
MULTIVARIATE SIGNAL PROCESSING

Multivariable signal of dimension M consists of M scalar

signals:

{x1(n), x2(n), . . . , xM(n), n = 0, 1, . . . , N}

Examples:

- biomedical signals (MEG using several sensors)

- geophysical signals (several sensors monitoring earthquakes)

- image can be considered as a multivariate signal along the

columns (rows)
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Problems:

- data compression, for example by using redundancies among

the individual signals xi

- source signal separation: to find the set of source signals

sj, when the measured signals xi are mixtures of unknown

source signals,

xi(n) = ai1s1(n)+ai2s2(n)+ · · ·+aiMS
sMS

, i = 1, 2, . . . , M
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Techniques:

Principal Component Analysis (PCA)

- Performs signal decorrelation (for data compression)

Independent Component Analysis (ICA)

- Performs signal separation into independent source signals
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PRINCIPAL COMPONENT ANALYSIS (PCA)

Define

wi(n) = xi(n)−mi, i = 1, 2, . . . , M

where mi is the mean value,

mi =
1
N

N−1∑
n=0

xi(n), i = 1, 2, . . . , M

Blind signal decorrelation: express signals wi in the form

wi(n) = ai1s1(n)+ai2s2(n)+· · ·+aiMS
sMS

(n), i = 1, 2, . . . , M

where the source signals sj are uncorrelated,

rjk =
1
N

N−1∑
n=0

sj(n)sk(n) = 0, j 6= k, j, k = 1, 2, . . . , MS
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If source signals sj are scaled so that

rjj =
1
N

N−1∑
n=0

sj(n)2 = 1, j = 1, 2, . . . , MS

we have

1
N

N−1∑
n=0

wi(n)2 =
N−1∑
n=0

(
ai1s1(n) + ai2s2(n) + · · ·+ aiMS

sMS
(n)

)2

= a2
i1 + a2

i12 + . . . + a2
i1MS
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Implication for data compression:

Approximating wi by the first r source signals,

w
(r)
i (n) = ai1s1(n)+ai2s2(n)+ · · ·+airsr(n), i = 1, 2, . . . , M

we have the error

wi(n)−w
(r)
i (n) = ai,r+1sr+1(n)+· · ·+airsMS

(n), i = 1, 2, . . . , M

and

1
N

N−1∑
n=0

(
wi(n)− w

(r)
i (n)

)2

=
N−1∑
n=0

(
ai1,r+1sr+1(n) + · · ·+ aiMS

sMS
(n)

)2

= a2
i,r+1 + . . . + a2

i1MS
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⇒
If ai,r+1, . . . , ai1MS

are small, the multivariable signal can be

approximated by

w
(r)
i (n) = ai1s1(n)+ai2s2(n)+ · · ·+airsr(n), i = 1, 2, . . . , M

If r << M , data compression is achieved
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Solution using matrix singular value decomposition

Define vectors

w(n) =




w1(n)
w2(n)

...

wM(n)


 , s(n) =




s1(n)
s2(n)

...

sMS
(n)




and matrix

A =




a11 · · · a1MS
... ...

aM1 · · · aMMS




we have

w(n) = As(n), n = 0, 1, . . . , N − 1
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In matrix form:

W = AS

where

W = [w(0) w(1) · · · w(N − 1) ]

S = [ s(0) s(1) · · · s(N − 1) ]

NOTE: the orthonormality property on sj,

rjk =
1
N

N−1∑
n=0

sj(n)sk(n) =
{

1 if j = k

0 if j 6= k

implies
1
N

SST = I
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This follows from

1
N

SST =
1
N

(
s(0)sT (0) + s(1)sT (1) + · · ·+ s(N − 1)sT (N − 1)

)

=
1
N

N−1∑
n=0




s1(n)
s2(n)

...
sMS

(n)


 [ s1(n) s2(n) · · · sMS

(n) ]

=




r11 r12 · · · r1MS
... ... ...

rM1 rM2 · · · rMMS



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From above we have that the signal decorrelation problem is

equivalent to matrix factorization problem:

Given signal matrix W, find a factorization

W = AS

such that
1
N

SST = I
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NOTE:

The signal decorrelation is not unique:

for any matrix Y such that YYT, we have

W = AYSY, with AY = AY−1,SY = YS

and
1
N

SY ST
Y =

1
N

YS(YS)T =
1
N

YSSTYT = I

⇒
If s(n) is a vector of uncorrelated source signals for w(n), then

sY (n) = Ys(n) is also a vector of uncorrelated source signals

for w(n).
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Optimal signal decorrelation

Optimal signal decomposition with respect to data compression

is achieved if the source signals can be selected so that the

approximation errors

N−1∑
n=0

M∑

i=1

(
w

(r)
i (n)− wi(n)

)2

where (cf. above)

w
(r)
i (n) = ai1s1(n)+ai2s2(n)+ · · ·+airsr(n), i = 1, 2, . . . , M

is minimal with respect to all possible source signals sj(n) and

weights aij, for all r.
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Introducing matrix notation, we have from

W = AS

that

w(n) = As(n)

Let A and s(n) be decomposed as

A = [Ar Ãr ]

and

s(n) =
[
sr(n)
s̃r(n)

]

where Ar consists of the first r columns of A, and sr(n)
contains the first r source signal vectors
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Then,

w(n) = As(n)

= [Ar Ãr ]
[
sr(n)
s̃r(n)

]

= Arsr(n) + Ãrs̃r(n)

= w(r)(n) + Ãrs̃r(n)

Hence

w(r)(n) = Arsr(n)

and the approximation error is

w(n)−w(r)(n) = Ãrs̃r(n)
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In matrix form

W = ArSr + ÃrS̃r

and

W −ArSr = ÃrS̃r

It is straightforward to show that the sum of squared

approximation errors,
(
wi(n)− w

(r)
i (n)

)2

is the sum of the

squares of the elements of the M -by-N matrix W −ArSr,

N−1∑
n=0

M∑

i=1

(
wi(n)− w

(r)
i (n)

)2

=
N∑

n=1

M∑

i=1

[W −ArSr]
2
in

=
N∑

n=1

M∑

i=1

[
ÃrS̃r

]2

in
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The optimal decorrelation problem is thus equivalent to finding

a factorization of the signal matrix,

W = AS, with
1
N

SST = I

such that for any decomposition

W = [Ar Ãr ]
[
Sr

S̃r

]
= ArSr + ÃrS̃r

where Ar consists of the first r columns of A, and Sr consists

of the first r rows S, the sum of the squares of the elements of

ÃrS̃r,
N∑

n=1

M∑

i=1

[
ÃrS̃r

]2

in

is smaller than for any other decomposition of the form

W = AS.
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SOLUTION:

Singular-value decomposition (SVD).
Consider a real n ×m matrix W. Let p = min(m,n). Then
there exist an m× p matrix V with orthonormal columns

V = [v1,v2, . . . ,vp], vT
i vi = 1, vT

i vj = 0 if i 6= j,

an n× p matrix U with orthonormal columns,

U = [u1,u2, . . . ,up], uT
i ui = 1, uT

i uj = 0 if i 6= j,

and a diagonal matrix Σ with non-negative diagonal elements,

Σ = diag(σ1, σ2, . . . , σp), σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0,

such that W can be written as

W = UΣVT
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The factorization W = UΣVT is called the singular-value
decomposition of W.

The nonnegative scalar σi are the singular values of W

The vector ui is the ith left singular vector of W.

The vector vj is the jth right singular vector of W.

Notice that orthonormality of ui and vj is equivalent to

VTV = I, UTU = I

Moreover, it follows that (see lecture notes for details)

N∑
n=1

M∑

i=1

[W]2in =
N∑

n=1

M∑

i=1

[
UΣVT

]2

in
=

p∑

i=1

σ2
i
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The singular value decomposition has precisely the property that

the solution of the optimal decorrelation problem is obtained

by taking

W = UΣVT = AS

with

A =
1
N

UΣ, S = NVT
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Decomposing the SVD as

W = UΣVT

= [Ur Ũr ]
[
Σr 0
0 Σ̃r

] [
VT

r

ṼT
r

]

= UrΣrVT
r + ŨrΣ̃rṼT

r

the optimal approximation consisting of r source signals is then

Wr = UrΣrVT
r = ArSr

with

Ar =
1
N

UrΣr, Sr = NVT
r
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From above we have that sum of squares of the approximation

error is

N∑
n=1

M∑

i=1

[W −Wr]
2
in =

N∑
n=1

M∑

i=1

[
ŨΣ̃Ṽ

T
]2

in

=
p∑

i=r+1

σ2
i

Hence the sum of squares of the singular values associated with

the discarded singular vectors gives directly the sum of squares

of the approximation error.
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Matlab computations:

Given the signal matrix W, the representation W = AS in

terms of the source signal matrix S associated with optimal

signal decorrelation, and the reduced signal matrix Wr based

on the first r source signals can be determined as follows:

[U,Sigma,V]=svd(W)
A=U*Sigma/N, S=N*V’
Wr=U(:,1:r)*Sigma(1:r,1:r)*V(:,1:r)’
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Principal components

The singular value decomposition gives

W = UΣVT

= [u1 u2 . . . up ]




σ1 0 0 · · · 0
0 σ2 0 · · · 0
... ... ... · · · ...

0 0 0 · · · 0
0 0 0 · · · σp







vT
1

vT
2
...

vT
p




= u1σ1vT
1 + u2σ2vT

2 + · · ·+ upσpvT
p

As W = [w(1) w(2) . . . w(N) ] it follows that

w(n) = u1σ1v1(n) + u2σ2v2(n) + · · ·+ upσpvp(n)

where vi(n), i = 1, 2, . . . , p is the nth element of the right

singular vector vi
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⇒
The vector-valued signal w(n) can be represented as a linear

combination of the p vectors uiσi, i = 1, . . . , p. These are

called principal components.

In particular, the solution of the optimal approximation problem

discussed above is equivalent to representing the signal with its

first r principal components.
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Example – Image compression

One application of PCA is in image compression. The idea is

to represent the array X(i, j) associated with an image as a

data matrix W, and compression is achieved by approximating

W with its dominating principal components. The matrix W
can be constructed in various ways, for example by:

- letting W consist of the columns (or rows) of the array

X(i, j) (after subtraction by mean values)

- letting the columns of W consist of the elements of sub-blocks

of X(i, j) obtained by stacking the sub-block columns (rows)

after each other (using 8 by 8 sub-blocks, W will have 64

rows).
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Example – Eigenfaces

An image consists of an Nrow-by-Ncol dimensional array which

can be represented as an NrowNcol-dimensional vector w by

stacking the rows (or columns) after each other.

A sequence of images w(0),w(1), . . . ,w(N − 1) can be

considered as vector-valued signal sequence, and which can

be approximated by its principal components.

This is the idea of eigenfaces, where principal component

representations are used to

- compress, and

- recognize

images of human faces.
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INDEPENDENT COMPONENT ANALYSIS (ICA)

Objective:

Given a vector-valued signal sequence {w(n)}N−1
n=0 , find a

decomposition in terms of source signals

w(n) = As(n)

such that the source signals si, sj, all i 6= j are independent.
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SOLUTION:

The problem can be defined quantitatively in a statistical

framework:

Two random variables y1 and y2 are independent if knowledge

of the value of y1 does not give any information about the

value of y2 and vice versa.

Joint probability density function p(y1, y2) of two independent

random variables can be factored as

p(y1, y2) = p(y1)p(y2)
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Remark:
If y1 and y2 are uncorrelated,

E[y1y2] = 0

that does not imply that they are independent (cf. Example

5.4).

Uncorrelated source signals can be found using PCA.

Exception:

Normally distributed (gaussian) variables are independent if and

only if they are uncorrelated (remark 5.3).

As decorrelation is not unique, it follows that normally

distributed signals cannot be uniquely separated into

independent components.
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Measure of information, entropy, mutual information

Information associated with an event with prior probability p:

I = log2(1/p) = − log2 p

For p = 1/2: I = − log2(1/2) = 1 bit of information.

Entropy H(Y ) of a random variable Y is the expected

information obtained when making an observation of the

random variable:

H(Y ) = E[− log2(Y )]

Among all random variables with the same variance, a normally distributed

(gaussian) variable has the largest entropy.
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Mutual information between random variables yi, i =
1, 2, . . . , M :

I(y1, y2, . . . , yM) =
M∑

i=1

H(yi)−H(y)

Difference between the sum of the entropy of the random

variables yi considered individually and the entropy of the

random vector y, where dependence between the individual

random variables yi are taken into account.

The mutual information is non-negative, and zero if and only

if the variables are statistically independent.

Mutual information gives a quantitative measure of the

(in)dependence of the random variables.
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Independent component analysis

Decompose vector-valued signal {w(n)} into independent

components {si(n)} such that

w(n) = As(n)

Solution:

Minimize the mutual information of the signals {si(n)}!
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Assuming dim(s) = dim(w):

s(n) = Bw(n), B = A−1

Mutual information of sources signals can be minimized by

observing that:

1. It can be shown that the entropies of s and w are related

according to

H(s) = H(w) + log2 det(B)

where det(B) is the determinant of B.

2. By normalizing the (independent and uncorrelated) source

signals to have unit variance, it follows that the determinant

of B satisfies det(B) = constant, where the constant

depends on the signals w(n) only.
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=⇒
Entropy H(s) of source signals is constant, and:

Mutual information of source signals:

I(s1, s2, . . . , sM) =
M∑

i=1

H(si)−H(s)

=
M∑

i=1

H(si) + C

where C = constant.

Minimizing mutual information of source signals is equivalent

to minimizing their sum of entropies:
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Equivalent problem:

Find B which minimizes
∑M

i=1 H(si) (sum of entropies).

This problem is still somewhat intractable.

Simplified problem:

Maximize
M∑

i=1

J(si)

where J(si) is the negentropy:

J(y) = H(ygauss)−H(y)

ygauss: gaussian random variable with the same variance as y.
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Maximizing negentropy ≈ maximizing the distance from a

gaussian distribution

Negentropy can be approximated as

J(y) ≈
(
E[G(y)]− E[G(ygauss)]

)2

where G(y) is a non-quadratic function (cf. eqs. (5.73)).

G1(y) =
1
a

log cosh(ay)

G2(y) = −e−y2/2

G3(y) = y4
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Remark
G3(y) is related to the kurtosis defined for a zero-mean variable

y as

kurt(y) = E[y4]/σ2 − 3

where σ2 = E[y2]. Kurtosis is a measure of ”peakedness” of

a probability distribution compared to a normally distributed

variable, which has kurtosis value = 0.
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Practical solution of the ICA problem:

Find B such that the source signals

s(n) = Bw(n)

are uncorrelated and the approximated sum of negentropies

∑

i

J(si) ≈
∑

i

(
E[G(si)]− E[G(si,gauss)]

)2

is minimized, where the expectation is approximated as

E[G(si)] ≈ 1
N

N−1∑
n=0

G(si(n))

Iterative algorithm:

FastICA (research.ics.aalto.fi/ica/fastica/)
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