
Part II

A. Basic theory of contracts

B. Application: UML use cases

C. Extension: temporal reasoning with contracts

Presentation is based on the article:

R. J. R. Back, L. Petre and I. Porres, Analyzing UML Use cases
as Contracts. In R. France and B. Rumpe (eds), UML’99- Second
International Conference on the Unified Modeling Language: Beyond
the Standard, vol. 1723 of Lecture Notes in Computer Science, pages
518 - 533, Springer-Verlag, October, 1999. (An earlier version is
downloadable as TUCS Technical Report 279)



UML

Unified Modeling Language (UML):

• Standard diagrammatic notation for describing object-oriented software
systems

– class diagrams, use case diagrams, state charts, sequence diagrams,
collaboration diagrams, etc

• Used in the modelling phase of the software engineering process

• The consistency of the UML model with the user requirements is important

– checking usually postponed to later phases



Use cases

• A use case is a sequence of transactions in a system, whose task is to yield
a measurable value to an individual actor of the system

• The set of use case descriptions describes the functionality of the system

• Use cases are described informally, in English, or by sequence (collabora-
tion) diagrams.



Use case diagram: Private Library

Borrow Book

Renew Loan

Return Book

Pay Fee

Member

Librarian

<<include>>

<<include>>
<<include>>



Use case: Borrow a book

Use Case Borrow a book
Actors Member, Librarian
Summary The Member borrows a book from the system
Precondition The Member has no old debts to the system
Description The Member chooses a book that is not already lent

and that s/he does not own. The Librarian assigns
the Member as the borrower of that book and also
states a deadline for returning the book.

Postcondition The Member has successfully borrowed the book
Exceptions 1. If the Member has a due to pay, the Member can

pay it (see Pay the fee use case) and try again.
2. The Member owns the book.
3. The book is already lent.

Used use cases Pay the fee



Use case: Renew the lending

Use Case Renew loan
Actors Member, Librarian
Summary The Member renews the loan of a book from the

system
Precondition The Member has no dues to the system and has bor-

rowed books
Description The Member chooses a book that is already lent by

her/himself. The Librarian assigns a new deadline
for returning that book.

Postcondition The Member has successfully renewed the loan
Exceptions 1. If the Member has old debts to pay, the Member

can pay it (see Pay the fee use case) and try again.
2. The Member has not borrowed the book before.

Used use cases Pay the fee



Use case: Return a book

Use Case Return book
Actors Member, Librarian
Summary The Member returns a book to the system
Precondition The Member has borrowed the book from the system
Description The book is returned and the Member is no more the

borrower of the book. If the Member has debts to
pay, the Member can pay them (see ‘Pay the fee’ use
case).

Postcondition The Member has successfully returned the book
Exceptions 1. The Member has not borrowed the book from the

system.
2. The book is already returned.

Used use cases Pay the fee



Use case: Pay the fee

Use Case Pay the fee
Actors Member, Librarian
Summary The Member pays a certain amount of his/her debts

to the System
Precondition The Member has a debt to the System
Description The Member chooses a certain amount of debt, and

pays it. The Librarian substracts the sum from the
Member’s debt.

Postcondition The Member has successfully payed the sum
Exceptions The Member has no debts to pay.



Advantages of UML use cases

Use cases:

• capture the externally-required functionality of the system.

• identify the different goals for individual actors.

• identify candidate objects for the problem domain.

• gain an understanding of the problem domain.

• gain an understanding of the proposed solution.

Another benefit of use cases comes from the fact that they are accountable, i.e.
they are part of the agreement between the users and the developers of the
system.



Disadvantages of UML use cases

• They are informal. This is an advantage at an earlier stage in the devel-
opment process, but later on, informal requirements can be easily misin-
terpreted.

• It is difficult to check whether the system provides the functionality ex-
pected by the actors.

• Sequence and collaboration diagrams only provideexamples of how the sys-
tem should behave, they are only possible scenarios, not complete specifi-
cations.



Complementing use cases with contracts

We can use a contract as a description of all possible use cases.

The agents in the contract are the actors in the use cases.

This allows us to verify that the use cases satisfy the given user requirements.

Contracts complement use cases, they do not replace use cases



Describing the state

The state of a contract models the problem domain of the system, and is graph-
ically represented in UML as a class diagram.

For the example, we need to model two notions within our system: a person and
a book.



Book class

class Book
var belongsTo : set of Person ; returnDate : Date ; author : String ;

status : {Lent, Free} ; reader : Person ∪ {None}
init status, reader : = Free,None
proc SetLoan(val person : Person) :

pre status = Free;
reader, status, returnDate : = person, Lent, Today() + 4 weeks

proc ResetLoan :
pre status = Lent;
reader, status : = None, F ree

proc NewDeadLine :
returnDate : = Today() + 4 weeks

proc Price(var sum : Natural) :
if returnDate ≥ Today() then sum := 0
else sum : = (Today()− returnDate) ∗ n fi

end



Person class

class Person
var loans : set of Book ; fine : Natural
init loans,fine : = ∅, 0
proc BorrowBook(val book : Book) :

pre book �∈ loans;
loans : = loans ∪ {book}

proc ReturnBook(val book : Book) :
pre book ∈ loans;
loans : = loans \ {book}

proc ModifyFine(val diff : Integer) :
pre fine + diff ≥ 0;
fine : = fine + diff

end



The contract

contract Private Library
agent M,L
var book : Book, person : Person, amount : Natural;
proc BorrowBook : // use case Borrow Book

[book : = b′ | b′ ∈ Book ∧ b′.status = Free ∧ person �∈ b′.belongsTo]M ;
if person.fine �= 0 then PayFee fi ;
if person.fine = 0 then
book.SetLoan(person)L ; person.BorrowBook(book)M fi

proc RenewLoan : // use case Renew Loan
[book : = b′ | b′ ∈ Book ∧ b′ ∈ person.loans]M ;
if person.fine �= 0 then PayFee fi ;
if person.fine = 0 then book.NewDeadLine()L fi

proc ReturnBook : // use case Return Book
[book : = b′ | b′ ∈ Book ∧ b′ ∈ person.loans]M ;
book.Price(amount);
person.ModifyFine(amount)L ;
if person.fine �= 0 then PayFee fi ;
person.ReturnBook(book)M ;
book.ResetLoan()L



The contract, cont.

proc PayFee : // use case Pay Fee
{person.fine �= 0}M ;
[amount : = pay | 0 ≤ pay ≤ person.fine]M ;
person.ModifyFine(−amount)L

begin
[person : = p′ | p′ ∈ Person]M ;
BorrowBook �M RenewLoan �M ReturnBook �M PayFee

end



Analyzing the contract

We analyse the conditions in which a member of the library can borrow a book
written by a certain author.

The agentM chooses one identity (person) and invokes the use case BorrowBook.

The agent can successfully borrow a book written, say, by Steven King, for the
chosen person, if

∃b ∈ Book · b.author = StevenKing ∧ b ∈ person.loans

holds after invoking the use case.



Computing the precondition

We can determine the weakest precondition to achieve this goal by computing:

wp.BorrowBook.M.(∃b ∈ Book · b.author = StevenKing ∧ b ∈ person.loans))

If we obtain a predicate different from false, then we have shown that the Member
can borrow a new book authored by Steven King.

At the same time, we compute the conditions under which this is possible.



Result

Applying the rules of the weakest predicate transformer given above, we get:

wp.BorrowBook.M.

(∃b ∈ Book · b.author = StevenKing ∧ b ∈ person.loans)
=

(∃b′ ∈ Book · b′.status = Free ∧ person �∈ b′.belongsTo ∧
b′.author = StevenKing)

∨
(∃b ∈ Book · b.author = StevenKing ∧ b ∈ person.loans) ∧
(∃b′ ∈ Book · b′.status = Free ∧ person �∈ b′.belongsTo)



Interpretation

We can interpret this result in the following way:

There is a free book written by Steven King in the library, which is not owned
by the person.

Alternatively, the person already has borrowed a book by Steven King. In this
case, there should also exist at least one free book not belonging to the person.



Unexpected result

This latter conjunction is unexpected and was not intended. It reveals an error
in our design of the use case.

Here the error is easy to detect: the Member is forced to choose a book even in
the case that he already has the desired book.



Improved design

An improved design of the use case, which avoids this error, is given below:

proc BorrowBook : // use case Borrow Book
if person.fine �= 0 then PayFee fi ;
({person.fine = 0}M ;
[book : = b′ | b′ ∈ Book ∧ b′.status = Free ∧ person �∈ b′.belongsTo]M ;
book.SetLoan(person)L ; person.BorrowBook(book)M

)
�M
skip



Revised result

precondition =

either
∃book ∈ Book•
book.status = Free
book.author = Steven King
person /∈ book.belongsTo

or
∃b ∈ Book•
b.author = Steven King
b ∈ person.loans



Member and librarian co-operate

We can check the weakest precondition for a member to borrow a book by Steven
King, when the librarian co-operates with the member, i.e., we choose both the
member and the librarian to be angels.

It turns out that this gives the same precondition. In other words, from the
members point of view, it does not matter if the librarian co-operates or not.



The librarians viewpoint

Let us finally check the weakest precondition for reaching the same goal as above,
with the same contract, but now from the Librarian’s perspective.

That means that we compute the conditions in which a book written by a certain
author can be borrowed to a person, represented by the Member, when the latter
might be against this action.



The result

precondition
=
person.fine = 0
if
¬(∃b ∈ Book•
b.author = ”StevenKing”
b ∈ person.loans)

then
∀book ∈ Book•

if
book.status = Free
person /∈ book.belongsTo

then
book.author = ”StevenKing”



Interpreting the result

The result can be interpreted as follows:

The person should have no debts to the library and moreover, when a book
written by Steven King is not already lent to the person represented by the
Member, then all the free books not owned by the person should be written by
Steven King.

This is a substantially stronger condition compared to the precondition com-
puted from the Member’s perspective, because the Librarian cannot influence
the payment of the person’s fees and the choice of a book. He/she has therefore
to assume beforehand that there are no such debts and that all the possible
choices for the book are correct.


