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INTRODUCTION AND OBJECTIVE 
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WHY research on biofuels? 

 

 

Depletion of fossil energy sources 

 

 

 

 

 

CO2 emission reduction 

 

 

No poisoning emissions  

(SO2, NOx and particulates) 
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10% renewable energy  

in transportation  

(EU, 2020) 

 

 

WHY research on biofuels? 
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Mixed alcohol synthesis  

 

 Ethanol can be used as: fuel / fuel additive / H2 carrier for fuel cells 

 
 

 Sweden is one of the leading countries in using ethanol as fuel (E5, E85) 

 

 

Figure 1. Use of biofuels in the transportation sector (Sweden). [Source: Swedish Energy Agency] 
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Objective 

Study the conversion of syngas 
over molybdenum sulfide catalysts 
promoted with Ni and K  
 
 Introduce the microemulsion 

(ME) technique for preparing the 
catalysts 
 

 Analyze the effect of methanol 
co-feeding (ongoing work) 
 
 

Figure 2. Pathways for conversion of syngas to ethanol and higher alcohols.  
[Source: V. Subramani and S. K. Gangwal, Energy & Fuels, 2008, 22, 814-839] 
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EXPERIMENTAL 



Catalyst preparation 

Preparation of Ni-modified K-doped molybdenum sulfide catalysts  

(targeted molar ratios: Ni/Mo=0.5; K/Mo=1.5) 
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Coprecipitation of 

(NH4)2MoS4 and 

Ni(CH3COO)2·4H20 

2. Precipitate aging for 24h 
Precipitate aging 

(24 h) 

Precipitate 

recovery and 

washing 

Precipitate drying 

(50 °C) 

Doping  

with K2CO3 

H2 treatment 

(90 min, 450 °C) 

The difference between the conventional and the novel ME 
catalyst is the medium where the coprecipitation takes place  

Conventional catalyst  aqueous solution 
Novel catalyst  microemulsion 
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Phase Compound (s) 
Composition 

(wt%) 

Oil Iso-octane 53 

Surfactant CTAB 15 

Co-surfactant 1-butanol 12 

Water 
ME1: water, (NH4)2MoS4 

 

ME2: water, Ni(CH3COO)2·4H20, acetic acid  
20 

Figure 3. ME systems, 
containing Mo and Ni salts. 
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 Optically transparent and thermodynamically stable solution 
 

 Composed of spherical aqueous nanodroplets stabilized by a surfactant 
 

 Metal salts can be solubilized inside the nanodroplets and then precipitated 

Figure 4. Coprecipitation in ME. 

Table 1. Composition of the ME system. 

The microemulsion technique 
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Activity and selectivity tests 

 ~ 0.7 g catalyst, diluted with SiC 
 

 H2/CO ratio: 1/1, 4% N2 as internal standard 
 

 P=91 bar 
 

 T=340 / 370 °C 
 

 WHSV = 2 000 – 14 000 NmL / h·gcatalyst 

 

 Stabilization period > 100 h on stream 
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Cat. 1:    conventional 
 

Cat. 2:           ME 
 

Cat. 3:    conventional 
 

Cat. 4:    conventional 

K-Ni-MoS2 
 

K-Ni-MoS2 
 

Ni-MoS2 
 

K-MoS2 

Figure 5. Experimental rig. 
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RESULTS AND DISCUSSION 



 
 

 
 XPS analyses evidence a higher amount of Ni and K on the surface of 

the ME catalyst 

Fresh catalyst composition: ICP, EDX, XPS 

Table 2. Catalyst composition (fresh catalysts).  
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Catalyst 

Targeted ratio 

(mol/mol) 

Measured ratio by ICP 

(mol/mol) 

EDX analysis 

(atom/atom) 

XPS analysis 

(atom/atom) 

Ni/Mo K/Mo Ni/Mo K/Mo Ni/Mo K/Mo Ni/Mo K/Mo 

1 (K-Ni-MoS2) 0.50 1.50 0.45 1.19 0.61 1.42 0.05 1.50 

2 (ME K-Ni-MoS2) 0.50 1.50 0.40 1.51 0.55 1.21 0.18 3.49 

3 (Ni-MoS2) 0.50 0 0.50 0 0.70 0 0.14 0 

4 (K-MoS2) 0 1.50 0 1.50 0 1.15 0 5.16 

 ICP (and EDX) analyses show that the bulk Ni/Mo and K/Mo ratios are 
approximately the targeted ones 
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Fresh catalysts: SEM 
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100 μm 100 μm 

Figure 8. SEM micrographs, cat. 1  (K-Ni-MoS2). Figure 9. SEM micrographs, cat. 2 (ME K-Ni-MoS2). 

2 μm 

1 μm 

2 μm 

1 μm 

SA=3 m2 / g SA=1 m2 / g 

Figure 6. SEM micrograph, cat. 1 (K-Ni-MoS2). Figure 7. SEM micrograph, cat. 2 (ME K-Ni-MoS2). 
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Fresh catalysts: TEM 
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Figure 10. TEM micrograph, cat. 1 (K-Ni-MoS2). 

Figure 11. TEM micrograph, cat. 2 (ME K-Ni-MoS2). 
 

Figure 12. TEM micrograph, cat.3 (Ni-MoS2). Figure 13. TEM micrograph, cat. 4 (K-MoS2). 

Figure 10. TEM micrograph, cat. 1 (K-Ni-MoS2). 
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Activity 

Figure 14. Catalytic activity as a function 
of space velocity (T=340 ºC). 

18 

2000 4000 6000 8000 10000 12000 14000 16000

0

10

20

30

40

50

60

  K-Ni-MoS
2

  ME K-Ni-MoS
2

  Ni-MoS
2

  K-MoS
2

C
O

 c
o
n
v
e
rs

io
n
 (

%
)

WHSV (NmL / h·gcatalyst)

2000 4000 6000 8000 10000 12000 14000

0

10

20

30

40

50

60

70

80

90

C
O

 c
o
n
v
e
rs

io
n
 (

%
)

WHSV (NmL / h·gcatalyst)

  K-Ni-MoS
2
 

  ME K-Ni-MoS
2
 

  Ni-MoS
2
 

  K-MoS
2 

Figure 15. Catalytic activity as a function 
of space velocity (T=370 ºC). 

 Bigger differences at low WHSV 
 

 The most active catalyst is ”Ni-MoS2” 
 

 Among both K-Ni-MoS2 catalysts, the ME catalyst results in higher conversions 
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Selectivity 

Figure 16. Product distribution  
(T=340 ºC, WHSV=6 000 NmL / h∙gcatalyst) 
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Figure 17. Product distribution  
(T=370 ºC, WHSV=6 000 NmL / h∙gcatalyst) 
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Potassium is essential to shift selectivity from hydrocarbons to alcohols 
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Space Time Yields: methanol 

Figure 18. Methanol Space Time Yield 
(T=340 ºC) 
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Figure 19. Methanol Space Time Yield 
(T=370 ºC) 
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Nickel is essential to shift selectivity from MeOH to higher alcohols 
 



Space Time Yields: ethanol 

Figure 20. Ethanol Space Time Yield 
(T=340 ºC) 
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Figure 21. Ethanol Space Time Yield 
(T=370 ºC) 
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Ethanol production is clearly enhanced over the ME catalyst 
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 Potassium migrates to the surface during reaction  previously reported on 

K-Co-MoS2  [Source: J. Iranmahboob, H. Toghiani and D. O. Hill, Applied Catalysis A: General, 2003, 247, 207-218] 
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Catalyst 

Targeted ratio  

(mol/mol) 

EDX analysis     
(atom/atom) 

XPS analysis 

 (atom/atom) 

Ni/Mo K/Mo Ni/Mo K/Mo Ni/Mo K/Mo 

1 (K-Ni-MoS2) 0.50 1.50 0.61 1.42 0.05 1.50 

Spent 1 (K-Ni-MoS2) - - 0.02 1.23 0.06 2.90 

2 (ME K-Ni-MoS2) 0.50 1.50 0.55 1.21 0.18 3.49 

Spent 2 (ME K-Ni-MoS2) - - 0.18 1.42 0.26 5.27 

The ME catalyst shows a higher concentracion of Ni and K on the surface 
after reaction, which could explain the improved ethanol yields 

Table 3. Catalyst composition (spent catalysts).  

 Nickel is partially removed during reaction, remaining mainly on the surface 
 

Spent catalyst composition: EDX, XPS 
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ONGOING WORK 
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Ongoing work: methanol co-feeding 

 

 
 The C-C bond formation to transform C1 to C2 species is the rate-

determining step in ethanol and higher alcohol synthesis from syngas 

 

 To enhance the reactivity of the C1 intermediate that is formed from 
syngas, lower alcohols such as methanol and ethanol have been added 
to the feed 

 

 The carbon chain growth enhanced by co-feeding methanol is known as 
methanol homologation 

 

 Reported on catalysts based on cobalt, bimetallic Rh-Fe or copper 

 
 

 Molybdenum-based catalysts? Few published results, contradictory 

 

 

Rodrigo Suárez París, POKE summer school, 
August 2014 



25 

K-MoS2 

0 30 60 90 120

0

1

2

3

4
  10%

MeOH

He pocket up to 20%

 EtOH

 1-PrOH
S

T
Y

 (
m

m
o

l 
C

 /
 h

·g
c
a

ta
ly

s
t)

ToS (h)

stabilizationstabilization He pocket up to 20%stabilization He pocket up to 20%

  5%

MeOH

 2.5% 

MeOH

 1.5% 

MeOH

Figure 22. Effect of methanol co-feeding on ethanol and 1-propanol Space Time Yields  
(K-MoS2, P=71bar, T=340ºC, WHSV = 6000 NmL / h·gcatalyst). 
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K-MoS2 

Figure 23. Effect of methanol co-feeding on methane Space Time Yield 
 (K-MoS2, P=71bar, T=340ºC, WHSV = 6000 NmL / h·gcatalyst). 

CH4 
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Figure 26. Effect of methanol co-feeding on methane STY 
(K-Ni-MoS2, P=71bar, T=340ºC,  
WHSV = 6000 NmL / h·gcatalyst). 
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Comparison between K-MoS2 and K-Ni-MoS2 

Figure 24. Effect of methanol co-feeding on STY 
(K-MoS2, P=71bar, T=340ºC,  

WHSV = 6000 NmL / h·gcatalyst). 
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Figure 25. Effect of methanol co-feeding on alcohols STY 
(K-Ni-MoS2, P=71bar, T=340ºC,  
WHSV = 6000 NmL / h·gcatalyst). 
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CONCLUSIONS 



Conclusions 
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 The novel catalyst, prepared through coprecipitation in ME solutions, is a 
good candidate for ethanol and higher alcohol synthesis 

 

 Activity and ethanol yield are specially enhanced using the novel ME 
catalyst 

 

 The novel ME catalyst shows larger agglomerates and lower surface area 

 

 The new preparation method leads to a greater enrichment of promoters 
(Ni, K) on the catalyst surface, both before and after reaction. This could 
explain the better catalytic properties. 

 

 On-going experiments, where methanol is added to the feed together 
with syngas, show a great increase in methane formation, while the effect 
in ethanol and higher alcohol yield is negative (K-MoS2) or not significant  
(K-Ni-MoS2) 
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