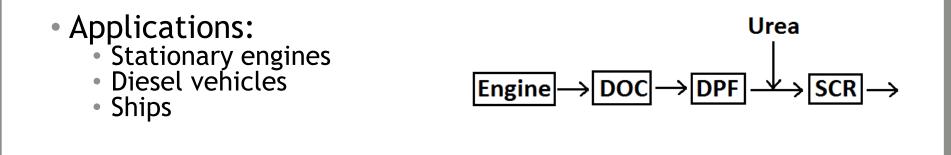


SELECTIVE CATALYTIC REDUCTION OF NO_X USING CERIA-ZIRCONIA BASED CATALYSTS

Ari Väliheikki ari.valiheikki@oulu.fi

NO_X EMISSIONS

- Sources:
 - Stationary sources
 - Motor vehicles
 - Agriculture
- Problems:
 - Respiratory health effects
 - Smog
 - Acid rain
 - Ozone depletion
- NO_x emission standards
 - Euro 6 in Europe
 - Tier 2 and 3 in USA
 - MARPOL Annex VI in USA (sea areas)



NH₃-SCR

• Applied commercially since 1973 (Japan)

Main technology to reduce NO_x emissions
 In SCR NO_x is reduced by NH₃ to N₂ and H₂O

• Urea $(CO(NH_2)_2)$ has been used as a source for NH_3 .

CATALYST DEACTIVATION

 Chemical deactivation: Poisons adsorb on catalysts' active sites Catalysts' ability to reduce NO_x emissions decreases

- Potassium (K), sodium (Na), phosphorous (P)
 - Originates from biofuels
 - Use of biofuels increases
- Sulphur dioxide (SO₂) in exhaust gas
 - Coal combustion
 - Petroleum combustion
 - Shipping
 - Metal smelting

www.aertc.org/research.asp

BACKGROUND

- Vanadium-based SCR catalysts (V_2O_5/TiO_2-WO_3)
 - Efficient in NO_x reduction by NH₃ or urea
 Main commercial solution

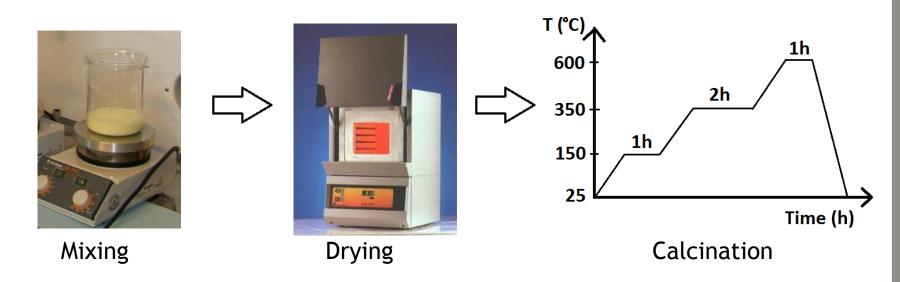
 - Drawbacks:
 - Use limits in certain fields due to vanadium pentoxide (V_2O_5)
 - Active in oxidizing SO_2 to SO_3 (\rightarrow increased particulate emissions)

 - Low thermal durability (max. 600°C)
 Sensitivity to certain poisons like P, K, Na, Ca and Mg

\rightarrow New alternative V-free catalysts are needed for SCR of NO_x

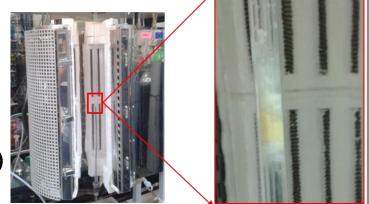
W-Ce7r oxide?

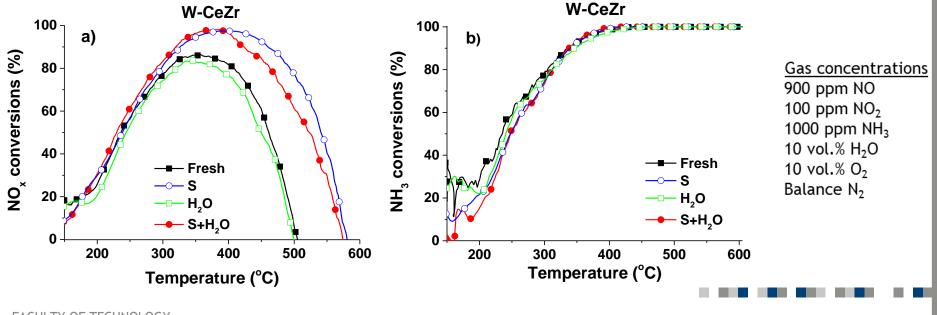
OBJECTIVE


- 1. To develop <u>novel materials for NH_3 -SCR</u> with high NO_x reduction activity for high temperature conditions
- 2. To provide <u>new information on poisoning</u> (as literature data related to the effect of poisons on studied catalysts is not much available).

CATALYST PREPARATION

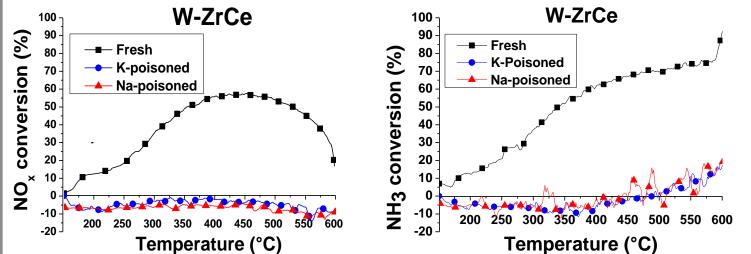
- Used materials
 - Tungsten (W), AMW ((NH₄)₆H₂W₁₂O₄₀) was used as an active material
 - CeZr oxide used as support material
- Preparation by a wet impregnation method




\rightarrow <u>Target</u>: 3.0 wt.% of W on CeZr oxide

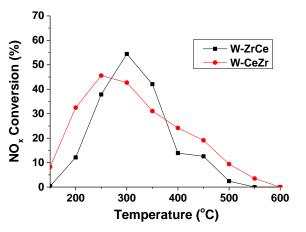
S- AND H₂O-TREATMENTS

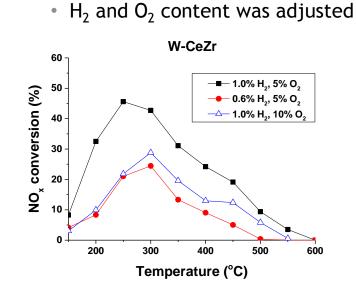
- Treatments were done in gas phase for 5h at 400°C.
- Sulphur content on catalysts: 1.6-1.9 wt% (XRF)



K- AND NA-TREATMENTS

- Treatments were done using wet impregnation method
- K and Na contents on catalysts was 0.9-1.0 wt% (AAS)


Gas concentrations 900 ppm NO 100 ppm NO₂ 1000 ppm NH₃ 10 vol.% H₂O 10 vol.% O₂ Balance N₂



H₂-SCR

- H₂ is more environmentally-friendly reductant than NH₃.
 - No N₂O and NH₃ emissions.
- Gas mixture in activity tests:
 - 520 ppm NO_x, 0.6-1.0 vol% H₂, 5-10 vol% O₂, 10 vol% CO₂, Balance N₂
- Two different CeZr supports
 - W-ZrCe (Zr-rich)
 - W-CeZr (Ce-rich)

Three different gas mixtures

This study was done in co-operation with the University of Cyprus.

CONCLUSIONS

- SO₂ enhanced the SCR activity of W-CeZr catalyst.
- H₂O-treatment decreased the NH₃-SCR activity of W-CeZr catalyst slightly.
- K and Na deactivated the W-CeZr catalysts.
 The effect of K and Na needs to verified in gas phase.
- NH_3 is more active reductant than H_2 in case of W-CeZr catalyst.
- Based on these results, W-CeZr catalyst showed a great potential to be used in NH_3 -SCR applications in the presence of SO_x .

PUBLICATIONS

Reviewed articles in international journals

- Väliheikki A, Kolli T, Huuhtanen M, Maunula T, Kinnunen T, Keiski RL (2013) "The effect of biofuel originated potassium and sodium on the NH₃-SCR activity of Fe-ZSM-5 and W-ZSM-5 catalysts" Topics in Catalysis 56, p.602-610.
- Väliheikki A, Petallidou KC, Kalamaras CM, Kolli T, Huuhtanen M, Maunula T, Keiski RL, Efstathiou AM (2014) "Selective Catalytic Reduction of NO_x by Hydrogen (H_2 -SCR) on WO_x-promoted Ce_zZr_{1-z}O₂" Applied Catalysis B: Environmental 156-157, p.72-83
- Väliheikki A, Kolli T, Huuhtanen M, Maunula T, Keiski RL "Activity enhancement of W-CeZr oxide catalysts by SO₂ treatment in NH₃-SCR" submitted to Topics in Catalysis in 2014.

The Conference papers

- Väliheikki A, Kolli T, Huuhtanen M, Maunula T, Kinnunen T, Keiski RL (2012) "The influence of potassium and sodium on W-ZrCe oxide NH₃-SCR catalysts" East Meets West 2012 Conference proceedings.
- Keiski RL, Kolli T, Väliheikki A, Kärkkäinen M, Valtanen A, Pietikäinen M, Oravisjärvi K, Huuhtanen M (2012) "Recent research in the field of NO_x reduction". East Meets West 2012 Conference proceedings.

ACKNOWLEDGEMENTS

• Funding from:

- Cleen Ltd: Future Combustion Engine Power Plant (FCEP) -programme
- The Academy of Finland: ACABIO-project (139187)
- Catalyst materials from:
 - Dinex Ecocat Ltd

Thank you for your attention!

