

Synthesis of mixed alcohols over K-Ni-MoS₂ catalysts

Rodrigo Suárez París

Supervisors: Magali Boutonnet, Sven Järås

Division of Chemical Technology, KTH

August 2014

OUTLINE

- Introduction and objective
- Experimental
- Results and discussion
- Ongoing work: methanol co-feeding
- Conclusions

INTRODUCTION AND OBJECTIVE

<u>WHAT</u> are we doing at Chemical technology?

Hydrogen

WHY research on biofuels?

Depletion of fossil energy sources

CO₂ emission reduction

No poisoning emissions $(SO_2, NO_x \text{ and particulates})$

WHY research on biofuels?

10% renewable energyin transportation(EU, 2020)

Mixed alcohol synthesis

- Ethanol can be used as: fuel / fuel additive / H₂ carrier for fuel cells
- Sweden is one of the leading countries in using ethanol as fuel (E5, E85)

Figure 1. Use of biofuels in the transportation sector (Sweden). [Source: Swedish Energy Agency]

Objective

ROYAL INSTITUTE OF TECHNOLOGY

Study the conversion of syngas over molybdenum sulfide catalysts promoted with Ni and K

- Introduce the microemulsion (ME) technique for preparing the catalysts
- Analyze the effect of methanol co-feeding (ongoing work)

Figure 2. Pathways for conversion of syngas to ethanol and higher alcohols. [Source: V. Subramani and S. K. Gangwal, Energy & Fuels, 2008, 22, 814-839]

EXPERIMENTAL

Catalyst preparation

Preparation of Ni-modified K-doped molybdenum sulfide catalysts (targeted molar ratios: Ni/Mo=0.5; K/Mo=1.5)

The microemulsion technique

- Optically transparent and thermodynamically stable solution
- Composed of spherical aqueous nanodroplets stabilized by a surfactant
- Metal salts can be solubilized inside the nanodroplets and then precipitated

Figure 3. ME systems, containing Mo and Ni salts.

Activity and selectivity tests

Cat. 1:	conventional	K-Ni-MoS ₂
Cat. 2:	ME	K-Ni-MoS ₂
Cat. 3:	conventional	$Ni-MoS_2^{-}$
Cat. 4:	conventional	$K-MoS_2$

RESULTS AND DISCUSSION

Fresh catalyst composition: ICP, EDX, XPS

ROYAL INSTITUTE OF TECHNOLOGY

Catalyst _	Targeted ratio (mol/mol)		Measured ratio by ICP (mol/mol)		EDX analysis (atom/atom)		XPS analysis (atom/atom)	
	Ni/Mo	K/Mo	Ni/Mo	K/Mo	Ni/Mo	K/Mo	Ni/Mo	K/Mo
1 (K-Ni-MoS ₂)	0.50	1.50	0.45	1.19	0.61	1.42	0.05	1.50
2 (ME K-Ni-MoS ₂)	0.50	1.50	0.40	1.51	0.55	1.21	0.18	3.49
3 (Ni-MoS ₂)	0.50	0	0.50	0	0.70	0	0.14	0
4 (K-MoS ₂)	0	1.50	0	1.50	0	1.15	0	5.16

Table 2. Catalyst composition (fresh catalysts).

- ICP (and EDX) analyses show that the bulk Ni/Mo and K/Mo ratios are approximately the targeted ones
- XPS analyses evidence a higher amount of Ni and K on the surface of the ME catalyst

Fresh catalysts: SEM

Figure 8. SEM micrographs, cat. 1 (K-Ni-MoS₂). Figure 9. SEM micrographs, cat. 2 (ME K-Ni-MoS₂). $SA=3 m^2 / g$ $SA=1 m^2 / g$

Fresh catalysts: TEM

ROYAL INSTITUTE OF TECHNOLOGY

Figure 10. TEM micrograph, cat. 1 (K-Ni-MoS₂). Figure 11. TEM micrograph, cat. 2 (ME K-Ni-MoS₂).

Figure 12. TEM micrograph, Cat. 30 (NiEMosicrograph, Figure (Ks. NiEMosicrograph, cat. 4 (K-MoS₂).

Activity

- Bigger differences at low WHSV
- The most active catalyst is "Ni-MoS₂"
- Among both K-Ni-MoS₂ catalysts, the ME catalyst results in higher conversions

Selectivity

ROYAL INSTITUTE OF TECHNOLOGY

Figure 16. Product distribution (T=340 °C, WHSV=6 000 NmL / h·g_{catalyst})

Figure 17. Product distribution (T=370 °C, WHSV=6 000 NmL / h·g_{catalyst})

Potassium is essential to shift selectivity from hydrocarbons to alcohols

Space Time Yields: methanol

ROYAL INSTITUTE OF TECHNOLOGY

Figure 19. Methanol Space Time Yield (T=370 °C)

Nickel is essential to shift selectivity from MeOH to higher alcohols

Space Time Yields: ethanol

ROYAL INSTITUTE OF TECHNOLOGY

Figure 20. Ethanol Space Time Yield (T=340 °C) Figure 21. Ethanol Space Time Yield (T=370 °C)

Ethanol production is clearly enhanced over the ME catalyst

Spent catalyst composition: EDX, XPS

ROYAL INSTITUTE OF TECHNOLOGY

Table 3. Catalyst composition (spent catalysts).

Catalyst	Targeted ratio (mol/mol)		EDX analysis (atom/atom)		XPS analysis (atom/atom)	
	Ni/Mo	K/Mo	Ni/Mo	K/Mo	Ni/Mo	K/Mo
1 (K-Ni-MoS ₂)	0.50	1.50	0.61	1.42	0.05	1.50
Spent 1 (K-Ni-MoS ₂)	-	-	0.02	1.23	0.06	2.90
2 (ME K-Ni-MoS ₂)	0.50	1.50	0.55	1.21	0.18	3.49
Spent 2 (ME K-Ni-MoS ₂)	-	-	0.18	1.42	0.26	5.27

- Nickel is partially removed during reaction, remaining mainly on the surface
- Potassium migrates to the surface during reaction → previously reported on K-Co-MoS₂ [Source: J. Iranmahboob, H. Toghiani and D. O. Hill, Applied Catalysis A: General, 2003, 247, 207-218]

The ME catalyst shows a higher concentracion of Ni and K on the surface after reaction, which could explain the improved ethanol yields

ONGOING WORK

OF TECHNOLOGY

Ongoing work: methanol co-feeding

- The C-C bond formation to transform C₁ to C₂ species is the ratedetermining step in ethanol and higher alcohol synthesis from syngas
- To enhance the reactivity of the C₁ intermediate that is formed from syngas, lower alcohols such as methanol and ethanol have been added to the feed
- The carbon chain growth enhanced by co-feeding methanol is known as methanol homologation
- Reported on catalysts based on cobalt, bimetallic Rh-Fe or copper
- Molybdenum-based catalysts? Few published results, contradictory

Figure 22. Effect of methanol co-feeding on ethanol and 1-propanol Space Time Yields $(K-MoS_2, P=71bar, T=340^{\circ}C, WHSV = 6000 NmL / h \cdot g_{catalyst}).$

K-MoS₂

Figure 23. Effect of methanol co-feeding on methane Space Time Yield $(K-MoS_2, P=71bar, T=340^{\circ}C, WHSV = 6000 NmL / h \cdot g_{catalyst}).$

Comparison between K-MoS₂ and K-Ni-MoS₂

ROYAL INSTITUTE OF TECHNOLOGY

CONCLUSIONS

OF TECHNOLOGY

Conclusions

- The novel catalyst, prepared through coprecipitation in ME solutions, is a good candidate for ethanol and higher alcohol synthesis
- Activity and ethanol yield are specially enhanced using the novel ME catalyst
- The novel ME catalyst shows larger agglomerates and lower surface area
- The new preparation method leads to a greater enrichment of promoters (Ni, K) on the catalyst surface, both before and after reaction. This could explain the better catalytic properties.
- On-going experiments, where methanol is added to the feed together with syngas, show a great increase in methane formation, while the effect in ethanol and higher alcohol yield is negative (K-MoS₂) or not significant (K-Ni-MoS₂)

Acknowledgements

- Magali Boutonnet
- Sven Järås
- Vicente Montes
- Javier Barrientos
- Francesco Regali
- Chemical Technology

- KIC Innoenergy
- European Union 7th Framework Programme

30

• Organizers

Thank you for your attention!

Rodrigo Suárez París

PhD student Chemical Technology, KTH

rosp@kth.se