KTH ROYAL INSTITUTE OF TECHNOLOGY

Optimizing the diesel oxidation catalyst for fuel diversification

Jonas Granestrand, August 2014

Agenda

- Background
- My project
- Main takeaways from literature study
- Experimental approach

Pollutants from diesel trucks

- Nitrogen oxides (NO_x)
- Particulates
- Hydrocarbons
- CO
- CH₄
- CO₂
- N₂O

European emission legislation

Emissions cut by over 90 % compared to 2000

Euro 6 introduces particle number limits

Scania's aftertreatment – summary

Example of a Euro 6 aftertreatment system

DOC Oxidizes hydrocarbons and CO into $\rm CO_2$ and $\rm H_2O$

Oxidizes NO into NO₂

```
Pt-Pd/Al<sub>2</sub>O<sub>3</sub> typically used
```


Example of a Euro 6 aftertreatment system

DPF traps particulates

NO₂ generated in the DOC helps burn away trapped soot

Example of a Euro 6 aftertreatment system

In the SCR catalyst NO_x reacts with NH₃

Increasing the NO_2/NO_x ratio from engine-out levels increases activity

Excess NH₃ is taken care of in the ASC

The DOC plays a central role in the system

- Takes care of CO and hydrocarbons
- Oxidizes NO into NO₂
- Facilitates particle filter regeneration
- Increases NO_x removal activity
- However, its position close to the engine exposes it to various poisons
 - Is performance and longevity affected by fuel substitution?

How does fuel substitution affect exhaust chemistry?

- Changed relative composition of main components
- Other hydrocarbons
- Trace elements that may act as catalyst poisions
 - From feedstock
 - From catalysts used in production process

My project

- Development of an oxidation catalyst
 - which optimizes the performance of the entire aftertreatment system
 - Which is optimized for fuel diversification
- Verify on lab scale its effect on the rest of the aftertreatment system
- Map the effects of poisoning on catalyst performance for different fuels

Three main areas to study

Hysteresis effect for NO oxidation

The catalyst is reversibly deactivated at high temperatures due to oxide formation from reaction with formed NO_2 .

Hauptmann, W., et al., *Inverse hysteresis during the NO oxidation on Pt under lean conditions*. Applied Catalysis B: Environmental, 2009. **93**(1–2): p. 22-29.

NO oxidation: reverse hysteresis

The reverse hysteresis effect is a transient effect.

Hauptmann, W., et al., *Inverse hysteresis during the NO oxidation on Pt under lean conditions*. Applied Catalysis B: Environmental, 2009. **93**(1–2): p. 22-29.

DOC kinetics

$$CO + \frac{1}{2} O_2 \rightarrow CO_2$$
$$NO + \frac{1}{2} O_2 \rightarrow NO_2$$
$$HC + O_2 \rightarrow CO_2 + H_2O$$

The different reactions influence each other

Reactant mixture effects: NO, CO and HC co-oxidation

NO oxidation starts after CO and HC have already been oxidized

Katare, S., Patterson, J., and Laing, P., "Aged DOC is a Net Consumer of NO2: Analyses of Vehicle, Engine-dynamometer and Reactor Data," SAE Technical Paper 2007-01-3984, 2007, doi:10.4271/2007-01-3984.

Reactant mixture effects: HC and CO can act as reductants of NO₂

Because of oxidation of HC and CO by NO_2 , with high NO_2 outputs from the engine, the DOC may actually be a net consumer of NO_2

Irani, K., W.S. Epling, and R. Blint, Effect of hydrocarbon species on no oxidation over diesel

oxidationcatalysts. Applied Catalysis B: Environmental, 2009. 92(3-4): p. 422-428.

CO inhibition

Patterson, M.J., D.E. Angove, and N.W. Cant, *The effect of carbon monoxide on the oxidation of four* C6 to C8 hydrocarbons over platinum, palladium and rhodium. Applied Catalysis B: Environmental, 2000. **26**(1): p. 47-57.

Inhibition by water

Olsson, L., et al., *The effect of a changing lean gas composition on the ability of NO2 formation and NO x reduction over supported Pt catalysts*. Topics in Catalysis, 2004. **30-31**(1-4): p. 85-90.

HC oxidation: reactant mixture effects

Barresi, A.A. and G. Baldi, *Deep Catalytic Oxidation of Aromatic Hydrocarbon Mixtures: Reciprocal Inhibition Effects and Kinetics.* Industrial & Engineering Chemistry Research, 1994. **33**(12): p. 2964-2974.

Conclusions

- There are considerable inhibition effects between the different reactants
- A decrease in oxidation activity for one reactant may affect conversion of the other reactants
- To understand the deactivation process you want to be able to study oxidation of each reactant individually
- Using only C₃H₆ to model all hydrocarbons may not give accurate results
- Flexibility in mind when designing the experiment rig

Experimental set-up

Acknowledgements

We gratefully acknowledge the funding received from

- Scania
- The Swedish Energy Agency
- FFI Strategic Vehicle Research and Innovation

Thank you for your attention!