an impedance- or scattering-passive

continuous-time system into a discrete-time approximation of the original system

that is again impedance passive or scattering passive, respectively. The second

transformation is the external Cayley transformation that maps a contiuous-

or discrete-time impedance-passive system into a scattering-passive system with

the same time axis. In our extended setting, the two Cayley transformations

become bijections between the respective classes of extended passive systems.
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1 Introduction

A typical example of a finite-dimensional continuous-time impedance-passive system

(or shorter just continuous-time impedance system) is an electrical circuit made up

from the standard non-active components resistors, capacitors and inductors. These

are connected through a finite number of external terminals, where we regard the

voltages over these terminals as inputs and the corresponding currents as outputs, or

the other way around. If this system is proper, i.e., if the outputs depend continuously

on the inputs, then, after a suitable normalisation, the system can be modelled by a

standard i/s/o (input/state/output) system of the type:

{
ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t).
(1)

Normalisation in this case means that we divide each voltage by
√

R and multiply

each current by
√

R where R is a fixed resistance, in order to give them both the

physical dimension
√

W . Please see [B] for details on this.

In (1), we let x(t), u(t) and y(t) denote finite-dimensional vectors (with real or

complex entries), x(t) takes its values in the state space X, and both the input u(t)

and the output y(t) take their values in the common input/output space U .

However, not all passive electrical circuits with voltage inputs and current outputs

are proper. Because of the internal structure of the circuit, it may be that the output

is proportional to a derivative of the input. It is also possible that some of the inputs

are forced to be zero (e.g. a short-circuited terminal with voltage input) and some

of the outputs may be undetermined (e.g. a short-circuited terminal with current

output).

Especially the case of a differentiating circuit is important in practise. The igni-

tion coil of an old-fashioned car engine and a PID (Proportional-Integral-Differential)

controller are examples of this. For more information on PID controllers, see Exam-

ple 3.8 later in this paper or [Å]. It would be useful to have a class of state systems

that can be used to represent arbitrary (proper or non-proper) impedance-passive

systems. The main purpose of this work is to present such a class of extended state-

space systems.

The class we present contains exactly the necessary ingredients, and the systems

resemble standard systems so much that they are relatively simple to understand

and to use in computations. The key feature is the inclusion of certain internal and

external reverse channels in the system, and we always recover the class of standard

systems by simply removing these reverse channels. The idea of reverse channels was

utilised in the input/output setting already in [B].

The complete model that we use is of the following type. We split the state space

X into a direct part X1 and a reverse part X0, so that the full state is given by

x = [ x0
x1

] where x0 ∈ X0 and x1 ∈ X1. Likewise, we split the input/output space U

into a direct part U1 and a reverse part U0, so that the full input is [ u1
u0

] and the full

output is [ y1
y0

], where u1, y1 ∈ U1 and u0, y0 ∈ U0. We do allow the direct or reverse



1 INTRODUCTION 3

channels to be absent. Our general continuous-time model is of the type:




x0(t)

ẋ1(t)

y1(t)

u0(t)


 =




0 0 B0 0

0 A1 B1 0

C0 C1 D1 0

0 0 0 0







ẋ0(t)

x1(t)

u1(t)

y0(t)


 . (2)

Note that the reverse parts of the state, input, and output appear on the wrong side

of the equation compared to a standard system, and that there is no direct coupling

between the reverse internal and external channels. A more detailed discussion of

the particular choice of the system (2) is given in Section 2.

The reverse external channel in (2) has a trivial nature in the sense that it is

completely decoupled from the rest of the system. If B0 is not surjective and C0

is not injective then a part of the reverse internal channel can also be trivial in the

sense that the corresponding row and column in the system matrix (the matrix on the

right-hand side of (2)) is identically zero. After the removal of these trivial channels

the situation becomes the following. Either the remaining system is of standard type,

in which case we have nothing more to say, or a part of the output depends on some

derivative of the input. The latter case means that the transfer function of the system

has a pole at infinity. To represent this pole at infinity we need a reverse internal

channel, whose dimension is determined by the rank of the pole at infinity.

It is also possible to consider the dual situation, where one uses a nontrivial

reverse external channel with dimension given by the rank of the pole at infinity and

no reverse internal channel, but in this work we study only the system (2).

A central part of the article is a detailed study of the connection between the

continuous-time system (2) described above, and a particular discrete-time approx-

imation. We study this relationship, the internal Cayley transformation, in Section

5.

In the discrete-time setting no reverse internal channel is needed and the reverse

external channel is trivial. Therefore our discrete-time models are throughout a

trivial modification of standard systems, described by




x(n + 1)

y1(n)

u0(n)


 =




A B1 0

C1 D1 0

0 0 0







x(n)

u1(n)

y0(n)


 . (3)

A trivial reverse channel is needed in the discrete-time impedance-passive case, if we

want the external Cayley transformation to be a bijection. The reverse channel is

absent in the discrete-time scattering setting. These claims are justified in Section 3.

The paper is organised as follows. Fundamental theory of solutions, the transfer

function and realisation performance of the systems (2) and (3) are given in Section

2. Energy properties are discussed in Section 3. The internal Cayley transformation

is presented in Section 5 and the external Cayley transformation is studied in Section

6.
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2 Basic Theory of Extended I/S/O Systems

We begin with a treatment of the basic theory of the continuous-time system (2),

presented in Section 1, ending the section with some short comments on the discrete-

time system (3).

Letting C denote the set of complex numbers, we define C+ = {s ∈ C : Re s >

0} and D+ = {z ∈ C : |z| > 1}. Let U = C
dimU and X = C

dimX both be

finite-dimensional. We equip the vector spaces with the Cartesian inner product

〈v1, v2〉V = v∗2v1 and the induced norm ‖v‖V =
√
〈v, v〉V . We moreover denote

the space C
dimX×dimU of matrices mapping U into X by L(U ;X) and abbreviate

L(U) = L(U ;U).

Definition 2.1 An extended linear continuous-time time-invariant input/state/out-

put system Σ, or shorter an extended continuous-time i/s/o system Σ, with state

space X and input/output space U consists of a splitting of X into a direct part

X1 and a reverse part X0, a splitting of U into a direct part U1 and U0, and a set of

equations of the type (we denote ẋ = d
dt x)




x0(t)

ẋ1(t)

y1(t)

u0(t)


 =




0 0 B0 0

0 A1 B1 0

C0 C1 D1 0

0 0 0 0







ẋ0(t)

x1(t)

u1(t)

y0(t)


 , (4)

with x0(t) ∈ X0, x1(t) ∈ X1, u1(t), y1(t) ∈ U1 and u0(t), y0(t) ∈ U0 for all t ≥ 0.

We call x = [ x0
x1

] the state, u = [ u1
u0

] the (formal) input and y = [ y1
y0

] the (formal)

output. Together they form the trajectory (u, x, y) on Σ.

The matrix on the right-hand side of (4) is called the system matrix. As indicated

in (4), we sometimes write this matrix as
[

A B
C D

]
, where A =

[
0 0
0 A1

]
is the main

matrix, B =
[

B0 0
B1 0

]
is the control matrix, C =

[
C0 C1

0 0

]
is the observation matrix,

and D =
[

D1 0
0 0

]
is the feed-through matrix.

The dual system Σ∗ of (4) is (with xd
i (t) ∈ Xi and ud

i (t), y
d
i (t) ∈ Ui for all t ≥ 0)




xd
0(t)

ẋd
1(t)

ud
1(t)

yd
0(t)


 =




0 0 C∗0 0

0 A∗1 C∗1 0

B∗0 B∗1 D∗1 0

0 0 0 0







ẋd
0(t)

xd
1(t)

yd
1(t)

ud
0(t)


 . (5)

We say that [ u1
u0

] is the formal input of (4), since we interprete it as an input

because of its physical dimension, but mathematically u0 plays the role of an output,

while y0 plays the role of an input. Instead of talking about inputs and outputs,

we could be talking about currents and voltages in the network theory setting in

[B], or more generally, about efforts and flows, as in the more recent theory of port-

Hamiltonian systems. See. e.g. [Sc, Section 4.4].

Remark 2.2 The adjoint system matrix in (5) yields a system matrix of the same

type as the system matrix in (4). Therefore the class of extended continuous-time

systems (4) is closed under the operation of taking adjoints.
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We leave the easy proof of the following lemma to the reader. Note that we here

treat the reverse part of the formal input as an output, and the reverse part of the

formal output as an input.

Lemma 2.3 For each u1 ∈ C(R+;U1) satisfying B0u1 ∈ C1(R+;U) and each y0 :

R+ → U0, the system (4) has a unique state trajectory x ∈ C1(R+;X), given an

arbitrary initial value x1(0) ∈ X1. The internal and external signals are for all

t ∈ R+ related by

x0(t) = B0u1(t),

x1(t) = eA1tx1(0) +

∫ t

0
eA1(t−s)B1u1(s) ds,

y1(t) = C0ẋ0(t) + C1x1(t) + D1u1(t),

u0(t) = 0.

(6)

Formally Laplace transforming (4) we obtain

x̂0(s) = B0û1(s),

x̂1(s) = (s−A1)
−1x1(0) + (s −A1)

−1B1û1(s),

ŷ1(s) = C0[sx̂0(s)− x0(0)] + C1x̂1(s) + D1û1(s),

û0(s) = 0.

(7)

In particular, taking x1(0) = 0 and x0(0) = B0u1(0) = 0, we find the frequency

domain input/output relationship

[
ŷ1(s)

û0(s)

]
=

[
D̂1(s) 0

0 0

][
û1(s)

ŷ0(s)

]
, (8)

where

D̂1(s) = sC0B0 + C1(s−A1)
−1B1 + D1. (9)

We call D̂ =
[

bD1 0
0 0

]
the transfer function of the extended continuous-time i/s/o

system Σ, given by (4), and we call Σ a realisation of D̂.

Definition 2.4 The matrix-valued function F : C ⊃ dom (F ) → L(U), dim U <∞,

is rational if every element of F is described by a rational scalar function.

The function F is positive real on C+ ∩ dom(F ) if 〈u, (F (s) + F (s)∗)u〉 ≥ 0 for

all u ∈ U and s ∈ C+∩dom(F ), i.e., the matrix F (s)+F (s)∗ is positive semi-definite

for all s ∈ C+ ∩ dom (F ).

If F is bounded on some right-half plane Cω = {s ∈ C|Re s > ω}, i.e., ∃ω ∈
R,M ∈ R+ : s ∈ Cω =⇒ ‖F (s)‖L(U) ≤M , then F is said to be proper. Otherwise F

is improper.

The transfer function D̂, as given in (8), is always rational, since X1 is finite-

dimensional. The spectrum of A1 consists of the finite spectrum σ(A1) = {s ∈ C :
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s − A1 not invertible}, plus the point at infinity if dimX0 6= 0 and C0B0 6= 0. The

complement of the spectrum is called the resolvent set of A1. Thus dom (D̂) = ρ(A1).

In the absence of the reverse external channel, i.e., when dim U0 = 0, the transfer

function is reduced to D̂1, given by (9).

Observe that the existence of the reverse internal channel permits the transfer

function to have a first order pole at infinity. However, a proper transfer function

has no pole at infinity. In order to realise a proper rational matrix-valued function

we do not need any internal reverse channel, as is well-known, see e.g. [W]. Such a

function can always be realised in the form

D̂(s) = C(s−A)−1B + D (10)

by a continuous-time standard system (1), possibly adding a trivial external reverse

channel.

We now illustrate the realisation capabilities of the system (4).

Theorem 2.5 Any rational positive-real function F (s) can be realised by an extended

system Σ of the type




x0(t)

ẋ1(t)

y(t)


 =




0 0 B0

0 A1 B1

C0 C1 D1







ẋ0(t)

x1(t)

u(t)


 . (11)

The product C0B0 = B∗0C∗0 is positive semi-definite, and it can be recovered as

C0B0 = lim
s→∞

1

s
F (s). (12)

Proof: Every rational scalar entry fi,j of F can be written in the form

fi,j(s) = (fp)i,j(s) +

mi,j∑

k=1

(qk)i,js
k, qmi,j

6= 0,

where (fp)i,j is proper. By identifying the coefficients of sk, we can then also write

F in the form

F (s) = Fp(s) +

m∑

k=1

Qks
k, Qm 6= 0, (13)

with m = maxi,j mi,j, Fp proper and Qk ∈ L(U) for all k. We now proceed by

showing that m ≤ 1.

We have that lims→∞ s−mF (s) = Qm, since Fp is bounded on some right-half

plane Cω, and 〈u,Qmu〉 6= 0 for some u ∈ U , as Qm 6= 0. It is a simple exercise

in complex analysis to show that if zn → z 6= 0 in C, then also arg(zn) → arg(z).

Therefore

arg (〈u, F (s)u〉) = arg
(
sm〈u, s−mF (s)u〉

)

= −m arg(s) + arg(〈u, s−mF (s)u〉) mod 2π

→ −m arg(s) + arg(〈u,Qmu〉) mod 2π

(14)
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if s → ∞ along a straight half line. Regardless of the value of arg(〈u,Qmu〉), it is

always possible to choose arg(s) so that the limit on the last line of (14) has absolute

value greater than π/2 if m ≥ 2. This means that the lims→∞〈u, F (s)u〉 lies in the

complex open left-half plane C− and Re (〈u, F (s), u〉) < 0 for sufficiently large s,

which contradicts the positive realness of F . Thus m ≤ 1.

If Q1 is not self-adjoint and positive semi-definite, then 〈u,Q1u〉 6∈ R+ for some

u ∈ U and arg(〈u,Q1u〉) 6= 0. In this case it is again possible to choose s in such a

way that Re (〈u, F (s), u〉) < 0.

Now obviously Q1 = C0B0 is given by (12) and Fp(s) = F (s)− sC0B0 is proper.

Let the standard system Σ1(A1, B1, C1,D1) realise Fp. Then the system (4), where

C0B0 is an arbitrary factorisation of Q1, realises F (s). (Such a factorisation always

exists, as can easily be seen by taking e.g. C0 = 1 and B0 = Q1.) �

Remark 2.6 An analogous computation shows that a pole anywhere on the imagi-

nary axis must be simple and have a positive residue.

Similarly, in the discrete-time case we have no need for an inverted internal chan-

nel, when realising a positive-real rational function. This is a consequence of the fact

that the point at infinity is an internal point of ρ(A1). The argument is similar to

the proof of Theorem 2.5.

Following Remark 2.6, we arrive at the discrete-time system Σ:




x(n + 1)

y1(n)

u0(n)


 =




A B1 0

C1 D1 0

0 0 0







x(n)

u1(n)

y0(n)


 , (15)

with x(n) ∈ X and ui(n),yi(n) ∈ Ui for all n ≥ 0.

Arguments analogous, but simpler, to the continuous-time case given above can be

made for discrete-time systems as well. The standard theory of discrete-time i/s/o

systems applies, with the slight extension that we allow a short-circuited (formal)

input u0 and an arbitrary (formal) output y0.

The adjoint of this system is defined as (∀n ≥ 0 : ud
i (n),yd

i (n) ∈ Ui,x
d(n) ∈ X):




xd(n + 1)

ud
1(n)

yd
0(n)


 =




A∗ C∗1 0

B∗1 D∗1 0

0 0 0







xd(n)

yd
1(n)

ud
0(n)


 ,

Thus also the class of systems (15) is closed under the operation of taking adjoints.

The system (15) is written in solved form as

x(n) = Anx(0) +
n−1∑

k=0

An−1−kB1u1(k),

y1(n) = C1A
nx(0) + C1

n−1∑

k=0

An−1−kB1u1(k) + D1u1(n) and

u0(n) = 0.

(16)
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Premultiplying the equations of (15) by z−n and taking the sum as n ∈ N0, we

obtain that the z-transforms of the signals are related by zx̂(z) − zx(0) = Ax̂(z) +

B1û1(z), ŷ1(z) = C1x̂(z) + D1û1(z) and û0(z) = 0. We thus regard

D̂(z) =

[
C1(z −A)−1B1 + D1 0

0 0

]
, z ∈ ρ(A1)

as the transfer function of Σ.

Definition 2.7 By a rational relation R on Ω := C+ ∪ {∞} over
[

U
U

]
we mean the

range

∀s ∈ Ω : R(s) := R
([

P (s)

Q(s)

])
⊂
[

U

U

]
, (17)

where P (s), Q(s) : U → U are rational matrices with no poles in Ω, i.e. the closed

complex right-half plane C+ or at the point ∞.

The relation R is right coprime on Ω if
[

P (s)
Q(s)

]
is injective for all s ∈ C+ and

also lims→∞
[

P (s)
Q(s)

]
is injective. We then call (P,Q), given in (17), a right-coprime

factorisation of R.

Similarly, R(s) is positive real on Ω if Re 〈u, y〉 ≥ 0 for all s ∈ Ω and [ y
u ] ∈ R(s).

We remark that a rational relation R on Ω over
[

U
U

]
is positive real if and only if

its restriction R+ := R|C+
to C+ is positive real. This is easily shown using continuity

in both arguments of the inner product on U .

We finalise this section by stating that the class of systems (2) has been chosen

to have the following properties:

1. Every frequency domain input/output relationship of the type

[
ŷ(s)

û(s)

]
∈ D̂rel(s), s ∈ C+,

where D̂rel(s) is a right-coprime positive-real rational relation on Ω over
[

U
U

]
,

should have a realisation in this class.

2. The class should contain all standard systems (1).

3. The class should be as small as possible.

Item one is an obvious generalisation of the classical case, where D̂rel(s) would

be the graph of some transfer function D̂(s) evaluated at s. Item one is proven later,

in the last theorem of this paper (Theorem 7.2), where we also give a converse.

Item two is trivial. Regarding item three, if the inverse internal channel is re-

moved, then the transfer function of the system can no longer have a pole at infinity,

see (9). If the trivial external channel is removed, then the input is free and the

output is completely determined by the input, thus excluding both a short-circuited

input and an undetermined output.
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A nice property of the choice (2) is that it contains exactly what is needed in

order to make all Cayley transformations bijective, when we assume that the class of

scattering-passive discrete-time systems is the standard class of discrete-time systems.

More about this in Remark 6.5..

One main drawback of the class (2) is that it is general enough to cover the general

case only if we assume minimality of the inverted channels. That assumption may,

indeed, cause unreasonable restriction when considering interconnection in a network.

Taking this point of view, it would be better to allow a non-minimal inverted external

channel for a more general “well-posed n-port”, in the sense of [B, p. 66]. It turns

out that all results of the present article have counterparts also in the more general

setting. However, we do not want to sacrifice transparency for the, in a sense non-

essential, generality obtained by allowing non-minimal inverted channels.

3 Passive Systems

In this section we treat discrete- and continuous-time systems that exchange energy

with their environment in special ways. We call these systems impedance and scat-

tering passive, respectively. The notion of an impedance-passive system can be found

already in [B, pp. 71–73] and similar theory for infinite-dimensional systems can be

found in [St1]. Our contribution here is a generalisation of the standard passivity

therory in another direction, namely to extended systems.

We recall our continuous-time and discrete-time models from Section 2. They are



x0(t)

ẋ1(t)

y1(t)

u0(t)


 =




0 0 B0 0

0 A1 B1 0

C0 C1 D1 0

0 0 0 0







ẋ0(t)

x1(t)

u1(t)

y0(t)


 (18)

and 


x(n + 1)

y1(n)

u0(n)


 =




A B1 0

C1 D1 0

0 0 0







x(n)

u1(n)

y0(n)


 , (19)

respectively. Note that we throughout recover standard i/s/o systems, and thus the

standard version of the energy theory, by taking dimX0 = dim U0 = 0. Also note

that, for simplicity, we always assume that the input and output spaces coincide.

Definition 3.1 We make the following definitions.

1. The extended continuous-time system Σ in (18), is forward impedance passive

if for any given [ u1
y0 ], the corresponding [ x0

x1
] and [ y1

u0
] of (18), as they are given

in Lemma 2.3, satisfy the inequality

∥∥∥∥∥

[
x0(t)

x1(t)

]∥∥∥∥∥

2

−
∥∥∥∥∥

[
x0(0)

x1(0)

]∥∥∥∥∥

2

≤ 2Re

∫ t

0
〈u1(s), y1(s)〉ds (20)

for all t ≥ 0.
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The system is forward impedance conservative if we have equality, instead of

mere inequality, in (20), for all t ≥ 0.

Furthermore, the system is impedance passive if not only Σ, but also the dual

Σ∗, cf. (5), is forward impedance passive. If Σ and Σ∗ are both forward

impedance conservative, then we say that Σ is impedance conservative.

2. The system (18) is forward scattering passive if for all u, x, y and t ≥ 0:

∥∥∥∥∥

[
x0(t)

x1(t)

]∥∥∥∥∥

2

−
∥∥∥∥∥

[
x0(0)

x1(0)

]∥∥∥∥∥

2

≤
∫ t

0

∥∥∥∥∥

[
u1(s)

0

]∥∥∥∥∥

2

−
∥∥∥∥∥

[
y1(s)

y0(s)

]∥∥∥∥∥

2

ds. (21)

The system is forward scattering conservative if we have equality for all t ≥ 0.

The system is scattering passive (conservative) if both Σ and Σ∗ are forward

scattering passive (forward scattering conservative).

3. The extended discrete-time system (19) is impedance passive if for all u, x, y

and n ≥ 0 related as in (16):

‖x(n + 1)‖2 − ‖x(0)‖2 ≤ 2Re

n∑

k=0

〈u1(k),y1(k)〉. (22)

It is impedance conservative if we have equality for all u, x, y and n ≥ 0.

4. The system (19) is scattering passive if for all n ≥ 0:

‖x(n + 1)‖2 − ‖x(0)‖2 ≤
n∑

k=0

∥∥∥∥∥

[
u1(k)

0

]∥∥∥∥∥

2

−
∥∥∥∥∥

[
y1(k)

y0(k)

]∥∥∥∥∥

2

. (23)

It is scattering conservative if we have equality for all n ≥ 0.

We could define a system to be backward passive if its dual is forward passive,

making a system passive if and only if it is both forward and backward passive.

Note that there is no need to define forward passivity for discrete-time systems,

because (22) holds if and only if the corresponding inequality for the dual system

holds. The non-equivalence in the continuous-time case arises from the inverted

internal channel, which is absent in the discrete-time system.

Remark 3.2 For (forward) scattering-passive systems, i.e., where we have (21) or

(23), necessarily dim U0 = 0. To see this, let y0(t) be nonzero on some interval and

take all the other signals to be zero. Then
(
0, 0,

[
0
y0

])
is a trajectory of Σ and (21)

is violated. We can thus disregard the inverted external channel U0 in the energy

inequalities, since it is a zero-dimensional subspace (of the finite-dimensional input

space U).

Thus, continuous-time scattering-passive systems are always of the type



x0(t)

ẋ1(t)

y(t)


 =




0 0 0

0 A1 B1

0 C1 D







ẋ0(t)

x1(t)

u(t)


 (24)
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and, since x0(t) = 0 for all t, the corresponding energy inequality is

‖x1(t)‖2 − ‖x1(0)‖2 ≤
∫ t

0
‖u(s)‖2 − ‖y(s)‖2 ds. (25)

Analogously, the discrete-time scattering-passive systems have the form

[
x(n + 1)

y(n)

]
=

[
A B

C D

][
x(n)

u(n)

]
. (26)

Instead of considering the total flow of energy over some time interval, we may

study the instantaneous power exchange of a given system at any given time instant.

From this kind of consideration we obtain the following theorem.

Theorem 3.3 We have the following results regarding passivity.

1. The system Σ in (18) is forward impedance passive if and only if B∗0B0 = C0B0

and the block-matrix inequality

[
A1 + A∗1 B1

B∗1 0

]
≤
[

0 C∗1
C1 D1 + D∗1

]
(27)

holds on X ⊕U1. In that case B∗0B0 = C0B0 = B∗0C∗0 . It is forward impedance

conservative if and only if (27) holds as an equality.

The system is impedance passive (conservative) if and only if, in addition to

forward passivity (forward conservativity), we have B∗0B0 = C0C
∗
0 .

The condition B∗0B0 = C0B0 = B∗0C∗0 = C0C
∗
0 is equivalent to C0 = B∗0 and

(27) can be referred to as impedance passivity of the standard part of Σ.

2. The system (24) is forward scattering passive if and only if B0 = 0 and the

block-matrix inequality

[
A1 + A∗1 B1

B∗1 0

]
≤
[
−C∗1C1 −C∗1D1

−D∗1C1 1−D∗1D1

]
(28)

holds on X1 ⊕ U1 (i.e., the “the standard part of Σ” is scattering passive).

The system is forward scattering conservative if and only if (28) holds as an

equality.

A forward scattering-passive (forward scattering-conservative) system is scat-

tering passive (scattering conservative) if and only if C0 = 0.

In a forward scattering-passive continuous-time system x0(t) = 0 for all t ≥ 0.

3. The extended discrete-time system (19) is impedance passive if and only if the

block-matrix inequality

[
A∗

B∗1

] [
A B1

]
≤
[

1 C∗1
C1 D1 + D∗1

]
(29)
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holds on X⊕U1. Then, in particular A is a contraction and D+D∗ ≥ B∗B ≥ 0.

The system is impedance conservative if and only if we have equality in (29).

Then, in particular, A is unitary.

4. The system (26) is scattering passive if and only if its system matrix Σ :=[
A B
C D

]
is a contraction. Then also both A and D are contractive. The system

is scattering conservative if and only if Σ is unitary.

The proof of Theorem 3.3 utilises the following lemmas.

Lemma 3.4 Let A and B be finite-dimensional vector spaces with inner product

〈·, ·〉A and 〈·, ·〉B , respectively. Let P ∈ L(B;A) and let Q = Q∗ ∈ L(B), R = R∗ ∈
L(A), so that

S =

[
0 P

P ∗ Q

]
and S′ =

[
R P

P ∗ 0

]

are self-adjoint. Then S ≤ 0 if and only if P = 0 and Q ≤ 0.

Analogously S′ ≤ 0 if and only if P = 0 and R ≤ 0.

Proof: If P = 0 and Q ≤ 0 then trivially S ≤ 0. Conversely, for all t ∈ C,

(a, b)T ∈ A⊕B:

〈[
ta

b

]
, S

[
ta

b

]〉
= 〈b,Qb〉B + 2Re (t〈a, Pb〉A).

We have that 〈b,Qb〉 ∈ R, since Q∗ = Q and a real choice of t yields ∀t ∈ R : 〈b,Qb〉+
2t Re 〈a, Pb〉 ≤ 0, which is possible only if Re 〈a, Pb〉 = 0. Taking t to be imaginary

yields Im 〈a, Pb〉 = 0, i.e., ∀a, b : 〈a, Pb〉 = 0 and therefore also ∀b ∈ B : 〈b,Qb〉 ≤ 0.

Thus P = 0 and Q ≤ 0. �

Lemma 3.5 Let T be a contraction on a finite-dimensional vector space V . Let

λ ∈ C, |λ| = 1 and split V into V = N (λ−T )⊥⊕N (λ−T ). Then T =
[

T1 0
0 λ

]
, where

λ− T1 is invertible, is the corresponding splitting of T . (If λ is not an eigenvalue of

T , then the splitting becomes trivial, with dimN (λ− T ) = 0.)

Proof: From the splitting of V it is clear that λ−T1 is injective. Since T1 is square,

it is then also invertible. The splitting also yields that λ − T =
[

λ−T1 0
−T0 0

]
, i.e.,

T =
[

T1 0
T0 λ

]
. Then we obtain

T ∗T =

[
T ∗1 T ∗0
0 λ

][
T1 0

T0 λ

]
=

[
T ∗1 T1 + T ∗0 T0 λT ∗0

λT0 1

]
.

Since T is a contraction, necessarily T ∗T − IV ≤ 0, i.e.,

[
T ∗1 T1 + T ∗0 T0 − 1 λT ∗0

λT0 0

]
≤ 0.
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Applying Lemma 3.4 yields λT0 = 0, i.e., T0 = 0. �

Proof of Theorem 3.3:

We focus on the passive cases, as the conservative cases are analogous.

1. If the input u1 of (18) is differentiable, then [ x0
x1

] is differentiable and, differen-

tiating (20), we obtain the equivalent condition

d

dt

∥∥∥∥∥

[
x0(t)

x1(t)

]∥∥∥∥∥

2

= 2Re

〈[
x0(t)

ẋ1(t)

]
,

[
ẋ0(t)

x1(t)

]〉
≤ 2Re 〈u1(t), y1(t)〉 (30)

⇐⇒
〈


x0(t)

ẋ1(t)

u1(t)


 ,




ẋ0(t)

x1(t)

−y1(t)



〉

+

〈


ẋ0(t)

x1(t)

−y1(t)


 ,




x0(t)

ẋ1(t)

u1(t)



〉
≤ 0, (31)

for all t ≥ 0. Using time invariance, it is easy to show that the condition (31)

is satisfied for every t ≥ 0,
[

u1(t)
y0(t)

]
and corresponding

[
x0(t)
ẋ1(t)

]
,
[

ẋ0(t)
x1(t)

]
,
[

y1(t)
u0(t)

]

iff the condition holds for all u(0), x(0), ẋ(0) and y(0). We can thus abbreviate

our notation by writing e.g. u1 := u1(t) and ẋ0 := ẋ0(t), for some arbitrary

fixed t ≥ 0.

Substitute x0 = B0u1, ẋ0 = B0u̇1 and
[ x0

ẋ1

−y1

]
=

[
0 0 B0

0 A1 B1

−C0 −C1 −D1

] [
ẋ0
x1
u1

]
into (31)

to obtain the equivalent condition ∀
[

u̇1
x1
u1

]
∈ U1 ⊕X1 ⊕ U1 :

〈


u̇1

x1

u1


 ,




0 0 B∗0B0 −B∗0C∗0
0 A1 + A∗1 B1 − C∗1

B∗0B0 − C0B0 B∗1 − C1 −D1 −D∗1







u̇1

x1

u1



〉
≤ 0. (32)

This iimplies (27) and applying Lemma 3.4 to (32) yields that B∗0B0 = C0B0.

The converse is obvious.

It is now trivial that equality in (20) is equivalent to equality in (32). Analogous

computations for the dual system yields the condition ∀
[

ẏd
1

−xd
1

yd
1

]
:

〈


ẏd
1

−xd
1

yd
1


 ,




0 0 C0C
∗
0 − C0B0

0 A1 + A∗1 B1 − C∗1
C0C

∗
0 −B∗0C∗0 B∗1 − C1 −D1 −D∗1







ẏd
1

−xd
1

yd
1



〉
≤ 0.

(33)

Let B∗0B0 = C0B0. Then (32) reduces to
[

A1+A∗
1

B1−C∗
1

B∗
1−C1 −D1−D∗

1

]
≤ 0, which is

equivalent to (33) holding everywhere if and only if also (33) reduces to a

condition on the standard part, i.e., C0C
∗
0 = C0B0.

If B∗0B0 = C0B0 = C0C
∗
0 = B∗0C∗0 , then (C∗0 −B0)

∗(C∗0 −B0) = C0C
∗
0 −C0B0−

B0C
∗
0 + B∗0B0 = 0. Moreover (C∗0 −B0)

∗(C∗0 − B0) = 0 iff (C∗0 − B0) = 0. On

the other hand, if C0 = B∗0 , then trivially B∗0B0 = C0B0 = C0C
∗
0 = B∗0C∗0 .
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2. After differentiating (21), disregarding the inverted external signals in accor-

dance with Remark 3.2, we obtain the equivalent condition



B∗0C∗0C0B0 B∗0C∗0C1 B∗0B0 + B∗0C∗0D1

C∗1C0B0 A1 + A∗1 + C∗1C1 B1 + C∗1D1

B∗0B0 + D∗1C0B0 B∗1 + D∗1C1 D∗1D1 − I


 ≤ 0. (34)

Taking x1, u1 = 0 and letting u̇1 vary, we obtain that 〈u̇1, B
∗
0C∗0C0B0u̇1〉 ≤ 0,

i.e., ‖C0B0u̇1‖2 ≤ 0 for all u1. Thus C0B0 = 0 and, applying Lemma 3.4, we

obtain that B∗0B0 = 0. This implies that 〈u1, B
∗
0B0u1〉 = 0 for all u1, i.e.,

B0 = 0, implying in particular that x0(t) = 0 for all t. In this case the first

row and the first column of (34) contain only zeros, and thus, (34) holds if and

only if the standard part of the system is forward scattering passive.

Applying the previous to the dual system, we obtain that the dual Σ∗ is forward

scattering passive if and only if C∗0 = 0 and the standard part of the dual is for-

ward scattering passive. However, it is straightforward to check that a standard

system is forward passive (forward conservative) iff it is passive (conservative).

3. The discrete-time analogue of (30) is that (22) holds for all n if and only if it

holds for n = 0, as we will show. The only if-part is trivial. Conversely, assume

that it holds for n = 0. Utilising time invariance we then obtain the equivalent

condition

∀k ≥ 0 : ‖x(k + 1)‖2 − ‖x(k)‖2 ≤ 2Re 〈u1(k),y1(k)〉. (35)

Summing over k from 0 to n proves the if-part. The rest is only substitution

and rewriting. Case 4. is analogous. �

We have the following technical corollary.

Corollary 3.6 For any forward scattering-passive continuous-time system (24) we

have that N (λ−D) ⊆ N (B1 + λC∗1 ) for all λ ∈ C with |λ| = 1.

Proof: Letting x1 = 0 in (34), we obtain 〈u, (D∗1D1 − I)u〉 ≤ 0, i.e., 〈u,D∗D1u〉 ≤
〈u, u〉, which means that D = D1 is a contraction. (Recall that B0 = 0, annihilating

the first row and column of the block matrix in (34).)

According to Lemma 3.5, if we split U1 = N (λ−D)⊥⊕N (λ−D), where |λ| = 1,

then D =
[

D11 0
0 λ

]
(with λ −D11 invertible). Noting that I −D∗D =

[
I−D∗

11
D11 0

0 0

]

and applying Lemma 3.4 to (34) completes the proof. �

We now describe the transfer function of a passive system.

Theorem 3.7 For continuous-time (impedance- and scattering-) passive systems, we

have C+ ⊂ ρ(A1) and for discrete-time passive systems D+ ⊂ ρ(A).

If Σ is a continuous-time impedance-passive system, then D̂1(s) + D̂1(s)
∗ ≥ 0

for s ∈ C+. If, moreover, Σ is impedance-conservative, then D̂1(s)
∗ = −D̂1(s) for

s ∈ ρ(A1)∩ iR, i.e., the non-inverted part D̂1 of the transfer function is skew-adjoint

on the imaginary axis.
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In a scattering-passive system, D̂1 is a contraction on the open right-half plane.

If the system is scattering conservative, then D̂1 is unitary on the imaginary axis.

Corresponding claims hold for the discrete-time case, when we replace the open

right-half plane with the complement of the closed complex unit disc D+ = {s ∈ C |
|s| > 1} and the imaginary axis with the complex unit circle.

Proof: The claim C+ ⊂ ρ(A1) is proved in Corollary 4.2.

The inequality (27) can be equivalently written as

Re

〈[
x1

u1

]
,

[
−A1 −B1

C1 D1

][
x1

u1

]〉
≥ 0.

Let Re s ≥ 0 and choose in particular x1 := (s − A1)
−1B1u1 to obtain the special

case

Re

〈[
(s −A1)

−1B1

I

]
u1,

[
−A1 −B1

C1 D1

][
(s−A1)

−1B1

I

]
u1

〉
=

Re 〈(s −A1)
−1B1u1, (−A1(s−A1)

−1B1 −B1)u1

+Re 〈u1,
(
D̂1(s)− sB∗0B0

)
u1〉 ≥ 0

⇐⇒ Re 〈u1, D̂1(s)1u1〉 ≥ (Re s)‖B0u1‖2 + (Re s)‖(s −A1)
−1B1u1‖2 (≥ 0).

Thus 2Re 〈u1, D̂1(s)u1〉 ≥ 0, i.e., 〈u1,
(
D̂1(s) + D̂1(s)

∗)u1〉 ≥ 0. Trivially D̂1(s) +

D̂1(s)
∗ ≥ 0 iff D̂(s) + D̂(s)∗ ≥ 0.

If, moreover, we have a conservative system and Re s = 0, then, by the compu-

tations above, 〈u1,
(
D̂1(s) + D̂1(s)

∗)u1〉 = 0 for all u1 ∈ U1, i.e., D̂(s) = −D̂(s)∗.

The claims on the transfer function of a scattering-passive system is proved later,

in Remark 6.5. The claims on the discrete-time transfer functions now follow from

Theorem 5.4. �

We end the section with a simple example.

Example 3.8 The PID (Proportional-Integral-Differential) controller can be written



x0(t)

ẋ1(t)

y(t)


 =




0 0 KD

0 0 KI

K∗D K∗I KP







ẋ0(t)

x1(t)

u(t)


 .

Here u indicates the instantaneous difference between the value of some measured

plant variables and the desired values. The variable y is the output for the plant

actuators.

We immediatly see that y(t) = K∗DKDu̇(t) + K∗I KI

∫ t
0 u(s) ds + KP u(t) for all

t ≥ 0, agreeing with the transfer function D̂(s) = sK∗DKD + 1
sK∗I KI +KP . Moreover,

the PID controller is impedance passive (conservative) if and only if KP + K∗P ≥ 0

(K∗P = −KP ).

The impedance passivity of the controller implies that

D̂(s) + D̂(s)∗ = (2Re s)

(
K∗DKD +

1

|s|2 K∗DKD

)
+ KP + K∗P ≥ 0
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for all s ∈ C+ \ {0}. For an impedance-conservative controller, we have skew-

adjointness of the transfer function on the imaginary axis.

4 A Generalised Matrix Cayley Transformation

The main use of the celebrated matrix Cayley transformation is to map any positive-

real matrix into a contractive matrix. In the sections to come we need a slightly

generalised version of the matrix Cayley transformation.

Lemma 4.1 Let T ∈ L(V ) be a square matrix and γ1, γ2, τ1, τ2 ∈ L(V ) be diagonal

matrices.

If τ1 + τ2T is invertible, then we define the generalised matrix Cayley transform

T := (γ1 + γ2T )(τ1 + τ2T )−1 (36)

of T with parameter matrices γ1, γ2, τ1, τ2. We have the following results on the

transform T .

1. If γ∗1γ1 = τ∗1 τ1, γ∗2γ2 = τ∗2 τ2 and τ∗1 τ2 − γ∗1γ2 = aIV for some a ∈ R+, then the

transform T is a contraction if and only if T is positive real. By this we mean

that ‖T ‖ ≤ 1⇐⇒ T + T ∗ ≥ 0.

Furthermore, T is unitary if and only if T is skew-adjoint, i.e., T ∗T = IV ⇐⇒
T ∗ = −T .

2. If T is positive real, τ2 is invertible and τ−1
2 τ1 + τ∗1 τ−∗2 > 0, then τ1 + τ2T is

invertible.

3. The equation (36) can be solved for T if and only if T τ2−γ2 is invertible. Then

T is given by

T = (T τ2 − γ2)
−1(γ1 − T τ1). (37)

Proof:

1. The matrix T = (γ1 + γ2T )(τ1 + τ2T )−1 is a contraction if and only if

〈(γ1 + γ2T )(τ1 + τ2T )−1v, (γ1 + γ2T )(τ1 + τ2T )−1v〉 ≤ 〈v, v〉

for every v ∈ V . By mapping V bijectively onto itself by the change v =

(τ1 + τ2T )w of variables, the equivalent condition

∀w ∈ V : 〈(γ1 + γ2T )w, (γ1 + γ2T )w〉 ≤ 〈(τ1 + τ2T )w, (τ1 + τ2T )w〉

is obtained. This is furthermore equivalent to writing ∀w ∈ V :

〈w, (γ∗1γ1 − τ∗1 τ1)w〉+ 〈Tw, (γ∗2γ2 − τ∗2 τ2)Tw〉 ≤ 2Re 〈w, (τ∗1 τ2 − γ∗1γ2)Tw〉

⇐⇒ 0 ≤ 2aRe 〈w,Tw〉 ⇐⇒ 〈w, (T + T ∗)w〉 ≥ 0.
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2. First of all, τ1 + τ2T is trivially invertible iff τ−1
2 τ1 + T is invertible. Secondly,

the injectivity of the latter (square) matrix is proved by contradiction. If there

existed a nonzero v ∈ V , such that (τ−1
2 τ1 + T )v = 0, then

〈v, (T + T ∗)v〉 = −〈v, (τ−1
2 τ1 + τ∗1 τ−∗2 )v〉 < 0,

which would contradict the positive realness of T .

3. Postmultiply equation (36) by (τ1 + τ2T ) in order to obtain the equivalent

equivalent equation (T τ2 − γ2)T = γ1 − T τ1. �

The standard matrix Cayley transformation is a very important special case of

Lemma 4.1. We study this case in the following corollary, omitting the simple proof.

Corollary 4.2 Given a T ∈ L(V ), let τ1 ∈ C+ ∩ ρ(−T ) and take τ2 = 1, γ1 = τ1

and γ2 = −1. Then the standard matrix Cayley transform

T = (τ1 − T )(τ1 + T )−1 = (τ1 + T )−1(τ1 − T ) (38)

satisfies the following.

1. The transform T is a contraction if and only if T is positive real and, moreover,

T is unitary if and only if T is skew-adjoint.

2. If T is positive real, then C+ ⊆ ρ(−T ) and the Cayley transform (38) is defined

for every τ1 ∈ C+.

3. If T is defined by (38), then it directly follows that 1 + T = (2Re τ1)(τ1 + T )−1

and so 1 + T is always invertible.

More generally, the equation (38) can be solved for T if and only if 1 + T is

invertible and then T is given by

T = (τ1 − τ1T )(1 + T )−1 = (1 + T )−1(τ1 − τ1T ). (39)

In particular, taking V = C and τ ∈ C+, we obtain that T → (τ1 + T )/(τ1 −
T ) maps the open complex right-half-plane bijectively onto the open external of the

complex unit disc D+ = {λ ∈ C | |λ| > 1}. (The point τ1 is mapped into the point at

infinity.) The imaginary axis is mapped one-to-one onto the unit circle.

In the following sections we will define two Cayley transforms of the system (18).

These transforms are again systems, so the transforms are indeed not special cases

of the generalised matrix Cayley transform, introduced in Lemma 4.1, that maps

matrices into matrices. However, there is a close relationship between the gener-

alised matrix Cayley transform and the to-be-introduced system Cayley tranforms.

Therefore Lemma 4.1 is useful for reference.
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5 The Internal Cayley Transform of an Extended Sys-

tem

The Cayley transforms of standard systems are treated in great detail in [St1]. In this

section we present a generalised internal Cayley transformation that maps extended

continuous-time systems to discrete-time systems. The standard case is, as usual,

recovered by disregarding everything connected to U0 and X0.

5.1 Motivation and Definition

We review a simple method for approximating the trajectory of a given continuous-

time extended system of standard type numerically by transforming the system into

a discrete-time system. More background and details on this approximation can be

found in [FP, Section 3], where it is referred to as “the Tustin method”.

Let h ∈ R+ and consider the equidistant discretisation {tn}n∈N0
, tn = nh of R+.

By integrating the standard input equation

ẋ(t) = Ax(t) + Bu(t)

from tn to tn+1 one obtains

x(tn+1)− x(tn) =

∫ (n+1)h

nh

(
Ax(t) + Bu(t)

)
dt.

If the continuous integrand is approximated by a straight line, then the approximation

x(tn+1)− x(tn) ≈ h

2

(
Ax(tn+1) + Ax(tn) + Bu(tn+1) + Bu(tn)

)
. (40)

is obtained. Introduce α := 2/h ∈ R+ and u(n) =
(
u(tn+1) + u(tn)

)
/
√

2α. If

α ∈ ρ(A), then (40) can be solved for x(tn+1):

x(tn+1) ≈ (α−A)−1(α + A)x(tn) +
√

2α(α−A)−1Bun,

Defining x(n) as

x(0) = x(0), x(n + 1) = (α−A)−1(α + A)x(n) +
√

2α(α−A)−1Bu(n), (41)

we therefore make x(n) a discrete approximation of x(tn). If d2u/dt2 exists for all

t ≥ 0, then ‖x([t/h])− x(t)‖ ≤ C(t)h2, denoting the integer part of t/h by [t/h]. See

Figure 1 for an illustration.

The convergence properties of this approximation is studied in much greater detail

in [HM]. Another approach to solving a continuous-time system numerically using

the internal Cayley transform is taken in [AG].

We now give an abstract definition of the internal Cayley transform. The def-

inition is abstract in the sense that we only assume that the original system is of

input/state/output type. Even this is not strictly necessary. The transformation is

defined in terms of the internal and external signals of a system, independently of

the precise system equations. We provide explicit representations for the transform

of a (scattering- or impedance-) passive system in Theorem 5.2. In particular (49)

might be familiar to the reader.
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h

(h,x(h))

(nh,x(nh))

t

(nh,   (n))x

(0,x(0)=   (0))

(h,   (1))x εn

nh

(t,x(t))

+

+

+

+

+

x +

+

+

Figure 1: The approximation illustrated. The points
(
nh,x(n)

)
, marked by +, do

not lie on the curve
(
t, x(t)

)
, but the error ε[t/h] is proportional to h2.

Definition 5.1 Let Σ be a continuous-time system with (formal) input signal u,

state trajectory x and (formal) output signal y. Take α ∈ C+. The internal Cayley

transform of Σ with parameter α is the discrete-dime system Σ that is obtained by

performing the text substitutions

ẋ(t) → 1√
2Re α

(
αx(n + 1)− αx(n)

)

x(t) → 1√
2Re α

(
x(n + 1) + x(n)

) y(t) → y(n)

u(t) → u(n)
. (42)

The inverse Cayley transform of the discrete-time system Σ with parameter α is the

continuous-time system obtained by performing the inverse text substitutions, i.e., by

reversing the arrows in (42).

We remark that the state part of (42) can equivalently be written

x(n + 1)← 1√
2Re α

(
αx(t) + ẋ(t)

)
and x(n)← 1√

2Re α

(
αx(t)− ẋ(t)

)
. (43)

This gives an explicit expression for the inverse internal Cayley transform.

The reason for choosing this particular transformation is that it often preserves

passivity:

(2Re α)
d

dt
‖x(t)‖2 = (2Re α)2Re 〈ẋ(t), x(t)〉

→ 2Re
(
α‖x(n + 1)‖2 − α‖x(n)‖2 + i2Im (α〈x(n + 1),x(n)〉)

)

= (2Re α)
(
‖x(n + 1)‖2 − ‖x(n)‖2

)
,

i.e., d
dt ‖x(t)‖2 →

(
‖x(n + 1)‖2 − ‖x(n)‖2

)
cf. the proof of Theorem 3.3.

Now we proceed to the next section, where we compute the Cayley transform of

a continuous-time impedance-passive system.



5 THE INTERNAL CAYLEY TRANSFORM OF AN EXTENDED SYSTEM 20

5.2 The Internal Cayley Transform of an Impedance-Passive System

We throughout let α ∈ C+ and denote Wα = diag(
√

2Re α ,
√

2Re α , 1, 1) ∈ L(X0 ⊕
X1 ⊕ U1 ⊕ U0). Trivially Wα is invertible. Now consider the extended i/s/o system

Σ : 


x0(t)

ẋ1(t)

y1(t)

u0(t)


 =




0 0 B0 0

0 A1 B1 0

C0 C1 D1 0

0 0 0 0







ẋ0(t)

x1(t)

u1(t)

y0(t)


 . (44)

Applying (43) to (44), keeping in mind that x = [ x0
x1

], u = [ u1
u0

] and y = [ y1
y0

], we

can write



x0(n + 1)

x1(n + 1)

y1(n)

u0(n)


 = W−1

α P




ẋ0(t)

x1(t)

u1(t)

y0(t)


 and




x0(n)

x1(n)

u1(n)

y0(n)


 = W−1

α Q




ẋ0(t)

x1(t)

u1(t)

y0(t)


 ,

(45)

where

P =




1 0 αB0 0

0 α + A1 B1 0

C0 C1 D 0

0 0 0 0


 and Q =




−1 0 αB0 0

0 α−A1 −B1 0

0 0 1 0

0 0 0 1


 .

If we define e.g. P1 = diag(1, α, 0, 0), P2 = diag(α, 1, 1, 1), Q1 = diag(−1, α, 1, 1)

and Q2 = diag(α,−1, 0, 0), then P = P1 + P2Σ and Q = Q1 + Q2Σ.

From the block-triangularity of Q it is easy to see that Q is invertible if and only

if the block α−A1 is invertible, i.e., α ∈ ρ(A1). In this case (45) implies that




x0(n + 1)

x1(n + 1)

y1(n)

u0(n)


 = W−1

α PQ−1Wα




x0(n)

x1(n)

u1(n)

y0(n)


 . (46)

Whenever α ∈ ρ(A1), we have that

Q−1 =




1 0 αB0 0

0 (α−A1)
−1 (α−A1)

−1B1 0

0 0 1 0

0 0 0 1


 .

Thus, he system matrix Σ = W−1
α PQ−1Wα of (46) is

Σ =




−1 0
√

2Re α B0 0

0 (α + A1)(α−A1)
−1

√
2Re α (α−A1)

−1B1 0

−
√

2Re αC0

√
2Re α C1(α−A1)

−1
D̂1(α) 0

0 0 0 0


 , (47)
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where D̂1(α) = αC0B0 + C1(α−A1)
−1B1 + D1 is the non-trivial part of the transfer

function of Σ.

Thus, the internal Cayley transform of our extended i/s/o system is indeed well

defined if α ∈ ρ(A1). Furthermore, it is of the familiar type




x(n + 1)

y1(n)

u0(n)


 =




A B1 0

C1 D1 0

0 0 0







x(n)

u1(n)

y0(n)


 . (48)

The following theorem gives the main properties of the transform.

Theorem 5.2 The internal Cayley transform of the system (44) with parameter α ∈
ρ(A1) ∩ C+ is the system




x0(n + 1)

x1(n + 1)

y1(n)

u0(n)


 = Σ




x0(n)

x1(n)

u1(n)

y0(n)


 ,

where Σ is given by (47). We always have, for A1 := (α+A1)(α−A1)
−1, that 1+A1

is invertible.

The transform is impedance passive/conservative if and only if the original system

is impedance passive/conservative. In this case C+ ⊆ ρ(A1), i.e., the internal Cayley

transform is defined for any α ∈ C+.

In particular, the formula for the internal Cayley transform of a standard system

can be recovered from the central 2× 2 blocks of (47) as

Σ =

[
(α + A1)(α−A1)

−1
√

2Re α (α−A1)
−1B1√

2Re α C1(α−A1)
−1 C1(α−A1)

−1B1 + D1

]
. (49)

Proof: The expression for the transform follows from the computations above. We

easily see that 1 + A1 = (2Re α)(α −A1)
−1, which is invertible, as α ∈ C+.

By Theorem 3.3, the untransformed system Σ is impedance passive iff C0 = B∗0
and for all [ x

u ] ∈ X1 ⊕ U1 we have

〈[
x

u

]
,

[
A1 + A∗1 B1 − C∗1
B∗1 − C1 −D1 −D∗1

][
x

u

]〉
≤ 0. (50)

We make the invertible change [ x
u ] =

[√
2Re α(α−A1)−1 (α−A1)−1B1

0 1

]
[ z
u ] of variables in

(50). After a straightforward, but rather lengthy, computation we turn (50) into

〈[
z

u

]
,

[
A∗1A1 − 1 A∗1B11 −C∗11

B∗11A1 −C11 B∗11B11 −D1 −D∗1

] [
z

u

]〉
≤ 0, (51)

where A =
[−1 0

0 A1

]
, B1 =

[
B01

B11

]
, C1 =

[
C10 C11

]
and D1 are given by (47).
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It remains to show that (51) holds iff Σ given in (47) is impedance passive. For

systems (47), we always have A∗A− 1 =
[

0 0
0 A∗

1A1−1

]
and

C0 = B∗0 ⇐⇒ C10 = −B∗01 ⇐⇒ B∗1A−C1 =
[

0 B∗11A1 −C11

]
.

Thus, everything in (29) that is connected to X0 is trivial, i.e., (29) reduces to (51), iff

C0 = B∗0 , or equivalently, C10 = −B∗01. If Σ is impedance passive, then C10 = −B∗01,

by Lemma 3.4. Conversely, if Σ is impedance passive, then C0 = B∗0 , by Theorem

3.3.

Replacing inequality by equality above the conservative case is proved. We have

now proved that Σ is of the same energy type as Σ. If, Σ (or equivalently Σ) is

impedance passive, then A1 + A∗1 ≤ 0, and by Corollary 4.2, C+ ⊂ ρ(A1). �

Remark 5.3 Note that the expression (41) coincides with the input equation of

the internal Cayley transform Σ of Σ, given in (49), for real α ∈ ρ(A). Therefore,

the parameter α in the general transformation introduced in Definition 5.1 can be

thought of as the inverse step length in the discrete approximation, as explained in

the motivation.

We proceed by studying how the internal Cayley transformation affects the trans-

fer function. According to Corollary 4.2, the bilinear transformation

s → z(s) =
α + s

α− s
,

(
with inverse s(z) =

αz − α

z + 1

)
(52)

maps the open complex right half plane C+ one-to-one onto the external of the

complex unit disk D+, while mapping the imaginary axis iR bijectively onto the

unit circle D. The proof of the following theorem furthermore requires the resolvent

identity :

∀s1, s2 ∈ ρ(A) : (s1 −A)−1 − (s2 −A)−1 = (s2 − s1)(s1 −A)−1(s2 −A)−1. (53)

Theorem 5.4 Let Σ be given by (44), let Σ be given by (47) and let the variables

s(6= α) and z(6= −1) be related as in (52). Denote the transfer functions of Σ and Σ

by D̂ and D̂, respectively. Then z ∈ ρ(A) \ {−1} ⇐⇒ s ∈ ρ(A1) \ {α} and

∀s ∈ ρ(A1) : D̂(s) = D̂
(
z(s)

)
= D̂

(
α + s

α− s

)
.

Proof: We see that, for s 6= α and z 6= −1, we have

z −A =
2Re α

α− s

[
1 0

0 (s−A1)(α −A1)
−1

]
.

As 2Re α > 0, it follows that s ∈ ρ(A1) \ {α} if and only if z ∈ ρ(A) \ {−1}. Then
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the nontrivial parts of D̂ and D̂ satisfy

D̂1

(
z(s)

)
=

α− s

2Re α

[
−
√

2Re α C0

√
2Re α C1(α−A1)

−1
]

×
[

1 0

0 (α−A1)(s −A1)
−1

] [ √
2Re α B0√

2Re α (α −A1)
−1B1

]
+ D̂(α)

= sC0B0 + C1(α− s)(s−A1)
−1(α−A1)

−1B1

+C1(α−A1)
−1B1 + D1 = D̂1(s).

The last equality follows from the resolvent identity (53).

The transfer function D̂ is analytic at α ∈ ρ(A1) and so it follows that D̂(α) =

lims→α D̂(s) = limz→∞ D̂(z) = D. �

Example 5.5 The internal Cayley transform with parameter α of the PID controller

in Example 3.8 is the discrete-time system on X0 ⊕X1 ⊕ U , whose system matrix is

given by

Σ =




−1 0
√

2Re αKD

0 α/α
√

2Re αKI/α

−
√

2Re α K∗D
√

2Re α K∗I /α αK∗DKD + K∗I KI/α + KP


 .

The transfer function of Σ is

D̂(z) =
αz − α

1 + z
K∗DKD +

1 + z

αz − α
K∗I KI + KP ,

agreeing with Theorem 5.4.

We now show that the internal Cayley transformation is surjective by computing

the inverse Cayley transform explicitely for an arbitrary discrete-time impedance-

passive system.

Consider the general impedance-passive discrete-time system (48). Split the state

space into X = N (1 + A)⊕N (1 + A)⊥. Then A splits as

A =

[
−1 0

0 A1

]
, with − 1 ∈ ρ(A1), (54)

according to Lemma 3.5. Straightforward computations in the fashion of the forward

transformation now results in the following theorem.

Theorem 5.6 The inverse internal Cayley transform of the discrete-time impedance-

passive system Σ:




x0(n + 1)

x1(n + 1)

y1(n)

u0(n)


 =




−1 0 B0 0

0 A1 B1 0

C0 C1 D1 0

0 0 0 0







x0(n)

x1(n)

u1(n)

y0(n)


 , −1 ∈ ρ(A1),
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is the continuous-time impedance-passive system Σ :




x0(t)

ẋ1(t)

y1(t)

u0(t)


 = W−1

α (P1 + P2Σ)(Q1 + Q2Σ)−1Wα




ẋ0(t)

x1(t)

u1(t)

y0(t)


 ,

where P1 = diag(1,−α, 0, 0), P2 = diag(1, α, 1, 1), Q1 = diag(−α, 1, 1, 1) and Q2 =

diag(α, 1, 0, 0).

The explicit expression of the system matrix Σ is

Σ =




0 0 B0/
√

2Reα 0

0 (αA1 − α)(1 + A1)
−1

√
2Re α (1 + A1)

−1B1 0

−C0/
√

2Re α
√

2Re αC1(1 + A1)
−1 D1 0

0 0 0 0


 , (55)

where D1 = αC0B0/(2Re α)−C1(1 + A1)
−1B1 + D. In particular α ∈ ρ(A1).

Note that 1 + A1 is invertible by the splitting (54) of A and thus the inverse

internal Cayley transformation with parameter α ∈ C+ is always well-defined. If

1 + A is originally invertible, no splitting of the state space X is required and the

standard formulas are recovered from (55):

Σ =

[
(αA− α)(1 + A)−1

√
2Re α (1 + A)−1B√

2Re αC(1 + A)−1 D−C(1 + A)−1B

]
.

Remark 5.7 The standard inverse internal Cayley transformation that is given in

[St1], assumes that 1 + A is invertible. We replaced this assumption by the weaker

assumption that both N (1 + A) and N (1 + A)⊥ are invariant under A, which we

showed always to be the case for discrete-time impedance-passive systems.

Moreover, by computing both the forward and inverse internal Cayley trans-

forms explicitely, utilising only the impedance-passivity assumption, we showed that

there is a one-to-one relationship between our classes of continuous- and discrete-time

impedance-passive systems.

5.3 The Scattering-Passive Case

The results of section 5.2 apply also to the scattering case after suitable reformula-

tions. We briefly present the results for the scattering case. The proof techniques are

the same as in the impedance-passive case.

If we start from a scattering-passive continuous-time system Σ×:




x0(t)

ẋ1(t)

y(t)


 =




0 0 0

0 A×1 B×1
0 C×1 D×







ẋ0(t)

x1(t)

u(t)


 (56)
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and perform an internal Cayley transformation, by making the change (42) of signals,

the result is obtained as a special case of (47):




x×0 (n + 1)

x×1 (n + 1)

y×(n)


 = Σ×




x×0 (n)

x×1 (n)

u×(n)


 , (57)

where

Σ× =



−1 0 0

0 (α + A×1 )(α−A×1 )−1
√

2Re α (α−A×1 )−1B×1
0
√

2Re α C×1 (α−A×1 )−1 C×1 (α−A×1 )−1B×1 + D×


 .

The transform (57) is also scattering passive, by an argument analogous to the

impedance case. The transfer function is given by D̂
×(z) = D̂

×(s(z)
)

= D̂
×
(

αz−α
z+1

)

for every z ∈ ρ(A).

For the inverse internal Cayley transformation, consider a general discrete-time

scattering-passive system Σ×:

[
x×(n + 1)

y×(n)

]
=

[
A× B×

C× D×

] [
x×(n)

u×(n)

]
(58)

and again split X into X0 ⊕X⊥0 , where X0 = N (1 + A×) to obtain

Σ× =



−1 0 B×0
0 A×1 B×1

C×0 C×1 D×


 .

Since Σ× is a contraction in the discrete-time scattering case, we necessarily have

C×0 = 0 and B×0 = 0, by Lemma 3.5. The inverse internal Cayley transform of (58)

is then given by




x0(t)

ẋ1(t)

y(t)


 =




0 0 0

0 (αA×1 − α)(1 + A×1 )−1
√

2Re α (1 + A×1 )−1B×1
0
√

2Re αC×1 (1 + A×1 )−1 D× −C×1 (1 + A×1 )−1B×1







ẋ0(t)

x1(t)

y(t)


 ,

(59)

as a special case of (55).

Again we remark that the internal Cayley transformation maps the class of

continuous-time scattering-passive systems bijectively onto the class of discrete-time

scattering-passive systems. From the computations above it is quite obvious that the

class of systems (24) is the simplest extension of the class of standard systems, which

makes the internal Cayley transformation bijective in the scattering case. We illus-

trate the theoretical bijectivity result with a corollary on partial frequency inversion.

Definition 5.8 Consider the continuous-time extended system Σ, in which we have
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pre-split both the forward and the inverse internal channels of the state space:




x0(t)

x1(t)

ẋ2(t)

ẋ3(t)

y1(t)

u0(t)




=




0 0 0 0 B0 0

0 0 0 0 B1 0

0 0 A22 A23 B2 0

0 0 A32 A33 B3 0

C0 C1 C2 C3 D1 0

0 0 0 0 0 0







ẋ0(t)

ẋ1(t)

x2(t)

x3(t)

u1(t)

y0(t)




.

The partial frequency inverse Σf of Σ is the system that we obtain by swapping

x1 ↔ ẋ1 and x2 ↔ ẋ2, whenever this makes sense.

Let xi, ẋi ∈ Xi. If dim X0 = dim X3 = 0, then we call Σf the (full) frequency

inverse of Σ.

The name frequency inversion is justified in the following way. The transfer

function of a continuous-time standard system Σ is D̂(s) = C(s−A)−1B+D, whereas

the transfer function of the full frequency inverse Σf is D̂f (s) = C(1/s−A)−1B +D.

It is well-known that the transfer function D̂(s) evaluated at s = if ∈ iR gives the

amplification of the system Σ when we input a periodic signal with frequency f .

Then changing from s to 1/s means that we change from frequency f to frequency

−1/f .

Corollary 5.9 For any continuous-time (impedance- or scattering-) passive system,

the (partial) frequency inverse is well-defined, and it is of the same form as the

original system.

Proof: For ease of reading we give the proof only in the case of full frequency in-

version. The proof can be extended to the more general case of partial frequency

inversion in a straightforward manner.

Consider the internal Cayley transform Σ with parameter α = 1 of the continuous-

time (scattering or impedance) system Σ. Frequency inversion means exchanging[ x1

ẋ2

]
and

[
ẋ1
x2

]
, or equivalently, x and ẋ. Studying (43):

√
2x(n + 1) = x(t) + ẋ(t),

√
2x(n) = x(t)− ẋ(t),

we see that frequency inversion corresponds to swapping x(n)↔ −x(n) in the internal

Cayley transform Σ:




x1(n + 1)

x2(n + 1)

y1(n)

u0(n)


 =




−1 0 B1 0

0 A2 B2 0

C1 C2 D1 0

0 0 0 0







−x1(n)

−x2(n)

u1(n)

y0(n)




=




1 0 B1 0

0 −A2 B2 0

−C1 −C2 D1 0

0 0 0 0







x1(n)

x2(n)

u1(n)

y0(n)


 .
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We conclude that the internal Cayley transform Σf of Σf is of the same form as the

internal Cayley transform Σ of Σ (with no X0 forming an inverted internal channel

on the continuous-time side), except that 1+(A2)f = 1−A2 might not be invertible.

After splitting off X0 := N (1−A2) from X2 as in (54), we have put Σf in the form

of Σ.

Thus the frequency-inverted system Σf can be written as the inverse internal Cay-

ley transform of the system Σ(−A,B,−C,D) with parameter 1, which, by Theorem

5.6, is of the same form as Σ.

Moreover, (impedance- or scattering-) passivity is invariant under frequency in-

version, as is seen from the frequency-inversion invariant expression (30) in the proof

of Theorem 3.3. �

We remark that Corollary 5.9 does not state that the splittings of X into an

inverted and a forward internal channel (on the continuous-time side) are the same

for the original system and the frequency-inverted system. To see that this claim is

false, note that in the original system X0 = N (1 + A), whereas for the frequency-

inverted system, X0 = N (1−A).

6 The External Cayley Transformation

The purpose of the external Cayley transform is transforming an impedance-passive

(continuous- or discrete-time) system into a (continuous- or discrete-time) scattering-

passive system. We treat both the continuous-time and the discrete-time case. The

transformation is referred to as the ”diagonal transformation” in [St1], to which the

reader is referred for more details on the standard case. A similar idea is utilised in

the input/output setting in [B, pp. 162–165].

The external Cayley transformation is illustrated in Figure 2, where one can also

note that the transformation essentially is a feedback connection. The transforma-

tion maps positive-real transfer functions into bounded-real transfer functions, as is

explained in Theorem 6.3.

In the present work, we generalise the external Cayley transformation to extended

i/s/o systems as well as show that the transformation is bijective in our setting. We

proceed in the same manner as with the internal Cayley transformation, i.e., by giving

an abstract definition of the external Cayley transform.

Definition 6.1 The external Cayley transform with parameter β ∈ C+ of a system

Σ with input u, state x and output y is the (well-defined) system Σ×, whose input

and output signals are given by

u× =
1√

2Re β
(βu + y) and y× =

1√
2Re β

(βu− y), respectively. (60)

It is easy to see that (60) can be written as

u =
1√

2Re β
(u× + y×) and y =

1√
2Re β

(βu× − βy×). (61)
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1 2
y x

ux 

Σx 

2
u

+
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+
− −Σ

Figure 2: A schematic of the external Cayley transformation in the case β = 1. Note

that the output −y of Σ is fed back into the input of Σ.

From (61) it follows that 2Re 〈u, y〉 = ‖u×‖2−‖y×‖2, which illustrates the idea of

the external Cayley transform, i.e., that it often maps an impedance-passive/conser-

vative (continuous- or discrete-time) system into a scattering-passive/conservative

system. In the next section, we compute the external Cayley transform of continuous

impedance-passive systems.

6.1 The Continuous-Time Case

By theorem 3.3, the general form of a continuous-time impedance-passive system is

Σ: 


x0

ẋ1

y1

u0


 =




0 0 B0 0

0 A1 B1 0

B∗0 C1 D1 0

0 0 0 0







ẋ0

x1

u1

y0


 .

If B0 = 0, then Σ has only trivial inverted channels. This case is easily handled and

quite uninteresting. If B0 6= 0, then split X0 into
(
R(B0)

)⊥ ⊕ R(B0) and U1 into

N (B0)⊕
(
N (B0)

)⊥
. Then B0 =

[
0 0
0 B11

]
, where B11 is a square and invertible matrix.

(The surjectivity of B11 is obtained from the splitting of X0 and the injectivity is

obtained from the splitting of U1.) The corresponding splitting of the full system is

(after a renumbering of the signals):




x0

x1

ẋ2

y2

y1

u0




=




0 0 0 0 0 0

0 0 0 0 B11 0

0 0 A22 B22 B21 0

0 0 C22 D22 D21 0

0 B∗11 C12 D12 D11 0

0 0 0 0 0 0







ẋ0

ẋ1

x2

u2

u1

y0




, B11 invertible. (62)

We have renumbered the subspaces of X and U , so that xi ∈ Xi and ui, yi ∈ Ui. In

particular, x0(t), ẋ0(t) = 0 for all t. In the remainder of the paper we throughout

denote Wβ = diag(1, 1, 1,
√

2Re β ,
√

2Re β ,
√

2Re β ) ∈ L(X0⊕X1⊕X2⊕U2⊕U1⊕U0).

Trivially Wβ is invertible.
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We note that β + D22 is invertible for all β ∈ C+, following from D22 + D∗22 ≥ 0.

Then we substitute (61) into (62), which yields that

Wβ




x0

ẋ1

ẋ2

y×2
y×1
y×0




=




0 0 0 0 0 0

0 I 0 0 0 0

0 0 A22 B22 B21 0

0 0 −C22 β −D22 −D21 0

0 −B∗11 −C12 −D12 β −D11 0

0 0 0 0 0 β







ẋ0

ẋ1

x2

u2

u1

y0




(63)

and

Wβ




ẋ0

x1

x2

u×2
u×1
u×0




=




1 0 0 0 0 0

0 0 0 0 B11 0

0 0 1 0 0 0

0 0 C22 β + D22 D21 0

0 B∗11 C12 D12 β + D11 0

0 0 0 0 0 1







ẋ0

ẋ1

x2

u2

u1

y0




. (64)

We denote the block matrix on the right-hand sides of (63) and (64) by P× and Q×,

respectively.

From the invertibility of B11 and β + D22, we see that Q× is a full-rank (square)

matrix. The explicit expression for the inverse is manageable, but not very nice, and

therefore we do not give give it. We have the following theorem.

Theorem 6.2 The external Cayley transform with parameter β ∈ C+, of the impe-

dance-passive continuous-time system Σ in (62), is the scattering passive continuous-

time system Σ×:




x0(t)

ẋ1(t)

ẋ2(t)

y×2 (t)

y×1 (t)

y×0 (t)




= W−1
β (P×1 + P×2 Σ)(Q×1 + Q×2 Σ)−1Wβ




ẋ0(t)

x1(t)

x2(t)

u×2 (t)

u×1 (t)

u×0 (t)




, (65)

with parameter matrices P×1 = diag(0, 1, 0, β, β,−1), P×2 = diag(1, 0, 1,−1,−1, β),

Q×1 = diag(1, 0, 1, β, β, 1) and Q×2 = diag(0, 1, 0, 1, 1, β).

The external Cayley transform Σ× can be written in the form




x0(t)

ẋ1(t)

ẋ2(t)

y×2 (t)

y×1 (t)

y×0 (t)




=




0 0 0 0 0 0

0 A×11 A×12 B×12 B×11 0

0 A×21 A×22 B×22 0 0

0 C×21 C×22 D×22 0 0

0 (B×11)
∗ 0 0 −1 0

0 0 0 0 0 −1







ẋ0(t)

x1(t)

x2(t)

u×2 (t)

u×1 (t)

u×0 (t)




. (66)

Denoting B−∗11 = (B−1
11 )∗, we have B×11 =

√
2Re β B−∗11 and so B×11 is invertible. Fur-

thermore, the central 2× 2 blocks of (66) are the same as with the standard forward
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transform:
[

A×22 B×22
C×22 D×22

]
=

[
A22 −B22(β + D22)

−1C22
√

2Reβ B22(β + D22)
−1

−√2Re β (β + D22)
−1C22 (β −D22)(β + D22)

−1

]
. (67)

In particular, D×22 = (β −D22)(β + D22)
−1, and thus 1 + D×22 is also invertible. The

remaining five blocks of (66) describe how the standard and extended parts connect.

The transform Σ× is scattering conservative if and only if the original system Σ

is impedance conservative.

We remark that in Theorem 6.2, the first and last diagonal elements of P×2 and

Q×2 are arbitrary. We make this particular choice only in order to illustrate a certain

symmetry between the parameter matrices.

Proof of Theorem 6.2:

Most of the claims have already been dealt with. The correctness of the parameter

matrices is easily verified. We omit the straightforward, but lenghty, proof of the

form of the blocks in (66). After proving the passivity claims we are done.

Let (u×, x, y×) be a trajectory of the transform Σ×. Define u and y by (61).

Then, by definition of the external Cayley transformation, (u, x, y) is a trajectory of

the original system Σ. Moreover, for all t ≥ 0 we have 2Re 〈u(t), y(t)〉 = ‖u×(t)‖2 −
‖y×(t)‖2. Since Σ is forward impedance passive, for all t ≥ 0 we have

‖x(t)‖2 − ‖x(0)‖2 ≤ 2Re

∫ t

0
〈u(s), y(s)〉ds =

∫ t

0
‖u×(s)‖2 − ‖y×(s)‖2 ds,

i.e., Σ× is forward scattering passive. By item 2 of Theorem 3.3, the system (66)

is forward scattering passive iff it is scattering passive, because in (66), the blocks

corresponding to B0 and C0 are both zero.

The conservative case is now trivial and the converse direction is analogous. �

Theorem 6.3 Let Σ be impedance passive and denote by p×i and q×i the 3×3 bottom-

right corner blocks of P×i and Q×i , respectively, i.e., p×1 = diag(β, β,−1), p×2 =

diag(−1,−1, β), q×1 = diag(β, β, 1) and q×2 = diag(1, 1, β).

If D̂ is the positive-real transfer function of the system (62), then the transfer

function D̂
× of (65) is given by

∀s ∈ D̂
× : D̂

×(s) =
(
p×1 + p×2 D̂(s)

)(
q×1 + q×2 D̂(s)

)−1
, (68)

where ρ(A22) ∩ C+ ⊂ dom (D̂×) =
{

s ∈ ρ(A22) :
(
q×1 + q×2 D̂(s)

)
is invertible

}
.

Moreover, D̂
× is contractive on C+ ∩ dom (D̂×). If Σ is impedance conservative,

then D̂
× is unitary on the imaginary axis.

Proof: In analogy to the derivation of the transform of the system, for the transfer

function we obtain

√
2Re β




ŷ2

ŷ1

ŷ0


 =

(
p×1 + p×2 D̂

)



û2

û1

ŷ0


 ,

√
2Re β




û2

û1

û0


 =

(
q×1 + q×2 D̂

)



û2

û1

ŷ0


 .
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We thus have (68) for any s ∈ dom (D̂×).

Theorem 5.4 says that D̂ is positive real on C+. Moreover, q×2 is invertible and

(q×2 )−1q×1 + (q×1 )∗(q×2 )−∗ = (2Re β) diag(1, 1, 1/|β|2) > 0, so q×1 + q×2 D̂ is invertible,

by Lemma 4.1. Therefore q×1 + q×2 D̂(s) is invertible for any s ∈ ρ(A22) ∩ C+.

Moreover, (q×1 )∗q×1 = (p×1 )∗p×1 , (q×2 )∗q×2 = (p×2 )∗p×2 and (q×1 )∗q×2 − (p×1 )∗p×2 =

(2Re β)IU , with 2Re β ∈ R+, i.e., positive realness (skew-adjointness) of D̂ is equiv-

alent to contractivity (unitarity) of D̂
×, by Lemma 4.1. �

We now show how the external Cayley transformation is inverted. Starting from

the arbitrary scattering passive system




x0(t)

ẋ1(t)

y×(t)


 =




0 0 0

0 A×1 B×1
0 C×1 D×







ẋ0(t)

x1(t)

u×(t)


 , (69)

split U = N (1 + D×)⊥ ⊕N (1 + D×), in order to write the contractive feed-through

operator in the form D× = diag(D×11,−1), according to Lemma 3.5. Let the corre-

sponding splittings of B×1 and C×1 be B×1 =
[

B×11 B×10

]
and C×1 =

[
C×

11

C×
01

]
, respec-

tively.

Taking λ = −1 in Corollary 3.6, we conclude that C×01=(B×10)
∗. Further split X1

into R(B×10)⊕R(B×10)
⊥ and N (1+D×) into N (B×10)

⊥⊕N (B×10). After a renumbering

of signals and spaces, Σ× is in the form (66), where (the renumbered blocks) B×11 and

1 + D×22 are square and invertible.

By combining (66) with (61), one can derive the inverse external Cayley trans-

form utilising the same type of calculations as we have done with the preceding

transformations. We arrive at the following theorem, which we give without a full

proof.

Theorem 6.4 Consider the system matrix Σ× of (66). Let P1 = diag(0, 1, 0, β, β, 1),

P2 = diag(1, 0, 1,−β,−β, 1), Q1 = diag(1, 0, 1, 1, 1, β), Q2 = diag(0, 1, 0, 1, 1,−β).

Then Q1 + Q2Σ
× is invertible for every β ∈ C+ and the inverse external Cay-

ley transform with parameter β of Σ× is given by Σ = W−1
β (P1 + P2Σ

×)(Q1 +

Q2Σ
×)−1Wβ. The obtained inverse transform is of the form (62), where in par-

ticular D22 = (β − βD×22)(1 + D×22)
−1 and B11 = (B×11)

−∗/
√

2Reβ , i.e., β + D22 and

B11 are invertible.

If Σ× is (scattering) conservative, then Σ is (impedance) conservative.

Denote the transfer function of Σ× by D̂
× and let p1 = diag(β, β, 1), p2 =

diag(−β,−β, 1), q1 = diag(1, 1, β) and q2 = diag(1, 1,−β). Then the transfer func-

tion D̂ of Σ is

∀s ∈ ρ(A×) : D̂(s) =
(
p1 + p2D̂(s)×

)(
q1 + q2D̂(s)×

)−1
.

If 1 ∈ ρ(−D), e.g. if Σ× is the external Cayley transform of a standard system
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Σ, then no splitting is required and the standard case is recovered as

Σ = W−1
β

[
A× B×

−βC× β − βD×

][
1 0

C× 1 + D×

]−1

Wβ

=

[
A× −B×(1 + D×)−1C×

√
2Re β B×(1 + D×)−1

−√2Re β (1 + D×)−1C× (β − βD×)(1 + D×)−1

]
.

(70)

We remark that the external Cayley transformation maps our class of continous-

time extended impedance-passive systems bijectively onto the class of continuous-

time extended scattering-passive systems.

6.2 The Discrete-Time Case

We now briefly investigate the discrete-time impedance-passive system




x(n + 1)

y1(n)

u0(n)


 =




A B1 0

C1 D1 0

0 0 0







x(n)

u1(n)

y0(n)


 ,

where, by Theorem 3.3, necessarily D1 + D∗1 ≥ B∗1B1 ≥ 0, and therefore β + D1 is

invertible for every β ∈ C+, by Corollary 4.2. In the discrete-time case, the weight

matrix Wβ is Wβ = diag(1,
√

2Re β ,
√

2Re β ).

The computations leading up to Theorem 6.2 can equally well be performed for

discrete-time systems and we deduce that the external Cayley transform of Σ is given

by

[
x(n+1)

y
×
1

(n)

y
×
0

(n)

]
= Σ×

[
x(n)

u
×
1

(n)

u
×
0

(n)

]
, where

Σ× = W−1
β (P×1 + P×2 Σ

)
(Q×1 + Q×2 Σ

)−1
Wβ

=




A−B1(β + D1)
−1C1

√
2Re β B1(β + D1)

−1 0

−√2Re β (β + D1)
−1C1 (β −D1)(β + D1)

−1 0

0 0 −1


 ,

with 1 + (β − D1)(β + D1)
−1 invertible. In this case the parameter matrices are

P×1 = diag(0, β,−1), P×2 = diag(1,−1, β), Q×1 = diag(1, β, 1) and Q×2 = diag(0, 1, β).

If Σ is impedance passive (conservative) then Σ× is scattering passive (conservative).

If the transfer function of Σ is D̂(z) =
[

bD1(z) 0
0 0

]
, then the transfer function of Σ× is

D̂
×(z) =

[
(β−bD1(z))(β+bD1(z))−1 0

0 −1

]
. Moreover, D̂ is positive-real and D̂

× is contractive

on D+. If, in addition, the systems are conservative, then D̂ is skew-adjoint and D̂
×

unitary on the complex unit circle D.

In inverting the transformation we start from a standard discrete-time scattering-

passive system Σ×:

[
x(n + 1)

y×(n)

]
=

[
A× B×

C× D×

][
x(n)

u×(n)

]
.
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Here Σ× is a contraction and, by factoring out a maximal eigenvalue −1 of D×, we

bring Σ× to the form



x(n + 1)

y×1 (n)

y×0 (n)


 =




A× B×1 0

C×1 D×1 0

0 0 −1







x(n)

u×1 (n)

u×0 (n)


 , −1 ∈ ρ(D×1 ).

In analogy to Theorem 6.4, the inverse external Cayley transform of Σ× is the

impedance-passive discrete-time system

[
x(n+1)
y1(n)
u0(n)

]
= Σ

[
x(n)
u1(n)
y0(n)

]
, whose system ma-

trix is

Σ =




A× −B×1 (1 + D×1 )−1C×1
√

2Reβ B×1 (1 + D×1 ) 0

−√2Re β (1 + D×1 )−1C×1 (β − βD×1 )(1 + D×1 )−1 0

0 0 0


 .

In this case we have P1 = diag(0, β, 1), P2 = diag(1,−β, 1), Q1 = diag(1, 1, β) and

Q2 = diag(0, 1,−β). The inverse transform Σ is impedance conservative if Σ× is

scattering conservative.

Letting D̂
×(z) =

[
bD
×
1

(z) 0
0 −1

]
be the transfer function of Σ×, we obtain that D̂(z) =

[
(β−βbD

×
1

(z))(1+bD
×
1

(z))−1 0
0 0

]
is the transfer function of Σ.

Remark 6.5 Also here the external Cayley transformation is bijective. Thereby the

proof of Theorem 3.7 is complete, since we now know that any scattering-passive

system is the external Cayley transform of some impedance-passive system.

In fact, we extended the class of discrete-time standard systems in the simplest

possible way that makes the discrete-time external Cayley transform bijective. More-

over, (44) is the simplest extension of the class of continuous-time impedance-passive

systems that makes all Cayley transformations bijective. This is a very nice result,

taking into account that we originally introduced the system (44) for its realisation

capabilities.

We illustrate the bijectivity result with a corollary on (partial) flow inversion.

Definition 6.6 Consider the extended (continuous- or discrete-time) system Σ, in

which we have pre-split the forward and inverse external channels:




x0

ẋ1

y3

y2

u1

u0




=




0 0 B03 B02 0 0

0 A1 B13 B12 0 0

C30 C31 D33 D32 0 0

C20 C21 D23 D22 0 0

0 0 0 0 0 0

0 0 0 0 0 0







ẋ0

x1

u3

u2

y1

y0




.

Let ui, yi ∈ Ui. The partial flow inverse Σ← of Σ is the system that we obtain by

interpreting y1, u2 as outputs and y1, u2 as inputs, i.e. by reversing the direction of

the flow through Σ on U1 and U2, whenever this makes sense.

If dim U0 = dimU3 = 0, then we call Σ← the (full) flow inverse of Σ.
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The following corollary is a dual result of Corollary 5.9.

Corollary 6.7 Any partial flow inverse of an extended impedance-passive (continu-

ous- or discrete-time) system is well defined, and the (partial) flow inverse is of the

same kind as the original system.

The particularly interesting class of extended continuous-time impedance-passive

systems is invariant under both partial frequency inversion and partial flow inversion.

On this class of systems, both partial frequency inversion and flow inversion always

yield meaningful inverted systems.

Again we remark that the “canonical” splittings of the input/output space U , into

an inverted and a forward external channel, of the original system and the (partially)

flow-inverted system may differ.

We give the following example, which indicates that allowing an inverted internal

channel can be useful also when originally working with standard systems.

Example 6.8 One can easily show that a standard system

[
ẋ

y

]
=

[
A B

C D

][
x

u

]

can be flow inverted in the traditional sense, i.e., be written on the form

[
ẋ

u

]
=

[
A′ B′

C ′ D′

][
x

y

]
,

if and only if D is invertible. (The proof is a simpler analogue of this example.)

In this example we consider the standard-type impedance-passive system

[
ẋ

y

]
=

[
A B

C 0

][
x

u

]
, (71)

that is obviously not flow-invertible in the traditional sense. Lemma 3.4 applied

to the impedance-passivity condition
[

A B
−C 0

]
+
[

A B
−C 0

]∗ ≤ 0 implies that C = B∗.

Furthermore, for ease of formulation, we make the very non-restrictive assumption

that U has lowest possible dimension, i.e., that B is injective making C surjective.

We split X := X0 ⊕X1, where X0 = N (C) and X1 = X⊥0 . Then (71) becomes




ẋ0

ẋ1

y


 =




A00 A01 C∗0
A10 A11 0

C0 0 0







x0

x1

u


 , (72)

with C0 invertible. Noting that




x0

ẋ1

u


 =




I 0 0

A10 A11 0

0 0 I







x0

x1

u


 and




ẋ0

x1

y


 =




A00 A01 C∗0
0 I 0

C0 0 0







x0

x1

u


 ,
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we obtain


x0

ẋ1

u


 =




I 0 0

A10 A11 0

0 0 I







0 0 C−1
0

0 I 0

C−∗0 −C−∗0 A01 −C−∗0 A00C
−1
0







ẋ0

x1

y




=




0 0 C−1
0

0 A11 A10C
−1
0

C−∗0 −C−∗0 A01 −C−∗0 A00C
−1
0







ẋ0

x1

y


 ,

which is a well-defined impedance-passive extended continuous-time system.

7 Realisation of rational relations

In Section 2, we claimed that any positive-real right-coprime rational relation on

Ω = C+ ∪ {∞} over
[

U
U

]
can be realised by a continuous-time impedance-passive

extended system. We now conclude the paper by proving this claim.

Lemma 7.1 Let R be a right-coprime positive-real rational relation on Ω over
[

U
U

]
.

Then R has a unique right-coprime factorisation (P1, Q1), such that P1(s)+Q1(s) = 1

for all s ∈ Ω. Moreover, P1(s) and Q1(s) are contractions on U for all s ∈ Ω.

Proof: We start by proving existence of P1 and Q1. For any s ∈ Ω, P (s) + Q(s)

is injective, and thus invertible, which we now show. We have Re 〈y, u〉 ≥ 0 for all

[ y
u ] ∈ R(s) by positive-realness, and thus

∥∥(P (s) + Q(s)
)
v
∥∥2

= ‖P (s)v‖2 + 2Re 〈P (s)v,Q(s)v〉 + ‖Q(s)v‖2

≥ ‖P (s)v‖2 + ‖Q(s)v‖2 =

∥∥∥∥∥

[
P (s)

Q(s)

]
v

∥∥∥∥∥

2

.

The right-hand side is zero only if v ∈ N
([

P (s)
Q(s)

])
= {0}, by right coprimeness. We

have now established that the (square) matrix P (s) + Q(s) maps U one-to-one onto

itself for all s ∈ Ω. Thus, we have

R(s) =

[
P (s)

Q(s)

]
U =

[
P (s)

Q(s)

]
(
P (s) + Q(s)

)−1
U =

[
P1(s)

Q1(s)

]
U,

with P1(s) = P (s)
(
P (s) + Q(s)

)−1
and Q1(s) = Q(s)

(
P (s) + Q(s)

)−1
. Obviously,

P1(s) + Q1(s) = 1 for all s ∈ Ω.

Now over to uniqueness. Let both (P1, Q1) and (P ′1, Q
′
1) be right-coprime factori-

sations of R satisfying P1(s) + Q1(s) = 1 and P ′1(s) + Q′1(s) = 1 for all s ∈ Ω. Fix

s ∈ Ω and note that
[

P1(s)
Q1(s)

]
is injective by coprimeness, thus having a left inverse

Ts. One easily shows that Ps :=
[

P1(s)
Q1(s)

]
Ts is a projection onto R

([
P1(s)
Q1(s)

])
and,

moreover, that Ps acts as an identity on R
([

P1(s)
Q1(s)

])
= R(s) = R

([
P ′

1
(s)

Q′
1
(s)

])
. Then

[
P ′1(s)

Q′1(s)

]
= Ps

[
P ′1(s)

Q′1(s)

]
=

[
P1(s)

Q1(s)

]
Ts

[
P ′1(s)

Q′1(s)

]
=:

[
P1(s)

Q1(s)

]
Vs
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and, moreover,

1 = P ′1(s) + Q′1(s) = P1(s)Vs + Q1(s)Vs = Vs,

implying that Vs = 1, i.e. that P1 = P ′1 and Q1 = Q′1.

It still remains to show that P1(s) and Q1(s) are contractions. Due to positive

realness of R, we have Re 〈P1(s)v,Q1(s)v〉 ≥ 0, and therefore, that

‖v‖2 = 〈
(
P1(s) + Q1(s)

)
v,
(
P1(s) + Q1(s)

)
v〉

= ‖P1(s)v‖2 + 2Re 〈P1(s)v,Q1(s)v〉+ ‖Q1(s)v‖2

≥ ‖P1(s)v‖2 + ‖Q1(s)v‖2. �

Let Σ be a continuous-time impedance-passive extended i/s/o system with trans-

fer function D̂(s) =
[

bD1(s) 0
0 0

]
∈ L

([
U1

U0

])
, cf. (8). By Theorem 3.7, C+ ⊂ dom(D̂)

and we can define a (usually noncoprime) rational relation on C+ (not Ω) over
[

U
U

]

by

R+(s) =








y1

y0

u1

u0


 ∈




U1

U0

U1

U0


 |
[

y1

u0

]
= D̂(s)

[
u1

y0

]




, s ∈ C+. (73)

The final theorem of the paper characterises the class of relations that we can

realise by continuous-time impedance-passive extended systems.

Theorem 7.2 We have the following two results.

1. If Σ is a continuous-time impedance-passive extended i/s/o system with transfer

function D̂, then there exists a unique positive-real right-coprime rational rela-

tion R on Ω over
[

U
U

]
, such that R+, given in (73), is the restriction R+ = R|C+

of R to C+.

For s ∈ C+, define

P+(s) :=

[
D̂1(s)

(
1 + D̂1(s)

)−1
0

0 1

]
and

Q+(s) :=

[ (
1 + D̂1(s)

)−1
0

0 0

]
.

(74)

Then P+ and Q+ are contractions on C+. The unique right-coprime factorisa-

tion (P1, Q1) of R with P1(s)+Q1(s) = 1 is obtained by taking P1 := P+|Ω and

Q1 := Q+|Ω, i.e. by continuously extending P+ and Q+ to the imaginary axis

iR and the point ∞.

2. Conversely, if R is a right-coprime positive-real rational relation on Ω over[
U
U

]
, then there exists a subspace U1 ⊂ U , U0 = U⊥1 ∩ U and an extended

continuous-time impedance-passive system with transfer function D̂, such that

R+ = R|C+
.

Proof:
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1. Recalling that for s ∈ C+, 1 + D̂1(s) maps U1 one-to-one onto itself, when-

ever the system Σ it originates from is impedance passive (Theorem 3.7 and

Corollary 4.2), we can write (73) as (for s ∈ C+):

R+(s) =




D̂1(s) 0

0 1

1 0

0 0




[ (
1 + D̂1(s)

)−1
0

0 1

][
U1

U0

]
=

[
P+(s)

Q+(s)

] [
U1

U0

]
.

One very easily checks that P+(s) + Q+(s) = 1 for all s ∈ C+.

Necessarily R+(s) is positive real, because for any [ y
u ] ∈ R+(s) we have

Re

〈[
u1

u0

]
,

[
y1

y0

]〉
= Re

〈
u1, D̂1(s)u1

〉
≥ 0.

Contractivity of P+(s) and Q+(s) is proved very similarly to the proof of Lemma

7.1. The continuous extensions P1 and Q1 of P+ and Q+ to all of Ω are (con-

tractive and) unique, since C+ is dense in Ω.

Positive realness of R+ implies positive realness of R. Moreover, R is right co-

prime, because for any s0 ∈ Ω, we have P1(s0)+Q1(s0) = limC+∋s→s0

(
P+(s)+

Q+(s)
)

= 1, which in turn implies that P1(s)v = Q1(s)v = 0 only if v =

P1(s)v + Q1(s)v = 0.

2. Let R(s) be the right-coprime positive-real rational relation

R(s) = R
([

P1(s)

Q1(s)

])
, P1(s) + Q1(s) = 1, s ∈ Ω.

For all s ∈ Ω, perform an (invertible) external Cayley transformation of R(s)

with parameter β = 1, as defined in Definition 6.1:

R×(s) :=

{[
y×

u×

]
∈
[

U

U

]
| ∃
[

y

u

]
∈ R(s) : y× =

u− y√
2

, u× =
u + y√

2

}
.

We readily check that
[

y×

u×

]
∈ R(s)× if and only if there is some v ∈ U , such

that y× =
(
Q1(s) − P1(s)

)
v and u× =

(
Q1(s) + P1(s)

)
v = v. Thus, letting

D̂×(s) := Q1(s) − P1(s), it follows that
[

y×

u×

]
∈ R(s)× if and only if u× ∈ U

and y× = D̂×(s)u×.

Moreover, R being positive real implies that

‖u×‖2 − ‖D̂×(s)u×‖2 = ‖u×‖2 − ‖y×‖2 = 2Re 〈u, y〉 ≥ 0,

i.e., that D̂×(s) is a contraction (depending rationally on s ∈ Ω).

Let Σ× =
[

A× B×

C× D×

]
be a continuous-time scattering-passive realisation of D̂×.

(By combining Theorems 1.2 and 5.2 of [AS] one obtains that such a realisation,
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denoted by ΣQ in that paper, always exists. Existence of a finite-dimensional

realisation is guaranteed by the rationality of D̂×.)

By Remark 6.5, the inverse external Cayley transform Σ, with parameter β = 1,

of the scattering-passive system Σ× is well-defined. Futhermore, according to

(8), the positive-real transfer function of Σ is of the type D̂(s) =
[

bD1(s) 0
0 0

]
∈

L
([

U1

U0

])
, with C+ ⊂ dom (D̂1), for some U1, U0 = U⊥1 . This means that the

inputs and outputs of Σ are related by

[
ŷ1(s)

û0(s)

]
=

[
D̂1(s) 0

0 0

][
û1(s)

ŷ0(s)

]
, û1(s) ∈ U1, ŷ0(s) ∈ U0, s ∈ ρ

(
D̂1

)

in the frequency domain. (Possibly D̂1 has poles in iR ∪ {∞}.)
Due to the invertibility of the external Cayley transformation, we now in par-

ticular have that for s ∈ C+:




y1

y0

u1

u0


 ∈ R(s) ⇐⇒




y×1
y×0
u×1
u×0


 ∈ R×(s) ⇐⇒

[
y×1
y×0

]
= D̂×(s)

[
u×1
u×0

]

⇐⇒
[

y1

u0

]
=

[
D̂1(s) 0

0 0

][
u1

y0

]
,

implying that R|C+
= R+(s), as given by (73). �
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