
Refinement Calculus Foundations
and Applications

Ralph-Johan Back Joakim von Wright

Turku Centre for Computer Science and
Åbo Akademi University

Summer School on Specification, Refinement and Verification, Turku 2002

Part II

A. Basic theory of contracts

B. Application: UML use cases

C. Extension: temporal reasoning with contracts

Presentation is based on the book

R. J. R. Back and J. von Wright, Refinement Calculus:A Systematic
Introduction. Graduate Texts in Computer Science, Springer-Verlag,
New York 1998 (519 pages), ISBN 0-387-98417-8.

and on the article

R. J. R. Back and J. von Wright, Contracts as Mathematical Entities
in Programming Logic. In Proc. Workshop on Abstraction and Re-
finement, Osaka 1999, Elsevier. (Also available as TUCS Tech report
372).

States, agents and contracts

Consider

• a collection of agents a, b, c, d, . . .

• that operate in a world Σ

• in order to achieve their respective
goals p, q, r,

The interaction between agents is regu-
lated by contracts.

A contract stipulates what agents are per-
mitted and expected to do.

We want to analyze what an agent can
achieve with a given contract.

b

c

a

d

p

q

Contracts (I)

Contract statements

The behavior of agents is regulated by a contract (statement) S. A contract is
of the form

S ::= 〈f〉 | {p}a | S1;S2 | S1 �a S2

where p is state predicate and f state transformer.

• The update 〈f〉 changes the state by applying the state transformer f . If
the initial state is σ0 then the final state is f. σ0.

An assignment statement 〈x := e〉 is a special kind of update where the
state transformer is an assignment. The identity statement skip = 〈id〉 does
not change the state at all.

• In the sequential contract S1;S2 the contract S1 is first carried out, followed
by S2.

• In a choice S1 �a S2, either contract S1 or S2 is carried out, depending on
which one agent a chooses.

Sequential composition binds stronger than choice.

Assertions

The assertion {p}a is a requirement that the agent must satisfy
in a given state.

Assertions can be expressed using boolean expressions. Assertion

{x+ y = 0}a

states that the sum of x and y in the state must be zero.

• If the assertion holds then the state is unchanged, and the
agent carries on with the rest of the contract.

• If the assertion does not hold, then agent a has breached the
contract.

The assertion {true}a is always satisfied.

The assertion {false}a is an impossible assertion. It is never sat-
isfied, and always forces the agent to breach the contract.

Example contract

Consider the contract

Contract1 = {1 ≤ y ≤ 4}a; 〈x := 0〉;
(〈x := x+ 1〉 �a 〈x := x+ 2〉);
{y = x}a

• If y < 1 or y > 4, then agent a must breach the contract.

• If y = 1, then agent a can avoid breaching the contract, by
choosing the left alternative

• If y = 2, then agent a can avoid breaching the contract by
choosing the right alternative

• If y = 3, 4, then agent a cannot avoid breaching the contract.

We write just x := x + 1 for assignment statements in contracts,
rather than 〈x := x+ 1〉, when no confusion can occur.

Contract with two agents

The contract of agent a invokes subcontract for agent
b.

Agent a is to carry out the contract S:

S = x := 0; (T �a x := x+ 1); {y = x}a

Contract T is to be carried out by another agent b:

T = y := 0 �b y := 1

The overall contract is

Contract2 = x := 0;
((y := 0 �b y := 1) �a x := x+ 1);
{y = x}a

S

T

a

b

Programs

Traditional programs can be seen as special kinds of contracts,
where exactly two agents are involved:

• the user a, and

• the computer system b.

Example program:

x := x+ 1;
{x 	= 0}a; y := y/x;
y := y + 1

User breaks contract if she attempts to do division by zero,
releasing system from its obligations to satisfy the contract.

Abort statement is a total breach of contract:

abort = {false}a

User a

Computer
system b

Concurrent system

Consider the parallel composition

(x := x+ 1; y := x) || x := 0

Can be interpreted as the contract

x := x+ 1; y := x;x := 0 �b
x := x+ 1;x := 0; y := x �b
x := 0;x := x+ 1; y := x

Scheduling is determined by the computer sys-
tem b. It resolves internal choices in a manner
that the user cannot influence or know (demonic
nondetermism).

x:=0

x:=0

x:=0

x:=x+1

x:=x+1y:=x

y:=x

Interactive system

User computes a value for x by a sequence of function
applications:

Compute = Apply; Apply; . . . ; Apply

Each function applies one possible change to x:

Apply = skip �a Inc �a Inv �a
Square �a Sqroot �a Set

where

Inc = x := x+ 1
Inv = {x 	= 0}a;x := 1/x

Square = x := x ∗ x
Sqroot = {x ≥ 0}a;x :=

√
x

Set = x := 0 �a x := 1 �a . . . �a x := 9

User alternative can be seen as menu choices. Alter-
native skip is chosen if no menu item is selected.

FunctionEdit

Set

Inv

Square

Sqroot

1

0

2

3

Inc

Both user and system choices

Can allow both user choices (angelic choices) and system
choices (demonic choices) in the same contract.

Interaction
= x := 0;

(x := x+ 1 �a x := x+ 2);
(x := x− 1 �b x := x− 2)

The user a chooses between alternatives in order to in-
fluence the computation. User should choose

• first alternative, if she wants to establis x ≤ 0.

• second alternative, if she wants to establish x ≥ 0.

User a

Computer
system b

x=0

a

x=1 x=2

x=0 x=-1 x=1 x=0

b b

Interchanging user and system

Can also regard a to be the system and b the user.
Then the user choice is done after the system has
made its choice.

• User can choose to establish x = 0, no matter
what system does.

• User can also choose to establish x 	= 0, no
matter what system does.

User a

Computer
system b

x=0

a

x=1 x=2

x=0 x=-1 x=1 x=0

b b

Role of agents

In general, agents have two roles in contracts:

• they choose between different alternatives that are offered to them, and

• they take the blame when things go wrong.

These two roles are interlinked, in the sense that things go wrong when an agent
has to make a choice, and there is no acceptable choice available.

Operational semantics of contracts

We give a formal meaning to contract statements using
structured operational semantics. This describes step by
step how a contract is carried out, starting from a given
initial state.

A configuration is a pair (S, γ), where

• S is either an ordinary contract statement or the
empty statement symbol Λ, and

• γ is either an ordinary state σ, or the symbol ⊥a
(denoting that agent a has breached the contract).

Intuitively: S denotes what remains to be done, γ is present
state.

The transition relations→ show what moves are permitted.
It is the smallest relation which satisfies the given axioms
and inference rules.

(S0,γ0)

(S1,γ1)

(S2,γ2)

(S3,γ3)

(S4,γ4)

Transition rules

Update
(〈f〉, σ)→ (Λ, f. σ) (〈f〉,⊥a)→ (Λ,⊥a)

Assertion
p. σ

({p}a, σ)→ (Λ, σ)
¬p. σ

({p}a, σ)→ (Λ,⊥a)

({p}a,⊥b)→ (Λ,⊥b)

Sequential composition
(S1, γ)→ (S′1, γ

′), S′1 	= Λ
(S1;S2, γ)→ (S′1;S2, γ′)

(S1, γ)→ (Λ, γ′)
(S1;S2, γ)→ (S2, γ′)

Choice
(S1 �a S2, γ)→ (S1, γ) (S1 �a S2, γ)→ (S2, γ)

σ stands for a proper state
γ stands for a proper state or ⊥a.

Example derivation

(x := 0; ((y := 1 �b y := 2) �a x := x+ 1); {y = x}a, (x = 1, y = 1))

→ {sequential composition rule}
(x := 0, (x = 1, y = 1))

→ {update rule}
(Λ, (x = 0, y = 1))

(((y := 1 �b y := 2) �a x := x+ 1); {y = x}a, (x = 0, y = 1))

→ {sequential composition rule}
(((y := 1 �b y := 2) �a x := x+ 1), (x = 0, y = 1))

→ {choice rule}
(x := x+ 1, (x = 0, y = 1))

(x := x+ 1; {y = x}a, (x = 0, y = 1))

→ {sequential composition rule}
(x := x+ 1, (x = 0, y = 1))

→ {update rule}
(Λ, (x = 1, y = 1))

({y = x}a, (x = 1, y = 1))

→ {assertion rule}
(Λ, (x = 1, y = 1))

All possible derivations

Contract2 =
A; ((B1 �b B2) �a C);D

where

A = x; = 0
B1 = y := 0
B2 = y := 1
C = x := x+ 1
D = {y = x}a

(Contract2, (x=1,y=1))

(((B1 b B2) aC);D, (x=0,y=1))

((B1 b B2);D, (x=0,y=1)) (C;D, (x=0,y=1))

a

b

(B1;D, (x=0,y=1)) (B2;D, (x=0,y=1)) (D, (x=1,y=1))

(D, (x=0,y=0)) (D, (x=0,y=1)) (Λ, (x=1,y=1))

x:= 0

x:= x+1

{x=y}ay:=0 y:=1

{x=y}a {x=y}a

a(Λ, (x=0,y=0))

Operational semantics

A behavior of contract S from initial state σ is a maximal sequence of configu-
rations (S = S0, σ = σ0):

(S0, σ0)→ (S1, σ1)→ . . .→ (Sn, σn)

where each transition (Si, σi)→ (Si+1, σi+1) is permitted by the axiomatization.

The operational semantics of a contract S is a function

op : Contracts→ Σ → P(Behaviors)

where

op. S. σ
∧= set of behaviors of S from σ

All behaviors of contracts are (here) finite.

Statement part of configuration always indicates which agent should choose next,
if any.

Contracts (II)

Event loop with input statement

Define computation with recursion:

Compute = (reca X • Apply;X �a skip)

User a may at each stage choose between applying a
new function or terminating.

Define setting of a value for x as a relational update:

Set = {x := x′ : Nat | 0 ≤ x′ ≤ 9}a

Attribute x is assigned a new value x′ that satifies
condition 0 ≤ x′ ≤ 9. Effect is same as in

Set = x := 0 �a x := 1 �a . . . �a x := 9

FunctionEdit

Set

Inv

Square

Sqroot

1

0

2

3

Inc

Relational assignment

We generalize ordinary (functional) assignment to relational as-
signment. The relation

(x := x′ | x′ > x+ y)

relates state σ to state σ′ if

the value of x in σ′ is greater than the sum of the values
of x and y in σ and all other attributes are unchanged:

Thus

(x := x′ | x′ > x+ y). σ. σ′

≡
(∃x′ • σ′ = setx . x′. σ ∧ x′ > valx . σ + valy . σ)

Define in general

(x := x′ | b). σ. σ′ ∧= (∃x′ • σ′ = setx . x′. σ ∧ b. σ)

Relational update

Let R be a state relation. The relational update

{R}a

permits an agent to choose any final state related by
R to the initial state.

If no such final state exists, then the agent breaches
the contract.

Example:

{x := x′ | 0 ≤ x′ < x}a =

”change the state so that the new value
x′ satisfies 0 ≤ x′ < x, without changing
the values of the other attributes.”

x effect
0 abort
1 x := 0
2 x := 0 �a x := 1

Arbitrary choice

Finite choice is generalized to arbitrary choice:

(�a i ∈ I • Si)

Agent a chooses a statement from the set {Si | i ∈ I}.

Index set I may be infinite.

If I is empty, then the agent breaches the contract.

Example:

(�ai ∈ Nat • x := x+ i) = {x := x′ | x′ ≥ x}a

Recursion

Permit also recursive contract statements:

S ::= . . . | X | (recaX • S1)

• X is a variable that ranges over contract state-
ments

• (recaX • S1) is the contract statement S1

where each occurrence of X in S1 is inter-
preted as a recursive invocation of the contract
(recaX • S1)

• Agent a breaches the contract if the recursion
does not terminate

• Operational semantics has to be extended with
infinite behavior

a
X

S1

Transition axioms

• Relational update

R. σ. σ′

({R}a, σ)→ (Λ, σ′)
R. σ = ∅

({R}a, σ)→ (Λ,⊥a) ({R}a,⊥b)→ (Λ,⊥b)

• Arbitrary choice

k ∈ I
((�a i ∈ I • Si), γ)→ (Sk, γ)

I = ∅
((�a i ∈ I • Si), γ)→ (Λ,⊥a)

• Recursion

((reca X • S), γ)→ (S[X := (reca X • S)], γ)

Scenarios and behaviors

A scenario for the contract S in initial state σ is a sequence of configurations

C0 → C1 → C2 → · · ·

where

• C0 = (S, σ),

• each transition Ci → Ci+1 is permitted by the axiomatization above, and

• if the sequence is finite with last configuration Cn, then Cn = (Λ, γ), for
some γ.

Intuitively, a scenario shows us, step by step, what choices the different agents
have made and how the state is changed when the contract is being carried out.

A finite scenario cannot be extended, since no transitions are possible from an
empty configuration.

Note that the statement component of a configuration shows which agent is to
choose the next step.

Iteration

While statement:

while a g do S od

=
(recaX • {g}a;S;X �a {¬g}a)

Iteration with implicit exit (a and b can be same agent)

doa g1 → S1 �b . . . �b gm → Sm od

=
(recaX • {g1}b;S1;X �b . . . �b {gm}b;Sm;X �b {¬g1 ∩ . . . ∩ ¬gm}b)

Iteration with explicit exit

doa g1 → S1 �b . . . �b gm → Sm �b gm+1 → exit od

=
(recaX • {g1}b;S1;X �b . . . �b {gm}b;Sm;X �b {gm+1}b)

Playing games: Nim

Players a and b take turns to remove either
one or two sticks from a pile. The player
who takes the last stick has lost. Player a
starts.

1. First check whether b already has lost
(if no matches in pile, then b must
breach the contract).

2. Otherwise, player a removes one or
two sticks from the pile.

3. Then check whether player a has lost.

4. Otherwise, player b removes one or
two sticks from the pile.

5. Repeat until either player breaches
the contract.

Nim
= (recaX •

1 : {x 	= 0}b;
2 : (x := x− 1 �a x := x− 2);
3 : {x 	= 0}a;
4 : (x := x− 1 �b x := x− 2);
5 : X)

a

b

Contracts vs. programs

• Contracts generalize the traditional notion of a program to allow for any
number of agents or actors. Different choices can be made by different
agents.

• Batch oriented programs, concurrent programs, interactive programs and
games are special cases of contracts.

• Contracts also introduce the new notion of breaching a contract (and dually,
of being released from a contract).

• Contracts are more expressive than traditional program/specification no-
tation.

Analyzing contracts

Achieving goals

Can one agent (or a coalition of agents) achieve a
specific goal with a contract?

Operational semantics describes all possible ways of carry-
ing out a contract.

In reality, one specific execution is selected, which may or
may not lead to a desired final state for a specific agent.

The different agents are unlikely to have the same goals, and
the way one agent makes its choices need not be suitable
for another agent.

Establishing goals

Agent a can establish condition q with contract S
in initial state σ, denoted

σ {|S |}a q

if, assuming none of the other agents breach the
contract, a can establish postcondition q no mat-
ter what the other agents do.

Thus σ {|S |}a q holds if the agent can make its
own choices in such a way that

• either a final state is reached where q holds,
or

• some other agent is forced to breach the
contract.

Example: Contract1

Contract1 = {1 ≤ y ≤ 4}a; 〈x := 0〉;
(〈x := x+ 1〉 �a 〈x := x+ 2〉);
{y = x}a

(x = 3, y = 1) {|Contract1 |}a x = 1
(x = 3, y = 1) {|Contract1 |}a x = y

(x = 3, y = 2) {|Contract1 |}a x = y

not (x = 3, y = 2) {|Contract1 |}a x = 1

Example:Interaction

Interaction = x := 0;
(x := x+ 1 �a x := x+ 2);
(x := x− 1 �b x := x− 2)

(x = 0) {| Interaction |}a x ≤ 0
(x = 0) {| Interaction |}b x = 0

Coalitions

In general, we pick out a coalition A of
agents whose side we are taking, and as-
sume that these agents will co-operate in
order to achieve a common goal.

The other agents may have other goals.

Then

σ {|S |}A q

holds if the agents in A can (by co-
ordinating their choices) establish postcon-
dition q no matter what the other agents
do, whenever the other agents do not
breach the contract.

d

Game interpretation

To prepare for the worst, we assume that the agents outside the coalition are
hostile to the goal of our agents and try to prevent them from reaching it.

We call the coalition of agents collectively the angel and the other agents collec-
tively the demon.

An angelic choice is made by a coalition agents, and a demonic choice by the
other agents. We can then consider execution of a contract as a game between
the angel and the demon.

• The game is started in a given initial state σ.

• The contract S gives the rules of the game.

• The goal of the game is some final state in q.

The angel tries to reach a final state in q. The angel wins if such a state is
reached or if demon breaches the contract.

The angel looses if it breaches the contract or a state in ¬q is reached.

Winning strategies

Agent a (or angel, or coalition A of
agents) makes its choices according to a
strategy: a function that for every con-
figuration of the form (S1 �a S2, γ) re-
turns either (S1, γ) or (S2, γ).

A strategy tells the agent what to do in
every possible choice situation.

Thus σ {|S |}a q holds if and only if
there exists a winning strategy for a to
establish q with contract S in initial
state σ. This can be determined from
op. S. σ and q.

Example shows winning strategy for a
to reach x = y with Contract2 from ini-
tial state (x = 1, y = 0).

(x = 1, y = 1) {|S |}a x = y

(Contract2, (x=1,y=1))

 (((B1 b B2) aC);D, (x=0,y=1))

((B1 b B2);D, (x=0,y=1)) (C;D, (x=0,y=1))

a

b

(B1;D, (x=0,y=1)) (B2;D, (x=0,y=1)) (D, (x=1,y=1))

(D, (x=0,y=0)) (D, (x=0,y=1)) (Λ, (x=1,y=1))

x:= 0

x:= x+1

{x=y}ay:=0 y:=1

{x=y}a {x=y}a

a(Λ, (x=0,y=0))

Winning strategy for Nim

Agent a has a winning strategy for Nim
whenever

x. σ mod 3 	= 1

holds in the initial state σ. Thus,

x mod 3 	= 1 {|Nim |}a false

Nim
= (recaX •

1 : {x 	= 0}b;
2 : (x := x− 1 �a x := x− 2);
3 : {x 	= 0}a;
4 : (x := x− 1 �b x := x− 2);
5 : X)

a

b

Symmetric and asymmetric system description

We can consider different coalitions of
agents within the same contract, and an-
alyze what different coalitions can achieve
with the contract.

Contract provides a symmetric way of de-
scribing a system.

After we have determined a coalition of
agents, we have an asymmetric (game)
view of the system.

d d

Weakest preconditions

Assume that S is a contract statement and A a coalition, i.e., a set of agents.

We want to define the predicate transformer

wp. S.A

so that it maps postcondition q to the set of all initial states σ from which the
agents in A have awinning strategy to reach the goal q if they co-operate.

Thus, wp. S.A. q would be the weakest precondition that guarantees that the
agents in A (by cooperation)can achieve postcondition q.

This provides us with an alternative semantic interpretation of contracts, of the
type:

wp. S : PΩ → PΣ → PΣ

where Ω is the set of all agents.

Predicate transformer hierarchy extended

Contracts are thus introduced by pointwise extension of predicate transformers:

����������	

��	����	

�	�����

��	����	

����
����	�

��������

Weakest preconditions for contracts

Using the predicate transformer lattice, we can then define

wp. 〈f〉. A = 〈f〉

wp. {p}a. A. q =
{
{p} if a ∈ A
[p] if a 	∈ A

wp. (S1;S2). A = wp. S1. A;wp. S2. A

wp. {R}a. A =
{
{R} if a ∈ A
[R] if a 	∈ A

wp. (S1 �a S2). A =
{

wp. S1. A � wp. S2. A if a ∈ A
wp. S1. A � wp. S2. A if a 	∈ A

Weakest preconditions for contracts (alt.)

Definitions in terms of sets:

wp. 〈f〉. A. q = (λσ • q. (f. σ))

wp. {p}a. A. q =
{

(λσ • p. σ ∧ q. σ) if a ∈ A
(λσ • ¬p. σ. ∨ q. σ) if a 	∈ A

wp. {R}a. A. q =
{

(λσ • ∃σ′ • R. σ. σ′ ∧ q. σ′) if a ∈ A
(λσ • ∀σ′ • R. σ. σ′ ⇒ q. σ′) if a 	∈ A

wp. (S1;S2). A. q = wp. S1. A. (wp. S2. A. q)

wp. (S1 �a S2). A. q =
{

wp. S1. A. q ∪ wp. S2. A. q if a ∈ A
wp. S1. A. q ∩ wp. S2. A. q if a 	∈ A

Wp for recursive contracts

The semantics of a recursive contract is given in a standard way, using fixpoints.

wp. (reca X • S). A =
{

(µ X • wp. S.A) if a ∈ A
(ν X • wp. S.A) if a 	∈ A

Here we assume that wp. X.A = X, so that the fixpoint is taken over a predicate
transformer.

We take the least fixed point µ when non-termination is considered bad, as is
the case when agent a ∈ A is responsible for termination.

We take the greatest fixpoint ν when termination is considered good, i.e., when
an agent not in A is responsible for termiation.

Winning strategy theorem

We can prove that wp. S.A has the re-
quired property for any contract statement
S, collection of agents A, initial state σ and
postcondition q :

σ ∈ wp. S.A. q ≡ σ {|S |}A q

Thus, wp. S.A. q computes the set of ini-
tial states for which the coalition A has a
winning strategy for using S to establish
postcondition q from initial state σ.

In figure, ws. B.A. q = {σ | R}, where R
says that coalition A has winning strategy
in B. σ to reach q.

Contract statements Behaviors

Predicate transformers

op

wp

ws

Example

We compute the set of initial states for which the agent a has a winning strategy
to reach x ≥ 0 with contract

S = (x := x+ 1 �a x := x+ 2);
(x := x− 1 �b x := x− 2)

We have that

wp. (x := x− 1 �b x := x− 2). {a}. (x ≥ 0)
= {demonic choice}

wp. (x := x− 1). {a}. (x ≥ 0) ∩ wp. (x := x− 2). {a}. (x ≥ 0)
= {assignment}

(x− 1 ≥ 0) ∩ (x− 2 ≥ 0)
= {set theory}

(x ≥ 1) ∩ (x ≥ 2)
= {set theory}

(x ≥ 2)

Similarly, we compute that

wp. (x := x+ 1 �a x := x+ 2). {a}. (x ≥ 2) = x ≥ 0

Hence,

wp. S. {a}. (x ≥ 0) = x ≥ 0

Correctnesss and
Refinement

Correctness

Coalition A can establish condition q with
contract S from any initial state in p:

p {|S |}A q
∧= (∀σ ∈ p • σ {|S |}A q)

A contract can be suitable for some goals
and unsuitable for others.

We will say that contract S is correct for
the goal q in initial states p for coalition A,
when p {|S |}A q. This is generalization of
usual notion of correctness.

Example:

1 ≤ y ≤ 2 {|Contract1 |}b x = y

y = 1 {|Contract2 |}a x = y

p

Refining contracts

Contract S′ is a refinement of contract S
for coalition A if any condition that A can
establish with S can also be established
with S′:

S �A S′

∧= (∀σ∀ q • σ {|S |}A q ⇒ σ {|S′ |}A q)

Intuitively, S �A S′ means that contract
S′ is at least as good as contract S for coali-
tion A.

Contracts S and S′ are refinement equiva-
lent from the point of view of coalition A,
S =A S′, if S �A S′ and S′ �A S.

Refinement example

Refinement for agent a (and similarly for coalition of agents A) means

• adding new choices for a,

• removing choices for the other agents,

• decreasing set of states where contract can be breched by a, or

• increasing set of states where other agents can breach contract.

We have that Contract2 �a Contract3, where

Contract2 =
x := 0;
{true}b;
((y := 0 �b y := 1)
�ax := x+ 1);
{y = x}a

Contract3 =
x := 0;
{y > 0}b;
(y := 1
�ax := x+ 1 �a x := x+ 2);
{y ≤ x}a

Computing correctness and refinement

The winning strategy theorem gives us immediately the following
corollary for correctness:

p ⊆ wp. S.A. q ≡ p {|S |}A q

The following corollary holds for refinement:

S �A S′ ≡ (∀ q • wp. S.A. q ⊆ wp. S′. A. q)

This result allows us to prove correctness and refinement without
having to rely on the operational semantics of contracts. Sufficient
to analyze properties of the predicate transformer wp. S.A.

Algebra of contracts

Let contract statement S and predicate q be arbitrary.

• If new agents join a coalition, then the capabilities of the coalition increase
(i.e., it becomes easier to reach goals):

A ⊆ A′ ⇒ wp. S.A � wp. S.A′,provided that S is strict

• If a coalition can establish a goal q then the remaining agents cannot
establish ¬q:

wp. S.A. q ⊆ ¬wp. S.A(¬q)

The reason that we do not have an equality in here is that in an infinite
scenario neither A nor A establishes any postcondition.

• The power of two combined coalitions is greater (or at least as great) as
the sum of their powers in isolation. The dual property also holds:

wp. S.A � wp. S.A′ � wp. S. (A ∪A′)

Determining achievability and refinement

• Computing wp for a contract allows us to determine the intial states in
which an agent can reach a given goal, without having to rely on the
operational semantics.

• The notion of correctness and refinement generalizes the traditional cor-
rectness and refinement notion with demonic nondeterminism, where only
the system (the demon) can make choices.

• The notion used here also defines correctness and refinement for interactive
systems. There it is sufficient that there is some way for the user to make
choices so that the final condition is established.

• In general, we have defined correctness and refinement when both user and
system can make choices, in terms of the existence of a winning strategy
for the user to reach its goal.

• The general case can, e.g., be used to define correctness and refinement of
an interactive system with concurrency (e.g., background processes)

Proving existence of
winning strategies

Correctness of loops

Theorem Assume that g1, . . . , gn, p, and q are predicates and Si are monotonic
statements for i = 1, . . . , n. Assume that {rw | w ∈W} is a ranked collection of
predicates, with r = (∪w ∈W • rw) and g = g1 ∨ · · · ∨ gn. Then

p {| do g1 → S1 [] . . . [] gn → Sn od |} q
provided that

• p ⊆ r,

• (∀w ∈W • rw ∩ gi {|Si |} r<w), for i = 1, . . . , n, and

• r ∩ ¬ g ⊆ q.

The ranked predicate rw is usually described as a conjunction of an invariant I
and a variant t, so that rw is I ∧ t = w. Here

• first condition states that the loop invariant r holds initially;

• second condition asserts that each iteration of the loop preserves the loop
invariant while decreasing the rank of the particular predicate rw; and

• third condition states that the postcondition q is established upon termi-
nation of the loop.

Nim game

The state has only one attribute, x, the number of matches, ranging over the
natural numbers. The state space is thus the type Nat.

We define the state relation

Move
∧= (x := x′ | x− 2 ≤ x′ < x)

(since we are talking about natural numbers, we follow the convention that
m− n = 0 when m ≤ n).

Then the Nim-game can be expressed in the following simple form:

Nim ∧= do true→ [x 	= 0]; {Move}; {x 	= 0}; [Move] od

The moves

• First, the guard statement [x 	= 0] is a check to see whether the angel has
already won (The demon has lost if the pile of matches is empty when it
is the angels move).

• If there are matches left (x 	= 0), then the angle moves according to the
relation Move, i.e., removes one or two matches (decreases x by 1 or 2).

• Now the dual situation arises. The assert statement {x 	= 0} is a check to
see whether the angel has lost.

• If there are matches left, then the demon moves according to the relation
Move, i.e., removes one or two matches.

Proving existence of a winning strategy

By instantiating in the correctness rule for loops, we get the following rule for
proving the existence of winning strategies in a two-person game:

Theorem
p {| do true→ S od |} false

if

• p ⊆ r, and

• (∀w ∈W • rw {|S |} r<w)

holds for some ranked collection of predicates {rw | w ∈W}:

Proof

By specializing q to false in loop rule, we get the following three conditions:

• p ⊆ r,

• (∀w ∈W • true ∩ rw {|S |} r<w), and

• ¬ true ∩ r ⊆ false.

Winning strategy for Nim

For the angel to be assured of winning this game, it is necessary that he always
makes the number x of matches that remain satisfy the condition

x mod 3 = 1

by removing either one or two matches.

If x mod 3 = 1 before the angels move, then he would need to remove three
matches to re-establish this condition, which is not allowed. Otherwise, removing
one or two muches is sufficient to establish the condition.

We will show that
x mod 3 	= 1 {|Nim |} false

i.e, the angel has a winning strategy whenever x mod 3 	= 1 holds initially.

Correctness formulation

We need to show that

• x mod 3 	= 1 ⊆ I, and

• (∀n ∈ Nat • I ∧ t = n {|S |} I ∧ t < n)

We choose

• I = (x mod 3 	= 1), and

• t = x

First condition is trivially true. Second condition amounts to proving that

x mod 3 	= 1 ∧ x = n {|S |} x mod 3 	= 1 ∧ x < n

holds for an arbitrary natural number n, where

S = [x > 0]; {Move}; {x > 0}; [Move]

The proof

First, we find the intermediate condition:

({x > 0}; [Move]). (x mod 3 	= 1 ∧ x < n)
= {definitions}

x > 0 ∧ (∀x′ • x− 2 ≤ x′ < x ⇒ x′ mod 3 	= 1 ∧ x′ < n)
= {reduction, arithmetic}

x mod 3 = 1 ∧ x ≤ n

This is the condition that angel should establish on every move.
Continuing, we find the precondition

([x > 0]; {Move}). (x mod 3 = 1 ∧ x ≤ n)
= {definitions}

x = 0 ∨ (∃x′ • x− 2 ≤ x′ < x ∧ x′ mod 3 = 1 ∧ x′ ≤ n)
⊇ {reduction, arithmetic}

x mod 3 	= 1 ∧ x = n

Thus we have shown that the required condition holds, i.e., that the game has
a winning strategy.

